
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
LD
I
*

Ar
tifact *

A
E
C

Preventing Glitches and Short Circuits in
High-Level Self-Timed Chip Specifications

Stephen Longfield Brittany Nkounkou Rajit Manohar Ross Tate
Cornell University, United States

slongfield@csl.cornell.edu brn25@cornell.edu rajit@csl.cornell.edu ross@cs.cornell.edu

Abstract
Self-timed chip designs are commonly specified in a high-level
message-passing language called CHP [21]. This language is
closely related to Hoare’s CSP [11] except it admits erroneous
behavior due to the necessary limitations of efficient hardware im-
plementations. For example, two processes sending on the same
channel at the same time causes glitches and short circuits in the
physical chip implementation. If a CHP program maintains certain
invariants, such as only one process is sending on any given channel
at a time, it can guarantee an error-free execution that behaves much
like a CSP program would. In this paper, we present an inferable
effect system for ensuring that these invariants hold, drawing from
model-checking methodologies while exploiting language-usage
patterns and domain-specific specializations to achieve efficiency.
This analysis is sound, and is even complete for the common sub-
set of CHP programs without data-sensitive synchronization. We
have implemented the analysis and demonstrated that it scales to
validate even microprocessors.

Categories and Subject Descriptors B.6.3 [Design Aids]: Hard-
ware Description Languages; D.2.4 [Software Engineering]: Soft-
ware/Program Verification—Model checking; D.3.2 [Program-
ming Languages]: Concurrent, Distributed, and Parallel Languages

General Terms Algorithms,Verification

Keywords Self-timed chips, AVLSI, QDI, CHP, inferable effect
system, synchronization, automata-based model checking

1. Introduction
Information takes time to propagate on a physical chip. Tradition-
ally, chips use a global clock whose tick indicates that there has
been enough time for the all information from one stage to propa-
gate to the next stage. An alternative approach is to integrate feed-
back mechanisms within the chip, communicating when informa-
tion is available or has been received. This approach is known as
self-timed chip design, and it addresses some of the major issues
currently facing the architecture community.

Self-timed chips are specified in a high-level programming lan-
guage, such as CHP (Communicating Hardware Processes) [21].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PLDI’15, June 13–17, 2015, Portland, OR, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-3468-6/15/06.
http://dx.doi.org/10.1145/10.1145/2737924.2737967

This language is closely related to Hoare’s CSP (Communicating
Sequential Processes) [11]. For example, A! sends on channel A
(where a channel is implemented as a bundle of wires), and A? re-
ceives on channelA. The two programs can be run in parallel, as in
A! ‖A?, to synchronize via communication.

Behind the scenes, CHP implements these sends and receives
with a four-phase handshake. The sender starts sending the data,
moving to a hidden state we represent with A¡. In this state, the
sender is actively driving the voltage on the wires, holding it to the
values it wants to communicate. Eventually, the receiver observes
that the data is available and starts locally storing that data. Once
stored, the receiver moves to a hidden state we represent with A¿,
indicating that it is actively driving a wire to acknowledge that the
message has been handled. Eventually, the sender then receives
that acknowledgement and communicates that fact to complete
its part of the handshake. Eventually, the receiver recognizes that
communication, removes the acknowledgement now that it has
been heard, finally completing its part of the handshake.

For this process to work correctly, at any point in time only
one process can be attempting to send on a given channel, and
at any point in time only one channel can be attempting to re-
ceive on a given channel. Thus, unlike in CSP, the CHP program
A! ‖A? ‖A! ‖A? is erroneous, causing glitches and short circuits
in its physical chip implementation. This is only one of many
sources of potential errors that a CHP programmer needs to avoid
through careful reasoning about the synchronization of the pro-
gram. Reasoning about synchronization behavior in a highly con-
current language can be quite a challenge, especially for program-
mers new to the subtleties of CHP.

In this paper, we present an inferable effect system for the CHP
language that ensures that a given program is free of glitches and
short circuits. Our effects describe the synchronization behavior of
CHP specifications, which we use to guarantee that the conflicting
actions that would cause glitches (when a wire moves ambiguously
between high and low states) and short circuits (when the power
source has a direct path to the ground) never occur. These effects
are inferable, meaning we are guaranteed to be able to determine
the effect of a specification and check if the specification matches
our formal requirements. We have implemented this effect system
as an analysis and determined that our effect system is expressive
enough to handle the common idioms and large programs such as
microprocessors.

After providing a brief overview of self-timed chips and CHP in
Section 2, we present the following contributions:

Section 3 A refined state semantics for a critical subset of CHP
that improves upon existing work by recognizing errors due to
instabilities, and a novel trace semantics that enables compositional
reasoning of CHP programs, with a proof of equivalence formally
verified in Coq [24].

C

C

L.t

L.f

L.e

R.t

R.f

R.e

C

C

Figure 1. Simple Boolean buffer

Section 4 An effect system capable of concise sound and complete
classification of the externally visible synchronization behavior of a
CHP program, and an efficient sound and complete effect-inference
algorithm.
Section 5 A discussion of how to soundly extend our analysis to
data-carrying channels such that incompleteness occurs only when
the uncommon practice of data-sensitive synchronization is used.
Section 6 A demonstration that our analysis can scale to large
systems, with strengths that complement existing techniques such
as partial-order reduction, as shown by comparison to the SPIN
model checker [12].

We establish the context of our work in the literature in Sec-
tion 7, and then look to lessons learned in Section 8.

2. Background
Before we can describe how to avoid glitches and short circuits in
hardware systems, it is important to understand how these systems
work. In this section, we give some background on self-timed
VLSI, the CHP language that we use to describe the specification
of self-timed circuits, and how CHP specifications are translated
into hardware.

2.1 Self-Timed VLSI
Very Large Scale Integration (VLSI) refers to circuit systems with
at least 100,000 transistors, often many more. The majority of these
systems are synchronous VLSI systems, where operations execute
in lockstep as coordinated by a centralized clock signal. This clock
signal is expensive to propagate throughout the chip, sometimes
consuming over one third of the total power and requiring com-
plex design considerations to avoid inconsistency [36]. Particularly
troublesome is the fact that the clock must be as slow as the worst-
case behavior of the slowest subsystem, forcing designers to spend
a great deal of time and silicon area optimizing the timing be-
havior of corner cases instead of focusing on the more frequently
exercised cases [7]. As wire delay begins to outweigh gate de-
lay, this strategy is growing increasingly costly [10]. These prob-
lems are compounded by the presence of temperature, voltage, and
manufacturing-process variations, any of which may alter the delay
of gates and wires.

A possible alternative that avoids these problems is self-timed,
or clockless, designs. By reducing the dependence on timing as-
sumptions, these designs become more resilient to manufacturing
variation and require less analog verification after digital verifi-
cation than similar synchronous designs [29]. Additionally, since
there is no clock speed limited by the worst-case behavior, it is
possible to achieve average-case performance.

The self-timed family that makes the fewest timing assumptions
is delay-insensitive (DI) circuits, which only require gate and wire
delay to be finite. Unfortunately, the class of DI circuits is very
small, and it is impossible to even use an OR gate in a fully DI
manner [23]. A common weakening of DI systems is to allow

L.t
L.f
L.e
R.t
R.f
R.e

Circuit sequencing
Environment sequencing

Figure 2. Four-phase handshake

for some wire forks (i.e. branches in the connectivity graph) to
be considered as isochronic forks where the difference in delays
between the branches of the forks are required to be shorter than the
delay of the gates that the branches feed into. This class of circuits
is known as quasi delay-insensitive (QDI) and has been found to be
Turing complete [17].

Since their introduction, QDI circuits have found applications
in both low-energy and high-performance systems, including full
microprocessors [18], very-low-power floating-point units [31]
and GPS processors [34], high-frequency interconnect networks
in field-programmable gate arrays (FPGAs) [8], and on-chip net-
works for neuromorphic circuits [1]. The International Technology
Roadmap for Semiconductors estimates that 40% of new designs
will contain some self-timed components by 2020, and marks tools
for these systems as an important area of research [13].

2.2 CHP
A common language for high-level specification of QDI systems
is the Communicating Hardware Processes (CHP) language [37].
It is inspired by Hoare’s Communicating Sequential Processes
(CSP) [11], modified to be more amenable to hardware design. One
such modification is the addition of probes: the ability to test for
whether another process is ready to communicate on a channel [19].
Another addition is that it allows shared channels (i.e. channels
with multiple senders and multiple receivers) instead of restricting
channels to having a single sender and a single receiver [20]. This
particular feature has been found to be very important in building
high-performance hardware systems [18]. Allowing for multiply-
shared channels can reduce resource requirements while increasing
concurrency.

2.3 QDI Circuits
An example of a QDI circuit is shown in Figure 1, taken from [15].
This circuit represents a stage of a simple FIFO buffer, reading in
from a left channel (represented with the signalsL.t,L.f , andL.e),
and sending out on a right channel (the signals R.t, R.f , and R.e).
It is implemented with standard CMOS NAND and NOT gates,
as well as Muller consensus elements (C-elements) [27]. Common
and fundamental for QDI systems, C-elements copy the values on
their inputs to their output when all of the input values agree, and
maintain the current value of the output otherwise.

Each of the channels is implemented by a dual-rail enable-based
four-phase handshake. Dual rail is a delay-insensitive code [38]
that specifies the data representation: one of the wires (either L.t
or L.f) being high (i.e. on) represents a possible Boolean value,
(true or false, respectively), and when both wires are low
(i.e. off), the value is in a neutral state (i.e. there is no value).

The communication protocol for the buffer is implemented as
a four-phase handshake. An example four-phase handshake is de-
picted in Figure 2. Causality in the environment is represented with
dashed blue lines, and within the circuit with solid red lines.

The execution proceeds as follows: First, the environment waits
for the channel to be enabled (i.e. L.e high), then brings the data to

Channel A
Program P ::= C | P ;P | P ‖P | ∗P | skip

| [G→ P 8G→ P] | [G→ P | G→ P]
Communication C ::= A! | A?

Guard G ::= A ∧ · · · ∧A

Figure 3. Syntax of CHP

a valid state by bringing L.t high, encoding a true token. As the
channel R is enabled (i.e. R.e is high), the circuit brings R.t high.
When this occurs, the circuit is done with L.t and acknowledges L
by lowering the enable, and the environment does same when it is
done with R.t. When both of these transitions complete, the circuit
sets R.t low and L.e high, and the environment sets R.e high, re-
turning to the initial state. In this execution, actions overlap signif-
icantly. However, as long as the ordering required by the causality
relations is satisfied, the transition timing can be freely altered.

2.4 Abstraction Requirements
Before manufacture, QDI designs must be compiled from CHP to
a network of logic gates. These gates are described by two Boolean
predicates, a pull-up, which sets the gate’s output to a true state
when satisfied, and a pull-down, which sets the gate’s output to a
false state when satisfied. For gate networks to correctly describe
the behavior of a QDI silicon implementation, these assignments
must be both stable and non-interfering [21]. As an example, in
Figure 1, the C-element connected to L.t has a pull-up of ¬L.t ∧
¬R.e and a pull-down of L.t ∧R.e.

A gate network is stable if, whenever one of these statements
is satisfied, it remains satisfied until the resulting assignment is
completed (e.g. if the pull-up is satisfied, it remains satisfied until
the output of the gate is set to true). This is an execution property
that allows gate transitions to be modeled as atomic.

A gate network is non-interfering if it never enters a state where
both a pull-up and a pull-down for a node are simultaneously en-
abled. For some gates, it may be the case that ¬pull-up∨¬pull-
down is a tautology, but for others, non-interference will depend on
the execution behavior. This is very important because a simultane-
ous assignment to true and false corresponds to an on-chip short
circuit, which may cause irreparable damage.

2.5 Compilation
The typical synthesis procedure, which we use, is Martin synthe-
sis, a series of semantics-preserving transformations to compile a
specification into a gate network [21]. In order to produce effi-
cient translations, Martin synthesis is traditionally done by hand,
requiring the designer to reason in detail about the synchronization
behavior of various components of a highly concurrent program.
Thus, an automated technique for reasoning about the synchroniza-
tion behavior of CHP programs would not only aid in identifying
potential errors but also assist the designer in this synthesis process.

We can derive the circuit in Figure 1 by applying Martin synthe-
sis to the CHP specification ∗(L?x;R!x), which describes a circuit
that repeatedly reads from a channel L into a Boolean variable x
and then sends that value on a channel R [15]. The specification
makes assumptions about the behavior of the environment in order
to guarantee the absences of glitches or short circuits when execut-
ing the resulting physical device. For example, no other process can
read from L at the same time as the buffer. The goal of the inferable
effect system presented in this paper is to infer those assumptions
as an effect and ensure they are not violated by the surrounding
context.

3. Semantics
For the sake of concision we present a simplification of CHP that
contains all the challenges of full CHP except one: data-sensitive
synchronization, which is an uncommon practice that we will dis-
cuss in Section 5. The syntax of this sublanguage can be seen in
Figure 3.

Informally, these language constructs correspond to:
• A! Dataless send on channel A
• A? Dataless receive on channel A
• P1;P2 Sequential composition of P1 and P2

• P1 ‖P2 Parallel composition of P1 and P2

• ∗P Infinite repetition of P
• skip Do nothing and continue on

• [G1 → P1 Branch to P1 or P2 once appropriate guard
8G2 → P2] holds, or error if both hold simultaneously

• [G1 → P1 Branch to P1 or P2 once
| G2 → P2] appropriate guard holds

A guard is a conjunction of probes Ā that each hold if a concurrent
process is actively sending on channel A. The reason that there are
two forms of branching, each inspired by Dijkstra’s Guarded Com-
mand Language [6], is that the potentially erroneous one (known
as deterministic choice) is extremely efficient to implement in
hardware, whereas the error-free one (known as non-deterministic
choice) is expensive and inevitably suffers from metastability is-
sues [25].

To define the semantics of the language, we will use the addi-
tional symbols A¡, A¿, and Â. During the execution of a program,
A! represents “ready to send on channelA”, andA¡ represents “ac-
tively sending on channel A”. Similarly, A? represents “ready to
receive from channel A”, and A¿ represents “actively receiving
from A”. Lastly, Â probes whether some concurrent process is ac-
tively receiving on A (i.e. Â will be true if and only if a concurrent
process is in the state A¿). For simplicity, we are assuming that
all channels are active-send/passive-receive channels [21], where a
process must be actively sending on a channel before another can
begin to receive on it.

3.1 State Semantics
Message-passing systems are often given a semantics where all
of the processes communicating on message-passing channels are
known. To formalize such a semantics for CHP, we first extend the
syntax and then define an operational semantics for the language
using this execution syntax, as shown in Figure 4. In this semantics,
σ is used as to indicate the current state of channels.

For every channel A in the program, the initial state σ0 initial-
izes every Ā and Â to false, indicating no process is already ac-
tively sending or receiving on any channel. Each step of channel
communication asserts some requirement and alters the state. This
interaction of requirements and state alterations encodes the four-
phase handshake used by the translation to gate networks. Conse-
quently, even though the individual components of the communi-
cation execute in parallel, the whole communication will always
progress in the following order due to the four-phase handshake:

A! ‖A?→ A¡ ‖A?→ A¡ ‖A¿→ skip ‖A¿→ skip ‖ skip

Erroneous Behavior due to Hardware Realities Note that this
representation of the semantics itself implicitly assumes some
atomicity. For example, the isochronic-fork assumption we make of
the manufacturing process corresponds to the fact that each variable
has only one value at a time regardless of its location in the program
(i.e. location on the chip). More naı̈vely, all actions are formalized
as a single step, with no mechanism to represent the state of the
system or the possible executions that may occur between when an
action begins to execute and when it completes. This is problematic

Context E[·] ::= · | E;P | E ‖P | P ‖E
Communication C+= A¡ | A¿

Boolean b ::= true | false
Natural Number n ::= 0 | 1 | 2 | . . .

† σ is a mapping from
each Ā and Â to b

σ |= Gi

〈[G1 → P1 | G2 → P2], σ〉 → 〈Pi, σ〉

·
〈skip;P, σ〉 → 〈P, σ〉

†
σ |= ¬Â

〈A!, σ〉 → 〈A¡, σ[Ā 7→ true]〉

·
〈skip ‖P, σ〉 → 〈P, σ〉

†
σ |= Â

〈A¡, σ〉 → 〈skip, σ[Ā 7→ false]〉

·
〈P ‖ skip, σ〉 → 〈P, σ〉

†
σ |= Ā

〈A?, σ〉 → 〈A¿, σ[Â 7→ true]〉

〈P, σ〉 → 〈P ′, σ′〉
〈E[P], σ〉 → 〈E[P ′], σ′〉

†
σ |= ¬Ā

〈A¿, σ〉 → 〈skip, σ[Â 7→ false]〉

·
〈∗P, σ〉 → 〈P ; ∗P, σ〉

σ |= Gi

〈[G1 → P1 8G2 → P2], σ〉 → 〈Pi, σ〉

†
σ0 maps every-
thing to false

〈P, σ0〉 →∗ 〈P ′, σ′〉
P

s−→ P ′

Figure 4. Naı̈ve/idealistic state semantics for CHP

because the run-time behaviors that need to be avoided to prevent
glitches and short circuits all arise from conflicting simultaneous
actions.

We can refine our semantics to account for the three kinds of er-
rors that can occur, replacing the rules marked with †. The first kind
of error, formalized in the top rules of Figure 5, occurs when both
guards of a deterministic choice hold simultaneously. In order to
translate this branch efficiently to hardware, the translator relies on
an assumption that which branch holds is determined uniquely at
run time, an assumption the programmer is supposed to guarantee.
Violating this assumption leads to undefined behavior, as summa-
rized by error. Note that deterministic choice is preferred over
non-deterministic choice because non-deterministic choice is more
expensive to implement, impossible to implement without metasta-
bility issues [25], and may take an unbounded amount of time to
execute [14].

The second kind of error is called interference. Interference cor-
responds to actual short circuits in the chip, meaning a direct con-
nection from power to ground that causes immediate catastrophe.
To account for interference, we need to differentiate between when
a state variable is resting at true or false and when a state variable
is being driven to true or false. In particular, interference occurs
when one process is driving a variable to true while another is
driving it to false. To keep the presentation concise, we exploit
the invariants that a variable is only true when it is being actively
driven, and that a variable is only ever driven to false temporarily
(when finishing an A¡ or an A¿). Thus, we change σ to be a map
from variables to a natural number indicating how many processes
are actively driving it to true, and the variable is false if that num-
ber is 0. The middle rules of Figure 5 formalize the changes to the
†-marked rules of Figure 4 to account for interference.

The third kind of error is called instability. Suppose one part
of a chip is waiting for a wire to become true and another part of
the chip drives that wire to true and then to false. This is called

σ |= G1 σ |= G2

〈[G1 → P1 8G2 → P2], σ〉 → error

〈P, σ〉 → error

〈E[P], σ〉 → error

〈P, σ0〉 →∗ error

P
s−→ error

σ is a mapping from
each Ā and Â to n

σ |= ¬Â σ(Ā) = n

〈A!, σ〉 → 〈A¡, σ[Ā 7→ n+ 1]〉

σ |= Â σ(Ā) > 1

〈A¡, σ〉 → error

σ |= Â σ(Ā) = 1

〈A¡, σ〉 → 〈skip, σ[Ā 7→ 0]〉

σ0 maps everything to 0
σ |= Ā σ(Â) = n

〈A?, σ〉 → 〈A¿, σ[Â 7→ n+ 1]〉

σ |= ¬Ā σ(Â) > 1

〈A¿, σ〉 → error

σ |= ¬Ā σ(Â) = 1

〈A¿, σ〉 → 〈skip, σ[Â 7→ 0]〉

〈E[P], σ〉 → 〈E′[P], σ′〉 〈P, σ〉 → 〈P ′′, σ′′〉
there is no σ′′′ such that 〈P, σ′〉 → 〈P ′′, σ′′′〉

〈E[P], σ〉 → error

Figure 5. Revised/realistic state semantics for CHP

a glitch, and one way it occurs is when some guard is probing a
channel that is actively sending, so the guard’s branch can proceed,
but then the concurrent sender completes, so suddenly the guard’s
branch cannot proceed. In an untimed system, it is not clear whether
the waiting component observed the temporary truth or not. Worse
yet, this can leave dependent wires in an unacceptable middle
voltage. CHP programmers need to avoid this kind of instability.
We formalize instability with the bottom rule of Figure 5.

The semantics is now rather complicated due to all the possi-
ble sources of error. But all this complication is accurate accord-
ing to the operational semantics by Smith and Zwarico [32], which
has been widely accepted by the self-timed VLSI community. The
problem is that we are attempting to formalize properties of simul-
taneous events with a semantic technique not capable of expressing
simultaneous actions. From an analysis perspective, this makes it
difficult to understand how distinct components of the program af-
fect each other. Furthermore, the use of a global state makes it diffi-
cult to reason about a component in isolation. As such, we present
our own alternate semantics that more accurately reflects the im-
plementation in hardware, makes it easier to identify interactions,
and enables modular reasoning of program components.

3.2 Trace Semantics
Up to this point, the semantics has assumed a closed world, where
all communication is done with all senders and receivers com-
pletely defined, and each evaluation step is an atomic transforma-
tion. However, we have found it useful to consider the semantics of
CHP as generating traces, with channel-communication synchro-
nization filtering the set of traces. A trace semantics for CHP has
been given before [37], but here we present a much simpler seman-
tics, making it easier to reason about.

3.2.1 Open-World Semantics
In the trace semantics, each transition is given a label as defined
by the language given in Figure 6. The structure L1 ‖L2 is used to
indicate that both L1 and L2 occur simultaneously. The ‖ operator
is commutative, associative, and has idle as an identity. The label
is used to indicate what is guaranteed to be true of the global

Move M ::= start | use | finish
Step S ::= MA

! |MA
?

Label L ::= idle | S | G holds | L ‖L

P does not contain A¡ or A¿

P
idle−−→ P

·

A¡
useA!−−−→ A¡

·

A¿
useA?−−−→ A¿

·
∗P idle−−→ P ; ∗P

P1
L1−−→ P ′1 P2

L2−−→ P ′2

P1 ‖P2
L1 ‖L2−−−−−→ P ′1 ‖P ′2

P1
L−→ P ′1

P1;P2
L−→ P ′1;P2

P
L−→ P

skip ‖P L−→ P

·

A!
startA!−−−→ A¡

·

A¡
finishA!−−−−→ skip

P
L−→ P

P ‖ skip L−→ P

·

A?
startA?−−−→ A¿

·

A¿
finishA?−−−−→ skip

P = [G1 → P1 8G2 → P2] or P = [G1 → P1 | G2 → P2]

P
Gi holds−−−−−→ Pi

·
skip;P

idle−−→ P

error is any program guaranteed to fault

[G1 → P1 8G2 → P2]
G1∧G2 holds−−−−−−−−→ error

Figure 6. Open-world trace semantics for CHP

state for that label to even be possible, what condition must hold
of the global state for the transition to actually occur, and what
is necessarily true of the global state after the transition. In this
way, they are analogous to the checks and updates on σ in the state
semantics.

Figure 6 gives the trace semantics for the language, which gen-
erates traces of possible executions. The key components are the
channel actions. The transition fromA! toA¡ is labeled with startA!
to indicate that is has started sending on channel A. The transition
from A¡ to itself is labeled with useA! to indicate that while idling
in this state the process is actively sending on channel A. The tran-
sition fromA¡ to skip is labeled with finishA

! to indicate that it has
finished sending on channel A. As for branches, they use the label
G holds to indicate they can progress into a branch only if its guard
holds.

Each of these labels encodes invariants that must be true of the
global state before and after that transition for it to be available (let
alone actually taken), which are formalized by the functions pre
and post. For example, useA! is only available if the program be-
fore and after has a process in theA¡ state, indicating that the chan-
nelA is being sent on and therefore Āmust be true both before and
after the label. Each label also encodes requirements that must be
true of the system as a whole for the entire system to transition over
that label, which is formalized by the functions off and on. For
example, startA! can only be transitioned over by the system if no
other component of the system is actively receiving on channel A,
i.e. Â is off , whereas startA? can only be transitioned over by the
system if some other component of the system is actively sending
on channel A, i.e. Ā is on. Lastly, each label encodes what force
it is imposing upon the system, which is formalized by the func-
tion drive. For example, useA? actively drives Â to true, whereas
finishA

? actively drives Â to false. The definitions of these descrip-
tive functions are shown in Figure 7.

L pre(L) post(L) off(L) on(L) drive(L)

idle true true true true true

startA! true Ā ¬Â true Ā

useA! Ā Ā true true Ā

finishA
! Ā true true Â ¬Ā

startA? true Â true Ā Â

useA? Â Â true true Â

finishA
? Â true ¬Ā true ¬Â

G holds true true true G true
‖ ∧ ∧ ∧ ∧ ∧

compliant(L) =
∧ ∃σ. σ |= pre(L) ∧ σ |= off(L)
∀σ. σ |= pre(L) =⇒ σ |= on(L)

noninterferant(L) = ∃σ. σ |= drive(L)

stable(L) =
∧ ∃σ. σ |= post(L) ∧ σ |= off(L)
∀σ. σ |= post(L) =⇒ σ |= on(L)

faulty(L) = ¬noninterferant(L) ∨ ¬stable(L)

P
L−→ P ′

compliant(L)
noninterferant(L)

P
t−→ P ′

P
L−→ P ′

compliant(L)
faulty(L)

P
t−→ error

Figure 7. Closed-world trace semantics for CHP

3.2.2 Closed-World Semantics
The trace semantics provides an open-world semantics for CHP.
Each transition is labeled with the requirements that must hold of
the entire system for the transition to actually be taken. Yet at some
point we want to close the world so that we can determine how a
whole program progresses without needing to ask conditions of a
non-existent larger environment. We present such a semantics in
Figure 7.

This semantics utilizes three classification functions on tran-
sition labels: compliant, noninterferant, and stable. The
compliant classification indicates whether a transition can be
taken: are the requirements described by the label necessarily true
of the whole system described by the label. The noninterferant
classification indicates whether the transition avoids any short cir-
cuits: no component of the system is being driven to both true and
false simultaneously. The stable classification indicates whether
the transition avoids undefined behaviors: the requirements that
necessarily held beforehand still hold afterward. The left rule in-
dicates that a transition label that can be taken can progress to a
valid program provided it does not cause interference. The right
rule indicates that a transition label that can be taken can progress
to an erroneous state if it causes interference or instability. Note
that a compliant transition label that causes instability (but not in-
terference) can progress to both a valid program and an erroneous
state, indicating the non-deterministic nature of instability.

The three classification functions are defined in Figure 7.
compliant uses ∃ for off to capture the fact that variables are
off unless forced on as indicated by pre. And, compliant uses ∀
for on to capture the fact that variables are on only if forced on as
indicated by pre. The same reasoning applies to stable. Lastly,
drive uses ∃ to indicate that there are no contradictions. For clar-
ity, we use the classification function faulty to indicate whether a
transition label can progress to an erroneous state.

To see how errors might arise, consider the following:

A! ‖A! ‖A?

One partial error-free trace for this program is the following:

A! ‖A! ‖A?→ A! ‖A¡ ‖A?→ A! ‖A¡ ‖A¿→ A! ‖ skip ‖A¿

This is essentially what would happen in CSP; two processes begin
communicating on a channel and no other process uses the channel
until the communication is finished. However, in CHP we are not
so fortunate, and the following branch is another partial trace for
the program, but this time erroneous:

A! ‖A! ‖A?→ A! ‖A¡ ‖A?→ A¡ ‖A¡ ‖A¿→ A¡ ‖ skip ‖A¿

In this trace, the final label is ¬noninterferant: finishing the
second A¡ drives Ā to false but the first A¡ being in progress is
also driving Ā to true. Furthermore, the second label is ¬stable:
Â is initially false, permitting the first A! to start, but the A?
transitioning toA¿ changes Â to true, thereby making the starting
condition for A! unstable.

3.3 Equivalence of Semantics
We have presented two semantics, each capturing different perspec-
tives of the CHP language and its underlying hardware realities.
The state semantics more directly realizes that a chip is a state ma-
chine. The trace semantics more directly realizes that a chip is a
concurrent machine. Thus, an equivalence of these two semantics
significantly increases confidence that they accurately model CHP
and the hardware.

Our trace semantics is actually slightly more precise than the
state semantics because of simultaneous actions. In particular, there
are traces possible in the hardware only if two events happen at
the same time. However, these traces only exist for potentially
erroneous programs. For example, two channels can start sending
simultaneously, be acknowledged, and then finish simultaneously,
and no instability or interference occurs, but any interleaving of the
events would be erroneous. Thus, the state semantics is a sound
approximation of the hardware, and the trace semantics identifies
only additional transitions that happen to work by complete luck.
The following theorems precisely formalize these intuitions:

Theorem. For any CHP program P not containing data-carrying
channels or any A¡ or A¿, the following two properties hold:

P
s−→ error =⇒ P

t−→
∗

error

∀P ′. P s−→
∗
P ′ =⇒ P

t−→
∗
P ′

Theorem. For any CHP program P not containing data-carrying
channels or any A¡ or A¿, the following two properties hold:

P
t−→
∗

error =⇒ P
s−→ error

∀P ′. P t−→
∗
P ′ =⇒

P
s−→ P ′

or
P

t−→
∗

error and P s−→ error

Due to the complexity of the semantics, we proved these the-
orems in Coq to reinforce confidence in their truth [16]. The key
insight is that σ in the state semantics is uniquely determined by P
and corresponds to pre(L) for any trace label L possible from P .
And even though there are some subtle differences between which
executions the two semantics accept, the following formally veri-
fied corollary illustrates that both semantics agree on whether or
not a program is erroneous:

Corollary. For any CHP program P not containing data-carrying
channels or any A¡ or A¿, the following property holds:

P
s−→ error⇐⇒ P

t−→
∗

error

This result means that we now have a concise, composable,
and extensible formalization of the semantics of CHP and the run-
time errors we need to prevent. Next, we exploit these properties
to design an inferable effect system guaranteed to identify those
run-time errors.

4. Inferable Effect System
We can use our newfound trace semantics to design an inferable
compositional effect system classifying the synchronization behav-
ior of CHP programs. Compositionality is the property that each
subcomponent can be analyzed independently, offering a descrip-
tion of that subcomponent without needing to know its context.
When subcomponents are combined, they interact with each other,
and each form of composition defines how the descriptions of the
subcomponents should be combined together to reflect this interac-
tion. Effects are a description of a program that is independent of
the types of its communication channels [35]. Since synchroniza-
tion in CHP is independent of the types of data channels, synchro-
nization behavior is a kind of effect. Our goal, then, is to design
an inferable effect system, where inferability means that we have
an algorithm for determining the most precise effect of any CHP
program that is expressible and verifiable by our effect system.

4.1 Automata as Effects
The effect (i.e. the synchronization interactions on various chan-
nels) of a CHP program can be completely described by a non-
deterministic finite automaton whose edges are labeled with trace
labels L. The possible traces of a program P correspond to the
paths of the NFA ε describing its effect. For example, if the effect
of P1 is described by the NFA ε1, and similarly P2 by ε2, then
the effect of P1;P2 is described by ε1; ε2, denoting the sequential
composition of automata where the accepting states of ε1 are con-
nected to the initial states of ε2. Any trace of P1;P2 is a trace of P1

followed by a trace of P2, just like how any path of ε1; ε2 is a path
of ε1 followed by a path of ε2.

Every CHP construct has a simple corresponding NFA con-
struct. For example, skip corresponds to the NFA with one state
that is both initial and accepting and has a self loop labeled idle.
And, if the effect of P1 is described by the NFA ε1, and simi-
larly P2 by ε2, then the effect of P1 ‖P2 is described by ε1 × ε2,
denoting the product automaton whose states correspond to pairs
of states from ε1 and ε2 and whose edges correspond to pairs of
edges from ε1 and ε2 (combining the labels using the ‖ opera-
tor on labels). For repetition, we take the NFA ε for P and con-
nect all its accepting states to its initial states and make them no
longer be accepting since ∗P denotes infinite repetition of P . For
non-deterministic choice [G1 → P1 | G2 → P2], we take the
disjoint union of the automata for P1 and P2, preserving edge
labels and node acceptance, and add an initial node with edges,
labeled G1 holds or G2 holds as appropriate, to the formerly ini-
tial nodes. For deterministic choice, we also add an edge, labeled
G1 ∧ G2 holds, to an error state, indicating that the program fails
if both guards hold. Finally, for the communications A! and A?
we construct the appropriate three-state automaton with start and
finish transitions.

After constructing the automaton ε describing the effect of a
CHP program P , one can analyze that automaton to determine
whether any errors are possible in P . One explores the automa-
ton like a graph, starting at the initial states, only traversing edges
whose labels are compliant since only those edges meet the re-
quirements for the execution to progress. If one reaches an edge
that is also faulty, then the program P can error, as exhibited
by the trace corresponding to the path taken to reach the faulty
edge. If no such faulty edge is ever reached after exploring the
entire graph, then the program P is error free, since every trace

of P is exhibited in the NFA ε. Thus a CHP program P without
data-carrying channels is error free if and only if no faulty and
compliant edges are reachable via compliant edges in the in-
ferred effect ε. Note that this proof relies heavily on the fact that
our trace semantics accurately reflects the hardware implementa-
tion, as justified by the equivalence to the stateful semantics that is
already accepted to be accurate.

4.2 Optimization via Specialization
So far what we have presented is the automaton approach used
in model checking [5]. The unfortunate reality of this approach,
though, is that the size of the automaton inferred for a CHP program
is exponential with respect to the size of the CHP program due to
the fact that parallelism in CHP is represented by the product of
automata. Consequently, such an approach can only realistically be
applied to very small programs. We address this by specializing the
process to CHP and its common usage patterns.

A CHP channel is almost always used across only a few con-
current subcomponents of a CHP program. Furthermore, many
trace labels L have the property that ¬compliant(L) implies
¬compliant(L ‖L′) for all trace labels L′ not referencing some
channel A. For example, the label startA? will never be compliant
alongside any label L′ that does not reference A; it needs to be
alongside at least useA! . This means that as we construct the au-
tomaton ε representing some subcomponent P , if we know that
no other subcomponents potentially executing in parallel with P
reference a channel A, then we can eagerly remove all edges of ε
with a label L that has the above property, and doing so will not
reduce the precision of the analysis. Furthermore, removing those
edges may result in unreachable states, which can also be removed
without losing precision.

We implement this optimization by first determining where in
the program channels are used exclusively, meaning that a sub-
component can be analyzed with the assumption that no concurrent
subcomponent will operate on a particular channel. This is done by
simple static analysis of variable usage. Second, we infer the effect
automaton compositionally using the process described above, but
whenever we need to infer the effect of a parallel program P1 ‖P2

that we know has exclusive access to some channel A (or more
generally a set of channels), then we construct the filtered result
of ε1 × ε2 lazily. We start at the initial states, then add edges only
if they can become compliant in the presence of some label not
usingA, and then add states only if they become reachable via such
edges. Afterwards, we remove from all labels the portions operating
on the channel A, since exclusivity of A guarantees these portions
will have no effect on the final result, and if this results in a label
comprised of only idles and uses then we determine whether we
can safely merge the connected nodes using standard local analyses
for automata. In short, we eagerly filter a lazily-built naı̈ve-product
automaton, and then we merge appropriate nodes in the final result.

There is also an optimization exploiting the limited use of
probes. Although the trace of the program A! is comprised of a
startA! followed eventually by a finishA

! , this separation of interme-
diate states is only visible if some concurrent program probes the
channelA, meaning it contains a probe Ā. So, in our preprocessing
we also determine which channels are probed somewhere in the
program. If the channel A is never probed, then the programs A!
and A? are represented by two-, rather than three-, state automata
with a single transition labeled A! or A? respectively.

Each of these optimizations completely preserves precision,
thereby maintaining soundness and completeness of our analysis.
Through these optimizations we can in practice accomplish expo-
nential savings in the size of the automata constructed during infer-
ence and in the number of states and edges considered during those
constructions, as illustrated by the following examples.

4.3 Examples
In this section we give a few simple programs and their inferred ef-
fects. We depict initial nodes with an incoming edge and accepting
nodes with an outgoing edge. We do not display self loops labeled
idle or use for the sake of clarity.

4.3.1 Sequenced Computation

(I?;A!) ‖(A?;B!) ‖(B?;O!)

This program is made of three concurrently executing processes
communicating over two exclusive channels A and B. Each chan-
nel is only sent on or read from by a single process. Each pro-
cess reads from and sends on one channel. While on its own this
is not an example of a realistic program, it illustrates a common
pattern in CHP, though typically between the read and write of
each process there would be some computation on the data. The
pattern illustrated here is three modular computations sequenced
by their channel communications, resulting in one larger sequen-
tial process reading from channel I and then sending on chan-
nel O after processing. Assuming no other process uses A or B
or probes I or O, the effect we infer is the three-state automaton
→ • I?−→ • O!−→ • →, accurately identifying the program’s sequen-
tial nature while abstracting its internal details.

The effect is inferred through the following big steps:

1. I?;A! is inferred to have effect I?;A!
2. A?;B! is inferred to have effect A?;B!
3. The filter of (I?;A!) × (A?;B!) is computed to simply
→ • I?−→ • B!−→ • →, exploiting exclusivity of A

4. B?;O! is inferred to have effect B?;O!

5. The filter of
(
→ • I?−→ • B!−→ • →

)
×(B?;O!) is computed to

→ • I?−→ • O!−→ • →, exploiting exclusivity of B

Note that, by exploiting exclusivity, during this process we never
compute an automaton with more than 3 states, whereas otherwise
we would first compute an automaton with 9 states and then fin-
ish with an automaton with 27 states. Thus our technique avoids
significant state explosion even for small programs.

4.3.2 Length-3 Buffer

∗(I?;A!) ‖ ∗(A?;B!) ‖ ∗(B?;O!)

This time each process repeats ad infinitum. Consequently, this
program now implements a length-3 buffer. That is, the environ-
ment sends data on I that is asynchronously propagated through
the program until it is sent on channel O, and three pieces of data
can exist in this pipeline at a time.

Assuming no other process uses A or B, we infer the effect
through the following steps:

1. ∗(I?;A!) is inferred to have effect ∗(I?;A!)
2. ∗(A?;B!) is inferred to have effect ∗(A?;B!)
3. The filter of ∗(I?;A!) × ∗(A?;B!) is, exploiting exclusivity

of A, computed to

→ •
I?

B!
	

I? ‖B!

I?

B!
•

4. ∗(B?;O!) is inferred to have effect ∗(B?;O!)
5. The filtered product of the above two automata is, exploiting

exclusivity of B, computed to

→ •
I?

O!
	

I? ‖O!

I?

O!
	

I? ‖O!

I?

O!
•

Note that there are four states, corresponding to the fact that up to
three pieces of data can be in transition at a time.

4.3.3 Unsafe Channel Reuse
A channel roughly corresponds to a bundle of wires on the chip.
In the more general setting, one can send data on a channel, and if
said data is large then the corresponding bundle is large. To con-
serve resources, one might try to reuse the same large channel. The
program below does so by using channels R1 and R2 to identify
when the data is ready to be received, and then conceptually send-
ing this large amount of data over the shared channel O.

(R1?;O!) ‖(R2?;O!)

Given that there are no exclusive channels, the effect we infer
for this program is the full product automaton but with an error-
labeled edge where there were simultaneous sends on O. This
indicates that an error can occur if the environment fails to use R1

and R2 appropriately.

4.3.4 Safe Channel Reuse
Suppose one does not want safety to rely on the environment being
implemented correctly. Instead one is willing to assume receiver 2
can wait for receiver 1 to have received its data. However, one
would like to at least acknowledge that receiver 2 is ready even
if data is still being sent to receiver 1. Then one could use the
following program, where A is an exclusive channel.

(R1?;A!;R2?;A?;O!) ‖(A?;O!;A!)

Normally this would result in a 24-node 53-edge (plus 24-self-
loop) automaton, but we instead generate the following 8-node 9-
edge (plus 8-self-loop) automaton:

• • •

•

•
• • •

R!? A! ‖A?

R2?

O!

R2? ‖O!
O!

R2?

A! ‖A? O!

In fact, some nodes would be merged because (A! ‖A?)-labeled
edges become idles, leaving an only 6-state 7-edge (plus 6-self-
loop) automaton. Note that, although in building this automaton
we would have to consider 10 extra edges, there are still 34 edges
we never consider due to building the automaton lazily. Thus, ex-
ploiting exclusivity both reduces the size of the automaton built
and the time required to build it. The final effect can even be
processed and communicated to the programmer intuitively as
R1?; (O!×R2?);O!, indicating that R2 can be acknowledged
while data is being sent to receiver 1 and there are no faults or
even deadlocks.

4.3.5 Uncoordinated Channel Reuse
One can exploit probes to enable recipients to go in either order:

[R̄1 → R1?; (O! ‖R2?);O! | R̄2 → R2?; (O! ‖R1?);O!]

Since the receivers send on Ri to indicate they are ready, the
program can probe the two channels simultaneously and act on
whichever is sent on first. Assuming no one probes O, and us-
ing + to denote the coproduct of automata (essentially constructing
their disjoint union), the effect we infer is the following:

(R̄1 holds; startR1
? ; finishR1

? ; (O!× (startR2
? ; finishR2

?));O!)
+

(R̄2 holds; startR2
? ; finishR2

? ; (O!× (startR1
? ; finishR1

?));O!)

If instead we had used deterministic choice 8, then there would
be another case R̄1 ∧ R̄2 holds; error indicating the environment
must ensure that both receivers are not ready at the same time.

5. Data-Carrying Channels
So far, all communication that has been described is dataless. How-
ever, real systems require communication of data. To do this, data
variables x are introduced, sends A!E are extended with expres-
sions, receives A?x are extended to indicate which variable to re-
ceive into, and guards are permitted to reference data variables.
This extension makes CHP Turing complete [17].

5.1 Semantics
We discuss this extension less formally, since most of the formal-
ities are invisible from the perspective of effect inference. Seman-
tically, each variable x holds a value. When a data-carrying re-
ceive A?x starts, the value of the expression in the correspond-
ing data-carrying send-in-progress A¡E is written to x. If two
processes write to a variable simultaneously, that causes interfer-
ence. If the value of the expression E changes while the send is
in progress, that causes instability. Also, due to the intermediate
stages that take place at the hardware level, if an expression cur-
rently being sent or a guard currently being waited upon depend
on a variable that is being written to, that causes instability as well
even if the value of the expression or the guard is the same for the
old and new values of the variable.

5.2 Effect Inference
In the effect system, we abstract the values of variables, erring on
the side of safety. For example, any guard G using a variable is ap-
proximated (erring towards true) with a guard using just probes.
We must also identify interferences and instabilities that may be
caused by misuse of variables. So, we extend L to include read x
and write x. There is an interference whenever two write xs oc-
cur concurrently, and an instability whenever a read x occurs con-
currently with a write x. We optimize for exclusivity of variables,
much like we did for exclusivity of channels.

Lastly, one subtlety is that, for deterministic choice, it is com-
mon for one branch to be guarded by x and the other by ¬x, which
are clearly mutually exclusive but each get approximated as true
and true, which are not mutually exclusive. Thus, we first con-
struct the guard for mutual exclusion, and then abstract the vari-
ables, which in this case results in false, recognizing that mutual
exclusivity is guaranteed.

5.3 Example: Fetch and Increment
An example of a correctly shared data value is the program counter
from a self-timed microprocessor [22]. Below is an adapted frag-
ment of its specification:

FETCH ≡ ∗([F̄ → (M ! ‖A!); I?instr ;A!;F?])
IMEM ≡ ∗(M?; I!imem[pc])

PCADD ≡ ∗(A?;x := pc + 1; [Ā→ pc := x;A?])

IMEM ‖FETCH ‖PCADD with A, M , I , and x exclusive

The syntax [G → P] is short for [G→ P 8 false→ skip],
which in effect here makes FETCH wait for F̄ to hold. Eventu-
ally, F is sent on by the environment to indicate the next instruction
needs to be fetched and the program counter incremented. FETCH
then sends on M and A to inform IMEM to start loading the in-
struction and PCADD to start incrementing the program counter.
The danger to avoid is modifying the program counter while it is
being used to access instruction memory. This is why PCADD is
broken into two phases: compute and store the increment of the
program counter locally, and then copy that to the program counter
only when told to do so. Thus, FETCH only sends on A a second
time after receiving the instruction from IMEM and storing it into
the externally visible variable instr . Finally, PCADD acknowl-
edges the second send on A once it has finished updating pc, so

Our effect-inference analysis SPIN with partial-order reduction
Experiment Naı̈ve NFA States States Seen Max Size RAM (MB) Time (s) States Seen RAM (MB) Time (s)
GPS acquisition 129,600 1,182 305 10.0 0.25 70,287 191.7 2
Microprocessor 2.39× 1012 3,277 1,094 24.2 1.12 • • 76,035
FIFO, 10 stage 177,147 127 39 6.8 0.07 2,050 181.7 0.6
FIFO, 50 stage 2.15× 1024 1,724 681 22.5 1.27 • • 227,914
FIFO, 100 stage 1.54× 1048 6,040 2,519 71.8 1.27 • • 236,440
Arbitration, 5 34,816 220 60 6.8 0.09 1,824 181.7 0.7
Arbitration, 10 67,108,864 741 120 8.2 0.22 114,688 196.5 3.6
Arbitration, 20 1.36× 1014 2,695 240 13.5 0.87 2.32× 108 57,692 17,871
Token-ring, 5 2,048 234 175 7.2 0.05 2 181.6 0.7
Token-ring, 7 32,768 1,523 1,385 24.5 1.76 56 181.6 0.7
Token-ring, 10 2,097,152 44,996 44,287 738.0 442.63 80 181.6 0.7

Table 1. Experimental Evaluation Results. The • indicates SPIN failed to complete because it exceeded 500 GB of RAM

that only then does FETCH acknowledge the external send on F
to indicate its job has been completed.

Our effect-inference system derives the following effects:

∗(F̄ holds; (M !× (stA! ; fnA
!)); (I? ‖wr instr); stA! ; fnA

! ; stF? ; fnF
?)

∗(M?; (I! ‖ rd imem ‖ rd pc))

∗(stA? ; fnA
? ; rd pc; Ā holds; wr pc; stA? ; fnA

?)

Note that the last effect makes no mention of x since x is exclusive
to PCADD . Next, we combine the first two effects, now exploiting
exclusivity of M and I , into the following:

∗(F̄ holds; stA! ; fnA
! ; (wr instr ‖ rd imem ‖ rd pc); stA! ; fnA

! ; stF? ; fnF
?)

Note that we infer that these two concurrent programs produce a
deterministic sequential ordering of externally visible events and
requirements. Finally, we combine this with the third effect, ex-
ploiting exclusivity of A, into the following:

∗(F̄ holds; ((rd pc)× (wr instr ‖ rd imem ‖ rd pc)); wr pc; stF? ; fnF
?)

Looking at this effect, we can see that two processes read from
the program counter concurrently, suggesting the implementation
actually exploits parallelism, and actually updates the current in-
struction and program counter without interferences or instabilities.
Furthermore, the acknowledgement of the send on F happens only
after these two updates. Thus, from the effect we can determine
both that there are no errors (provided the environment executes
correctly) and that the program follows appropriate protocol for in-
teracting with the environment.

5.4 Incompleteness
In theory, variables can be used to guarantee safe synchronization
behavior, an invariant our analysis cannot recognize. In practice,
this is rarely the case. Nonetheless, we provide an example of a safe
closed program for which we incorrectly infer the effect error:

A!true ‖B!false ‖C?
‖ A?x0; [x0 → C! 8 ¬x0 → skip]
‖ B?x1; [x1 → C! 8 ¬x1 → skip]

Our analysis cannot recognize that x0 and x1 are never both true,
so here it mistakenly believes the two sends on C can happen
simultaneously and cause erroneous behavior due to interference.

6. Experimental Evaluation
We implemented our effect-inference analysis in approximately
3,000 lines of Python. We then evaluated our implementation us-
ing benchmarks from the specifications of a self-timed micropro-
cessor [22], a self-timed GPS [34], a FIFO buffer, and two systems
for mutual exclusion: arbitration and a token-ring network.

For comparison, we implemented a translation from CHP
into Promela, the specification language for the SPIN model
checker [12]. This model checker was chosen because Promela
is similar enough to CHP to make this translation with minimal
overhead, and it was simple to express the properties we want to
check (stability, non-interference, and guard mutual exclusion). In
addition, SPIN supports partial-order reduction, another model-
checking technique for reducing search spaces [9].

Evaluations were run on an 80-core 2.13GHz Xeon machine
with 1 TB of RAM. To be fair to SPIN, all evaluations were run
single-threaded. Our analysis required at most 1 GB of RAM, but
SPIN often exceeded our cap of 500 GB.

The results are presented in Table 1. In addition to memory and
time measurements, this table presents the size of the full naı̈ve
NFA describing the internal and external synchronization behavior,
the total number of states that were generated during our analysis,
the maximum size of the NFAs described by any effect at any stage,
and the total number of states explored by SPIN.

In most cases, our analysis significantly outperforms the SPIN
model checker. However, in the case of the token-ring mutual ex-
clusion, SPIN is much better. The token-ring is challenging for
our analysis because our analysis is done compositionally, whereas
SPIN analyzes a full, closed system. In the case of the token-ring
network, before the entire ring is closed, there is significant possi-
bility for error which cannot be reduced. The FIFO was specifically
designed antagonistically for SPIN, knowing SPIN’s techniques,
whereas the token-ring was specifically designed antagonistically
for our analysis, knowing our techniques. Thus, our analysis serves
as a good complement to partial-order reduction. We have made the
our implementations and experimental framework available so that
others may examine and reproduce our results [16].

7. Related Work
The semantics of CHP has been formalized before, both as a term-
rewriting system [33], and also as generating a tree of traces [37].
In the first case, error semantics were given for interference only,
and in the second case there was no consideration of errors at all.

Prior work on this problem in the model-checking community
has looked at the connection between CHP and Petri nets [28], and
used that connection to translate to existing model-checking tech-
niques [2, 3]. In both cases, the focus on existing model-checking
techniques limited the amount of domain-specific reductions that
could be performed.

The other work we build upon for this system is the advances
in the model-checking community. We complement the work on
partial-order model checking, which like us aims to reason only
about significant interleavings [9]. However, we reason about these

interleavings implicitly, instead of building up the non-interacting
sets explicitly. More significantly, we build on the work of compo-
sitional model checking and hierarchical compression [4, 30]. This
has been successfully applied to self-timed systems in the past, us-
ing a limited temporal logic to reason about the low-level imple-
mentations [26], but here we apply it at a higher level.

8. Conclusion
We have created an inferable effect system for identifying the
glitches and short circuits possible in CHP programs due to the
limitations of hardware realities. The effect system is based on a
trace semantics that we developed for CHP and formally proved
equivalent in Coq to a traditional state semantics. Each effect pre-
cisely describes the externally visible traces of the program. Our
inference algorithm executes efficiently due to the compositional
design of the effect system and the specialization of our construc-
tions to exploit the channel-exclusivity common in CHP programs.
It works by representing the synchronization behavior as an NFA
effect denoting the reachable traces, defining composition opera-
tors on NFA effects, and searching the inferred effect for reachable
errors. Our inference is sound and is only incomplete when syn-
chronization behavior is dependent on data values, which in prac-
tice rarely affects the interference and stability errors that we aim
to identify. Furthermore, our analysis is efficient, requiring little
more than a second and only 24 MB of RAM to guarantee an en-
tire self-timed microprocessor has no glitches or short circuits, as
opposed to the SPIN model checker employing partial-order reduc-
tion, which failed to complete after 21 hours of processing due to
requiring over 500 GB of RAM.

References
[1] J. V. Arthur, P. A. Merolla, F. Akopyan, R. Alvarez, A. Cassidy,

S. Chandra, S. K. Esser, N. Imam, W. Risk, D. B. D. Rubin, et al.
Building block of a programmable neuromorphic substrate: A digital
neurosynaptic core. In International Joint Conference on Neural
Networks, 2012.

[2] D. Borrione, M. Boubekeur, E. Dumitrescu, M. Renaudin, J.-B.
Rigaud, and A. Sirianni. An approach to the introduction of formal
validation in an asynchronous circuit design flow. In Hawaii Interna-
tional Conference on System Sciences, 2003.

[3] A. Cerone and G. J. Milne. A methodology for the formal analysis of
asynchronous micropipelines. In Formal Methods in Computer-Aided
Design, 2000.

[4] E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional model
checking. In LICS, 1989.

[5] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT
press, 1999.

[6] E. W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Communications of the ACM, 18(8):453–457,
1975.

[7] J. C. Ebergen. Translating Programs into Delay-Insensitive Circuits.
Centrum voor Wiskunde en Informatica, 1989.

[8] D. Fang, J. Teifel, and R. Manohar. A high-performance asynchronous
FPGA: Test results. In Symposium on Field-Programmable Custom
Computing Machines, 2005.

[9] P. Godefroid, J. van Leeuwen, J. Hartmanis, G. Goos, and P. Wolper.
Partial-Order Methods for the Verification of Concurrent Systems: An
Approach to the State-Explosion Problem. Springer-Verlag, 1996.

[10] R. Ho, K. W. Mai, and M. A. Horowitz. The future of wires. Proceed-
ings of the IEEE, 89(4):490–504, 2001.

[11] C. A. R. Hoare. Communicating sequential processes. Communica-
tions of the ACM, 21:666–677, 1978.

[12] G. J. Holzmann. The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley Professional, 2004.

[13] ITRS. International Technology Roadmap for Semiconductors: 2012
update, 2012. URL http://www.itrs.net/.

[14] M. Kishinevsky, A. Kondratyev, A. Taubin, V. Varshavsky,
A. Yakovlev, E. Napelbaum, and O. Reva. Concurrent Hardware: The
Theory and Practice of Self-Timed Design. John Wiley & Sons, Inc.,
1994.

[15] A. Lines. Pipelined asynchronous circuits. Master’s thesis, California
Institute of Technology, 1998.

[16] S. Longfield, B. Nkounkou, R. Manohar, and R. Tate. Preventing
glitches and short circuits in high-level self-timed chip specifications
artifact. Cornell University, 2015.

[17] R. Manohar and A. J. Martin. Quasi-delay-insensitive circuits are
Turing-complete. In International Symposium on Advanced Research
in Asynchronous Circuits and Systems, 1996.

[18] A. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes, R. South-
worth, U. Cummings, and T. K. Lee. The design of an asynchronous
MIPS R3000 microprocessor. In Advanced Research in VLSI, 1997.

[19] A. J. Martin. The probe: An addition to communication primitives.
Information Processing Letters, 20(3):125–130, 1985.

[20] A. J. Martin. Distributed mutual exclusion on a ring of processes.
Science of Computer Programming, 5:265–276, 1985.

[21] A. J. Martin. Compiling communicating processes into delay-
insensitive VLSI circuits. Distributed Computing, 1(4):226–234,
1986.

[22] A. J. Martin. The design of an asynchronous microprocessor. Techni-
cal report, California Institute of Technology, 1989.

[23] A. J. Martin. The limitations to delay-insensitivity in asynchronous
circuits. In MIT Conference on Advanced Research in VLSI, 1990.

[24] The Coq development team. The Coq proof assistant reference man-
ual. LogiCal Project, 2012. Version 8.4.

[25] M. Mendler and T. Stroup. Newtonian arbiters cannot be proven
correct. Formal Methods in System Design, 3(3):233–257, 1993.

[26] B. Mishra and E. Clarke. Hierarchical verification of asynchronous
circuits using temporal logic. Theoretical Computer Science, 38:269–
291, 1985.

[27] D. E. Muller and W. S. Bartky. A Theory of Asynchronous Circuits.
University of Illinois, Graduate College, Digital Computer Laboratory,
1957.

[28] T. Murata. Petri nets: Properties, analysis and applications. Proceed-
ings of the IEEE, 77(4):541–580, 1989.

[29] K. Papadantonakis. Rigorous Analog Verification of Asynchronous
Circuits. PhD thesis, California Institute of Technology, 2005.

[30] A. W. Roscoe, P. H. B. Gardiner, M. H. Goldsmith, J. R. Hulance,
D. M. Jackson, and J. B. Scattergood. Hierarchical compression for
model-checking CSP or how to check 1020 dining philosophers for
deadlock. In Tools and Algorithms for the Construction and Analysis
of Systems, 1995.

[31] B. R. Sheikh and R. Manohar. An operand-optimized asynchronous
IEEE 754 double-precision floating-point adder. In ASYNC, 2010.

[32] S. F. Smith and A. E. Zwarico. Provably correct synthesis of asyn-
chronous circuits. Designing Correct Circuits, 5:237–260, 1992.

[33] S. F. Smith and A. E. Zwarico. Correct compilation of specifications
to deterministic asynchronous circuits. In Formal Methods in System
Design, 1995.

[34] B. Tang, S. Longfield, S. Bhave, and R. Manohar. A low power
asynchronous GPS baseband processor. In ASYNC, 2012.

[35] R. Tate. The sequential semantics of producer effect systems. In
POPL, 2013.

[36] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez.
Reducing power in high-performance microprocessors. In Design
Automation Conference, 1998.

[37] M. van der Goot. Semantics of VLSI Synthesis. PhD thesis, California
Institute of Technology, 1995.

[38] T. Verhoeff. Delay-insensitive codes – an overview. Distributed
Computing, 3(1):1–8, 1988.

