CHP State and Trace Semantics Equivalence:
A Coqg Proof Guide

Stephen Longfield, Brittany Nkounkou, Rajit Manohar, and Ross Tate

last updated on April 16, 2015

This document serves as a guide to the Coq proof appended to our paper, “Preventing Glitches and Short
Circuits in High-Level Self-Timed Chip Specifications”. The proof serves as mechanically verified evidence of
our theorems and corollary stated in Section 3.3. The final corollary says that given the state semantics
defined in Figures 4, 5 and the trace semantics defined in Figures 6, 7, a CHP program is erroneous in the
state semantics if and only if it is erroneous in the trace semantics. More precisely, for all CHP programs P not
containing data-carrying channels and not containing A; or A; for any Channel A:

*

S
P -> error & P — error

The final Coq construct that completes the proof of this statement can be found in ProofFinal.v, where we
provide the definition of BigErrorStep iff BigErrorTrace, appropriately of type forall P :
Program, initial P -> (BigErrorStep P <-> BigErrorTrace P). ltis later made clear that this
Coq type corresponds exactly to the statement above. In this document, we generally use the term “step” to
denote a single step in the state semantics, and the term “trace” to denote a single step in the open-world trace
semantics.

We begin this guide by providing a visual overview of our Coq files, including a high-level description of each
file and the logical dependencies between them. The logical dependencies appropriately indicate the order in
which the files must be compiled in Cog. We verified our files with Coq version 8.4pl3. Following the visual
overview, we highlight the important constructs within each file. Note that code excerpts have been modified
for simplicity and brevity. For more details, the reader should refer to the full Coq code itself, which includes
some guiding comments.

Visual Overview of Coq files

)

NN\ 5) r p . SYANTD A/)
_w\,_u;n\ pﬁ/_ WGJ‘/ wqu:F\.uTm.//

e WS\l Sy :‘r\u\,
1330 yoea 0} dew saduanbas adei} pue dajs SNOUO.IS 1Y) SAA0Id

N'[eul4j001d

$da)s SN0AUOLI3 0] S3JBJ] SNO3UOLI3 pue sasuanbas days
SNO3U0JI3 10 SNO3U0JI3UOU 0} S3duanbas adely Jueldwod sdey

A'9]e}S0] 3ded) jooldd

sdajs a1els
SN03U01J2 10 SNO3UO.IAUOU 0} dew sades) Juel|dwod 1ey) Sanold
A'UIB|A|9}B)S0| 9081] JOOId

A

sda3s 3135 SNO3UO0.I3 03 dew s3JeJ} 3|qeISUOU Jey) SN0

AAY1|10RIS31RISOL 9981 JOOId

/

$3JBJ) SNO3UOLI 0} SA3)S SNOAUOLID pue saduanbas
2dBJ) SNO3UO0LIaUOU 0} saduanbas dajs snoauoliauou sdepy

~AY|IqeISIIRI| 0] 2383540014

A"32B1] 0] 318150044

s34} JuesapI)uI(uou) 03 dew sdajs snoauoLI3(Uou) 1By} SaN0Ld

s328J) 3|qejsuou 03 dew sdajs SNOIUOLID JeY) SAA0I
A'32UBIS}I3IU[SIBI]| O] 31RISJ00.d

sda)s 21e3s SN03UO0LI 0} dew S3deJ} JUBIBLIAUI JBY) SAA0Id

A'9JUBI3}I9}U[D}BISO] 3JBI] JOOId

sadeu) juel|dwod 03 dew sdajs aje3s Jey) sanold
A9duel|dwo)adel] 0] 91RISJ00.d

3|1} J0SS320NS
23.y3 3UIMO||0} 3Y3 0} UOWILIOD $§001d PUB SUORIULAP SIPIAOI
A'958g1R}S0] 3IBI| JOOId

/

3|1} JOSS32NS
93,43 BUIMO|[0} 3Y3 0} UOLULIOD $}00Jd PUB SUORIULIP SIPIAOI]
A'358gadE1| 0] 91L1ISJ00.d

[

$32e43 03 sdajs soluewas ajeys sdey

Ade|A92e1] 0] 91815J00.4d

/

\

& wrp,),.D.J,ﬁ) ~)gmu NC S0 2 ' 2
= o B AN, sj00.d soUBWaS 3)e)5-0}-3081) pue G | 8 o Ll 2l
v VRS 30813-03-3183S 3y} Y310q 0} UOWIWIOD S§00Id PUB SUOIIUISP SIPINOI bame '’ o .
A'95egJ00Id
Ppasn $10nJ3su0d Aseiqi piepuels bo) 03 ay1dads sj00.d sapinoid
A'@1d}00.1d
~YA\) o fl J.f,,,ﬁ.],m,
=~ (S AL SOIjUBWAS 32e43 AY] SaulRQ Soljuewas aje3s ayj sauljaq o Ll ol >

™ U A'32B1] SIIJUBWSS

A'21BISSI1IUBWISS O

SONUBLUAS 3IBJ) PUE 33BIS 3Y) Y10q O} UOLILLOD SUO!
A'35BGSIIIUBWIAS

139p S3PINOI4

between files

1es

| dependenc

ing logica

lud

, InC

f the complete Coq proof system

1ew O

| overv

A visua

Figure 1

Table of Contents

S BIMANTICSBASE.V ... e e e 4
BN AN I C S S A .V ..ot 4
S BIMNANTICS T TACE.V e e e et ettt 6
Pl OO P .V o 8
P OO B aAS .V e 8
PrOOTSTAIETOTIACEIMAP.V ...ttt 9
PrOO S A T O T TACE BASE.V e e et ettt e e et e e e e e e e e eeaanns 10
ProofState TOTraCeCOMPIIANCE.Vuiiii et e e e e e et e e e e e e e eeeeaaaas 10
ProofState T O T raCE NI EIANCE .V ... e e e e 11
ProofState TOTraCceStabIlity.Vuuiiiii e e e e e e e e e e e e e e 11
(2l ge]0) 1) =1 (=] N N B = (1A AT TP 11
P OO T rACE T O S At E BaASE .V . e e 11
Proof TraCe T OS At N I EIANCE .V ... e e e e 12
ProofTraceToStateStabIlity.Vooveiiie e e e e e e e e e 12
ProOf TraCe T OSIAtEIMAIN.V . ..o e e 12
R (o 0) il N = (=R N0 1) r= L (<A V2RO 13
(g0]0)i HITaT: | Y2 TRP TR 13

SemanticsBase.v

In correspondence with Figure 3 and Communication’s extension in Figure 4, this file provides definitions
common to both the state and trace semantics.
We assume a Channel type as follows:

Variable Channel : Type.

This type, along with decidable equality within the type, is the only assumption made throughout the entire
proof system.
The Communication type is defined as follows:

Inductive Communication : Type :=
| bang (A : Channel) : Communication
| bang' (A Channel) Communication
| quer (A : Channel) : Communication
| quer' (A Channel) Communication.

where bang A, bang' A, quer A and quer' A represent A!, A;, A? and A;, respectively.
The Guard type is defined as follows:

Definition Guard : Type := list Channel.

where the list [A ; .. ; A’] represents the Boolean expression AA ..AA’.
The Program type is defined as follows:

Inductive Program : Type :=

| skip : Program
| comm (C : Communication) : Program
| sequ (PO Pl : Program) : Program
| par (PO Pl : Program) : Program
| rep (P : Program) : Program
| det (GPO GPl : Guard * Program) : Program
| ndet (GPO GPl : Guard * Program) : Program.

where the constructors above intuitively represent skip, a Communication, sequential composition, parallel
composition, infinite repetition, deterministic choice and nondeterministic choice.
Finally, the Probe type is defined as follows:

Inductive Probe : Type :=
| bar (A : Channel) : Probe
| hat (A : Channel) : Probe.

where bar A and hat A represent the variables A4 and 4, respectively. Note that a “Probe” as defined here
does not appear in Programs. Instead, it is used to express states of the state semantics and classification
functions of the closed-world trace semantics. Following the definition of the Probe type, we additionally prove
some statements about Probe equality.

SemanticsState.v

This file defines the state semantics in correspondence with Figure 5 and the unchanged rules from Figure 4.
We first define the State type as follows:

Definition State : Type := list Probe.

where the number of a Probe’s occurrences in the list corresponds to the natural number to which the State
maps that Probe. With this, we further define State equality, the initial State, and a State’s evaluation of a
Guard as follows:

Definition eg State (sl s2 : State) : Prop :=
forall p, count occ sl p = count occ s2 p.

Definition state init : State := nil.

Fixpoint sl (s : State) (G : Guard) : Prop
match G with
| nil => True
| A :: G' => count occ s (bar A) > 0 /\ sl s G'
end.

Next, we define non-erroneous steps (SmallStep) and sequences of them (BigStep) as follows:
SmallStep : Program -> State -> Program -> State -> Type := ..

Inductive BigStep : Program -> State -> Program -> State -> Type :=
| S' : BigStep P s P s
| SS : SmallStep P s P' s' -> BigStep P s P' s'
| BS : BigStep P s P' s' -> eg State s' s'"'
-> BigStep P' s'' P'' s''' -> BigStep P s P'' s'''.

Then, we define erroneous steps (ErrorStep) as follows:
Nonstable : Program -> State -> State -> Type := ..

Inductive ErrorStep : Program -> State -> Type :=
| CommB2 E (cl : In (hat A) s) (c2 : count occ s (bar A) > 1)
ErrorStep (comm (bang' A)) s
| CommQ2 E (cl : ~ In (bar A) s) (c2 : count occ s (hat A) > 1)
ErrorStep (comm (quer' A)) s
| Sequ E (es : ErrorStep Pl s)
ErrorStep (sequ Pl P2) s
| ParL E (es : ErrorStep Pl s)
ErrorStep (par Pl P2) s
| ParR E (es : ErrorStep P2 s)
ErrorStep (par Pl P2) s
| Det2 E (cl : sl s (fst GPO)) (c2 : sl s (fst GP1l))
ErrorStep (det GPO GP1)
| ParL NSE (ss : SmallStep P1 P1' s'")
(ns : Nonstable P2 s s')
ErrorStep (par Pl P2) s
| ParR NSE (ss : SmallStep P2 P2' s')
(ns : Nonstable P1 s s')
ErrorStep (par Pl P2) s.

n n

)]

where Nonstable corresponds to the last rule in Figure 5.
Finally, we define an erroneous step sequence (BigErrorStep) as follows:

Inductive BigErrorStep : Program -> Type :=
5

| BES (bs : BigStep P state init P' s') (es : ErrorStep P' s')
BigErrorStep P.

SemanticsTrace.v

This file defines the trace semantics in correspondence with Figure 6 and Figure 7.
We first define the open-world trace semantics as follows:

Inductive Move : Type :=
| start : Move
| use : Move

| finish : Move.

Inductive Step : Type :=
| send (M : Move) (A : Channel) : Step
| recv (M : Move) (A : Channel) : Step.

Inductive Label : Type :=

| idle : Label
| step (S Step) : Label
| holds (G : Guard) : Label
| holds2 (Gl G2 : Guard) : Label
| 11 (a0 al : Label) : Label.

Trace : Program -> Label -> Program -> Type := ..

Then, we define the closed-world semantics, including non-erroneous trace sequences (BigTrace), single
erroneous traces (ErrorTrace), and erroneous trace sequences (BigErrorTrace), as follows:

Fixpoint pre (a : Label) : list Probe :=
match a with
| step (send use A) => (bar A) :: nil
| step (recv use A) => (hat A) :: nil
| step (send finish A) => (bar A) :: nil
| step (recv finish A) => (hat A) :: nil
| 1lr a0 al => (pre al0) ++ (pre al)
| => nil
end.
Fixpoint post (a : Label) : list Probe :=
match a with
| step (send start A) => (bar A) :: nil
| step (recv start A) => (hat A) :: nil
| step (send use A) => (bar A) :: nil
| step (recv use A) => (hat A) :: nil
| 1lr a0 al => (post al0) ++ (post al)
| => nil
end.
Fixpoint eval (G : Guard) (1 : list Probe) : Prop :=
match G with
| nil => True
| A :: G'" => In (bar A) 1 /\ eval G' 1

end.

Fixpoint req (a : Label) (1 : list Probe) : Prop :=
match a with
| 1idle => True

step (send start A) => ~ In (hat A) 1
step (recv start A) => In (bar A) 1
step (send use A) => True

step (recv use A) => True

step (send finish A) => In (hat A) 1
step (recv finish A) => ~ In (bar A) 1

|
|
|
|
|
|
| holds G => eval G 1
| holds2 Gl G2 => eval G1 1 /\ eval G2 1
| 1r a0 al => req a0 1 /\ req al 1

end.

Fixpoint up (a : Label) : list Probe :=
match a with
| step (send start A) => (bar A) :: nil
| step (recv start A) => (hat A) :: nil
| step (send use A) => (bar A) :: nil
| step (recv use A) => (hat A) :: nil
| 1r a0 al => (up a0) ++ (up al)
| => nil
end.
Fixpoint down (a : Label) : list Probe :=
match a with
| step (send finish A) => (bar A) :: nil

| step (recv finish A) > (hat A) :: nil
| 1r a0 al => (down a0) ++ (down al)
| => nil

end.

Fixpoint detreqg (a : Label) : Prop :=
match a with
| holds2 Gl G2 => False
| 11 a0 al => detreq a0 /\ detreqg al

| => True
end.
Definition compliant (a : Label) : Prop := req a (pre a).
Definition interferant (a : Label) : Type

:= {p : Probe & In p (up a) /\ In p (down a)}.
Definition stable (a : Label) : Prop := req a (post a).
Inductive BigTrace : Program -> Program -> Type :=

| ST : Trace P a P' -> compliant a
-> (interferant a -> False) -> BigTrace P P'

| BT : BigTrace P P' -> BigTrace P' P'' -> BigTrace P P''.
Inductive ErrorTrace : Program -> Type :=
| NDR_ET : Trace P a P' -> compliant a -> ~ detreq a —-> ErrorTrace P
| Int ET : Trace P a P' -> compliant a -> interferant a -> ErrorTrace P

7

| NSt ET : Trace P a P' -> compliant a -> ~ stable a -> ErrorTrace P.

Inductive BigErrorTrace : Program -> Type :=
| BET (bt : BigTrace P P') (et : ErrorTrace P') : BigErrorTrace P.

The closed-world trace semantics as they are constructed here appear to be quite different from the definition
in Figure 7. This is primarily due to brevity and exposition concerns in the paper, where we expressed
classification functions in terms of the simple separately defined off and on constructs, as opposed to using
the composite construct req as is it appears here in the proof. Nevertheless, the two formulations are
equivalent as follows (where boldface terms refer to constructs in the paper and italicized terms refer to the
Coq constructs above):
1) pre a and post a correspond to the minimal states satisfying the respective columns of the chart in
Figure 7. That is:
a) prea Epre(a) and Vo. o £ pre(a) =>prea EP =20 EP
b) posta E post(a) and Vo. o E post(a) = posta EP =0 EP
2) reqal, for some Label a and State [(remember a State is simply a list of Probes), corresponds to the
statement [= off(a) A on(a).
3) With this, compliant a corresponds to pre a & off(a) A on(a). It can be proven that this statement is
equivalent to the definition of compliant(a) in Figure 7 through use of la.
4) stable a is dual to compliant a, where pre is replaced with post (and 1b is used).
5) up a and down a are defined such that:
a) Vp.p Eupa = drive(a) =p
b) Vp. p €downa = drive(a) = —p
6) By 5a and 5b, ~ interferant a is equivalent to noninterferant(a).
7) The remaining Coq definitions above correspond directly to that in the paper. (detreq corresponds to
the last rule in Figure 6.)
It should be noted that the reasoning above requires that certain propositions be decidable, and we can claim
that they are because we generally assume to be working in a finite environment (e.g. with a finite number of
Channels, finite CHP Programs, etc.).

ProofPre.v

This file provides proofs specific to constructs defined in the Coq Standard Library that we used (e.qg. lists). We
refer the reader to the full Coq code for more details.

ProofBase.v

This file provides definitions and proofs common to both the state-to-trace and trace-to-state semantics proofs.
Some notable definitions are:

Fixpoint initial (P : Program) : Prop :=

match P with

| skip => True

| comm (bang A) => True

| comm (bang' A) => False

| comm (quer A) => True

| comm (quer' A) => False

| sequ PO P1 => initial PO /\ initial P1

| par PO P1 => initial PO /\ initial P1

| rep P' => initial P'

| det GPO GP1 => initial (snd GPO) /\ initial (snd GP1)

| ndet GPO GPl => initial (snd GPO) /\ initial (snd GP1)
end.

Fixpoint wvalid (P : Program) : Prop :=

match P with

| skip => True

| comm => True

| sequ PO P1 => valid PO /\ initial Pl

| par PO P1 => valid PO /\ wvalid P1

| rep P' => initial P'

| det GPO GP1 => initial (snd GP0O) /\ initial (snd GP1)

| ndet GPO GPl => initial (snd GPO) /\ initial (snd GP1)
end.

Fixpoint Program to State (P : Program) : State :=
match P with
| comm (bang' A) => (bar A) :: nil
comm (quer' A) => (hat A) :: nil

|
| sequ PO Pl => Program to State PO
| par PO P1 => Program to State PO ++ Program to State P1
| => nil
end.
Definition exact (P : Program) (s : State) : Prop :=
eq State (Program to State P) s.

The initial property is used to identify Programs that are not in the middle of any communication handshake.
The valid property is used to ensure that Programs may only be in the middle of a communication handshake
at a current point of execution in the Program. Note that initial P implies valid P, and that valid P is an
invariant of both semantics.

exact P is also an invariant, specifically of the state semantics. Establishing this as an invariant is very
important, as it expresses that one can infer the exact State of any valid Program that once was initial. This
ties in precisely with the overall ability to perform our program analysis using a trace semantics that is not
concerned with state.

ProofStateToTraceMap.v
This file provides a mapping from steps to traces through the following definitions:
SS to Label (ss : SmallStep P s P' s') : Label := ..

SS to Trace (ss : SmallStep P s P' s')
Trace P (SS to Label ss) P' := .

ES to Label (es : ErrorStep P s) : Label := .
ES to Program (es : ErrorStep P s) : Program := ..
ES to Trace (es : ErrorStep P s)

Trace P (ES to Label es) (ES to Program es) := ..

Defined here is just a simple structural mapping from the state semantics to the open-world semantics,
whereas the files to follow must exhibit more complex reasoning about the classification functions of the
closed-world semantics (compliance, interference and stability) with respect to this mapping.

ProofStateToTraceBase.v

This file provides definitions and proofs common to ProofStateToTraceCompliance.v,
ProofStateToTraceInterferance.v, and ProofStateToTraceStability.v. Some notable
constructs are:

Fixpoint es interferant {P s} (es : ErrorStep P s) : Prop :=
match es with
| CommB2 E ~ => True
| CommQ2 E ~ => True
| Sequ E =~ es' => es interferant es'
| ParL E = es' => es interferant es'
| ParR E =~ es' => es interferant es'
| => False
end.
Fixpoint es nondetreq {P s} (es : ErrorStep P s) : Prop :=
match es with
| Sequ E ~~ es' => es nondetreq es'
| ParL E =~ es' => es nondetreq es'
| ParR E =~ es' => es nondetreq es'
| Det2 E => True
| => False
end.
Fixpoint es nonstable {P s} (es : ErrorStep P s) : Prop :=
match es with
| Sequ E ~~ es' => es nonstable es'
| ParL E =~ es' => es nonstable es'
| ParR E es' => es nonstable es'
| ParL NSE => True
| ParR NSE => True
| => False
end.

which indicate the type of trace error exhibited by an ErrorStep.

ProofStateToTraceCompliance.v

Through the following definitions, this file proves that the previously defined mapping from steps to traces
generates compliant traces:

SS to Compliant (ss : SmallStep P s P' s') (e : exact P s)
compliant (SS to Label ss) := ..

ES to Compliant (es : ErrorStep P s) (e : exact P s)
compliant (ES to Label es) := ..

Note that both non-erroneous and erroneous steps map to compliant traces, consistent with the closed-world

trace semantics. The key insight here is that the starting State of any SmallStep is equal to the Probe list pre a,
where a is the Label of the Trace to which that SmallStep is mapped.

10

ProofStateToTracelnterferance.v

Through the following definitions, this file proves that the previously defined mapping maps non-erroneous
steps to non-interferant traces and interferant steps to interferant traces:

SS_to notInt (ss : SmallStep P s P' s') (e : exact P s)
interferant (SS _to Label ss) -> False := ..
ES to Int (es : ErrorStep P s) (e : exact P s) (i : es interferant es)

interferant (ES to Label es) := ..

One step in completing the first of these two proofs was recognizing the following invariant across non-
erroneous SmallSteps: that if a Probe appears in down a where a is the Label of the Trace to which the
SmallStep is mapped, then that Probe appears in down a exactly once. This invariant proved to be helpful in
defining SS_to_notint.

ProofStateToTraceStability.v

Through the following definition, this file proves that the previously defined mapping maps non-stable steps to
non-stable traces:

ES to notStable (es : ErrorStep P s) (ns : es nonstable es)
(v : valid P) (e : exact P s)
~ stable (ES _to Label es) := .

Dual to that of proving compliance, the key insight here is that the ending State of any SmallStep is equal to
the Probe list post a, where a is the Label of the Trace to which that SmallStep is mapped.

Note that the closed-world trace semantics appropriately do not require us to prove that non-erroneous
steps map to stable traces.

ProofStateToTrace.v

In correspondence with the first theorem of Section 3.3, this file maps non-erroneous step sequences to non-
erroneous trace sequences and erroneous steps to erroneous traces as follows:

BigStep to BigTrace (bs : BigStep P s P' s') (v : valid P) (e : exact P s)
BigTrace P P' := ..

ErrorStep to ErrorTrace (es : ErrorStep P s) (v : valid P) (e : exact P s)
ErrorTrace P := ..

The state-to-trace direction of the semantics equivalence proof was by far the easier of the two, generally
because of the fact that the state semantics are less expressive than the trace semantics in that they cannot
capture concurrent executions of different parts of a parallel program. We'll see in the opposite direction that
the final trace-to-state mapping is not as straightforward as the types above.

ProofTraceToStateBase.v

This file provides definitions and proofs common to ProofTraceToStateInterferance.v,
ProofTraceToStateStability.v, and ProofTraceToStateMain.v. We refer the reader to the full Coqg
code for more details.

11

ProofTraceToStatelnterferance.v

Through the following definition, this file maps interferant traces to erroneous steps:

TraceInt to ES (t : Trace P a P') (c : compliant a) (i : interferant a)
ErrorStep P (pre a) := ..

Mapping interferant traces to erroneous steps proved to be the simplest and most straightforward piece of the
trace-to-state direction of the proof.

ProofTraceToStateStability.v

Through the following definition, this file maps non-stable traces to erroneous steps:

TraceNotStable to ES (t : Trace P a P') (c : compliant a) (ns : ~ stable a)
ErrorStep P (pre a) := ..

Mapping non-stable traces to erroneous steps proved to be a good amount more complicated than that of
interferant traces. This is partly because of the way non-stable erroneous steps are defined: through the
nested induction of Nonstable in ErrorStep. The insights that lead to the final construction involved identifying
several different complex invariant relationships between the different functions on Labels (e.g. pre, post, up,
down, etc.).

ProofTraceToStateMain.v

Through the following definition, this file maps compliant traces to non-erroneous or erroneous step
sequences:

Trace to BSorBSES (t : Trace P a P') (v : valid P) (c : compliant a)
sum (BigStep P (Program to State P) P' (Program to State P'))
{P'" : Program & {s'' : State &

prod (BigStep P (Program to State P) P'' s''")
(ErrorStep P'' s''")}} = ..

The trace semantics are more expressive than the state semantics in that they can capture multiple concurrent
Program execution steps in a single trace. An immediate implication of this difference is that in general, a
single trace must map to a state step sequence (rather than a single step) in which any concurrent execution
steps are broken up into single sequential steps. Another less obvious implication is that given a non-
erroneous trace, it may map to a non-erroneous or erroneous state step sequence. This is because certain
non-erroneous concurrent executions do not have non-erroneous sequential orderings of those executions.

This difference in expressiveness between the two semantics results in the Coq construct above. While we
may opt to rephrase our theorem as a stronger relationship between strictly non-erroneous traces and state
step sequences, the definition above is suitable for our needs, which are geared toward that between
erroneous traces and state step sequences. The logical dependency that this file has on
ProofTraceToStateStability.v exists because the general compliant traces found to map to erroneous
step sequences do so in the same fashion as that of traces known to be non-stable (which are handled in said
file). These noteworthy aspects of the proof are accented with dark red in the Visual Overview.

12

ProofTraceToState.v

In correspondence with the second theorem of Section 3.3, this file maps compliant trace sequences to non-
erroneous or erroneous step sequences and erroneous traces to erroneous steps as follows:

BigTrace to BigStep (v : valid P) (bt : BigTrace P P')
sum (BigStep P (Program to State P) P' (Program to State P'))
{P''" : Program & {s'' : State &
prod (BigStep P (Program to State P) P'' s'')
(ErrorStep P'' s''")}} = ..

ErrorTrace to ErrorStep (et : ErrorTrace P)
ErrorStep P (Program to State P) := ..

While the trace-to-state direction of the semantics equivalence proof results in types less elegant than that of
the state-to-trace direction, the constructs shown here are nevertheless sufficient to prove our theorem.

ProofFinal.v

In correspondence with the corollary in Section 3.3, this file proves that erroneous step and trace sequences
map to each other as follows:

BigErrorStep iff BigErrorTrace (i : initial P)
BigErrorStep P <-> BigErrorTrace P := ..

The final construct shows here confirms that for any initial Program P, there exists an erroneous sequence in
the state semantics (starting from the initial state) if and only if there exists an erroneous sequences in the
trace semantics.

In this file, we additionally include the line “Print Assumptions BigErrorStep_iff BigErrorTrace” which upon
execution prints the only assumptions made in building the construct above, which are the assumptions of a
Channel type and decidable equality on that type.

13

