
OOPSLA 18, Paper #131 Artifact

Step-By-Step Guide

Fabian Muehlboeck, Cornell University
Ross Tate, Cornell University
({fabianm,ross}@cs.cornell.edu)

July 2, 2018

1 About Our Artifact

As explained in Section 7 of our paper, the Coq formalization that we have is of a more general framework,
a specialization of which (with a slight caveat, see below) we present in the paper. As such, the Coq proof
does not match the paper precisely, but closely.

In the paper, we deal specifically with union and intersection types combined with (mutually recursively
defined) user-defined literals. The user only has to define subtyping rules for literal cases, and an intersector
that converts an intersected list of literals into another type in disjunctive normal form, plus some proofs
about them that make our system work.

In the artifact, there is no template: a user is free to define a system of arbitrary types, subtyping
rules, and a preprocessor, which is a function from types to types (we’ll explain below how, and also provide
example Coq code with this artifact). The constraints placed on those components correspond closely to
the constraints in the paper. There is, however, one caveat, as mentioned in the paper, which we’ll explain
below.

1.1 The Caveat

In Figure 7 in the paper, we define Integrated Subtyping as integrating (i.e. DNF + applying the intersector
to each intersection) the initial type in a subtyping check and the left-hand sides of each recursive call of
the literal subtyping rules. The point of this is to make sure that at every recursive step in the subtyping
proof, the left-hand side (LHS) satisfies the integrated predicate dnfφ. One can omit this integration step in
a given rule if one can prove that if the LHS of the conclusion of the rule is already processed, then so are all
the LHSs of the recursive calls. It can easily be seen that, in our system, this is true for the union subtyping
rules, since unions are the outermost layer in a DNF representation of types and the intersected predicate
dnfφ holds for a union exactly when it holds for its two constituent parts. However, it is not necessarily true
of the LHS intersection subtyping rule:

τi <: τ

τ1 ∩ τ2 <: τ

In the current Coq framework, his means that we are forced to require that the constituent parts of an
intersection that counts as intersected are intersected on their own1 - otherwise we would have to run the
intersector on them again, which would potentially just produce an intersection that is a superset of the
current one, essentially containing those types that we just dispatched into other branches of our subtyping
proof, thus threatening termination. However, this requirement is very strict and makes it hard to formalize
some of the Ceylon extensions we discuss in the paper – in particular, one would have to be very careful
about the nesting order of types that the intersector generates when generating principial instantiations (see
Figure 11). For the proofs in the paper, we found a better adjunction to deal with this problem. Intuitively,

1We provide an example instantiation of our framework where that is the case, see below and EXAMPLE.html, in particular
the requirements intersectedl and intersectedr in ClassDistribute.v

1



we can keep track of the fact that we are recursing through the parts of a larger, ”‘intersected”’ intersection.
This is the relaxation of the intersected predicate alluded to in Section 7 of the paper. Work on mechanically
formalizing this is ongoing.

1.2 Supported Claims

While not directly encoding them, the presented Coq framework should support all claims made in Sections
3 and 4 of the paper (modulo the above caveat). The table below (the same as in STARTHERE.html, where it
may be more readable) gives an overview of which parts of those sections correspond to which parts in the
formalization, and how:

Concept from Paper Corresponding Proof Part Comment

Literals & Types Typ.T in Common.v Generalized to arbitrary types,
all user-provided

User-Defined
Subtyping Rules

Rules.Con, Rules.Req, Rules.Ass

in Common.v

Declarative
Subtyping Rules

Traditional.TransRefl.TRCon etc.
in Tradition.v

in our original formalization, we
used the term ”‘Traditional”’ in-
stead of ”‘Declarative”’

Reductive Subtyping Rules see User-Defined Typing Rules While Declarative Rules add re-
flexivity and transitivity, Reduc-
tive Rules are all user-supplied
in this more general framework

Requirement 1:
Syntax-Directedness

DecidableRules.finite con

in Decide.v

Requirement 2:
Well-Foundedness

DecidableRules.wf in Decide.v

Requirement 3:
Literal Reflexivity

DecidableRules.refl in Decide.v Since everything is a lit-
eral/type, this captures all
types

Subtyping Rules
with Assumptions

ProofPV.ProofPV etc. in Common.v

Requirement 4:
R-to-D Literal Conversion

Converter.decidable traditional R

in Convert.v

Requirement 5:
D-to-R Literal Conversion

Converter.traditional decidable R

in Convert.v

Requirement 6:
Literal Transitivity

DecidableRules.Red in Decide.v See also Reduction.Reduction

in Common.v

Decidability of
Declarative Subtyping
Theorem

Conversion.decidable traditional

and Conversion.traditional decidable

in Convert.v

Together with
Decider.decider in Decide.v

Extended Subtyping Extension.Con and ExtendedRules.ECon etc.
in Extend.v

2



Intersector/Integrator Comonad.i in Preprocess.v Since everything is a lit-
eral/type, there is no distinc-
tion between intersector and
integrator

Requirement 7:
Intersector Completeness

Equivocator.iextended in Equate.v

Requirement 8:
Intersector Soundness

Equivocator.unit in Equate.v

Lemma 1:
Integrated Soundness

Equivalence.ipreprocessing extended

in Equate.v

Requirement 9:
Measure Preservation

WellFoundedComonad.i wf in Preprocess.v Requires full well-foundedness
proof instead of measure
preservation

Lemma 2:
Integrated Decidability

Decider.decider in Preprocess.v

Requirement 10:
Literal Dereliction

Comonad.counit in Preprocess.v

Lemma 3: Dereliction Comonad.counit in Preprocess.v Same as Requirement 10 due to
missing type/literal distinction

Intersected Predicate Comonad.Preprocessed in Preprocess.v

Requirement 11:
Intersector Integrated

Comonad.i Preprocessed in Preprocess.v

Lemma 4:
Integrator Integrated

Comonad.i Preprocessed in Preprocess.v Same as Requirement 11 due to
missing type/literal distinction

Requirement 12:
Literal Promotion

Comonad.i promote R in Preprocess.v

Lemma 5: Promotion Preprocessing.dpromote’ in Preprocess.v

Lemma 6:
Integrated Monotonicity

- Helper Lemmas, established in
various different forms in
Preprocess.vLemma 7:

Integrated Assumptions
-

Lemma 8:
Integrated Promotion

Preprocessing.promote in Preprocess.v

Lemma 9:
Integrated Reflexivity

Comonad.derelict and Comonad.refl

in Preprocess.v

Lemma 10:
D-to-I Literal Conversion

Equivalence.iadmitst in Equate.v

Lemma 11:
Integrated Transitivity

Preprocessing.itrans in Preprocess.v

Lemma 12:
Integrated Completeness

Equivalence.extended ipreprocessing

in Equate.v

3



Decidability of
Extended Subtyping
Theorem

Equivalence.decider in Equate.v

1.3 Claims Not Supported By The Artifact

Anything in Section 5 and after, i.e. constitutionality and specific Ceylon extensions. We do provide a
formalization of a type system of generic class types with unions, reasoning about its compositionality, and
a disjointness extension akin to the one described in the paper as an example of how to use the framework.
However, this formalization is not complete and not meant to support the claims in the corresponding
sections.

2 How To Evaluate The Artifact

We documented this Coq formalization in coqdoc in many places to both give an overview of how it works
and how it corresponds to the claims in the paper. The file STARTHERE.html contains the same table of
correspondences between the paper and the formalization as above, as well as the signatures of all the files
contained in the portion of the artifact that is meant to support anything, and explanatory paragraphs for
the important parts of those files. We believe that the largest part of evaluating this artifact will be to go
through STARTHERE.html and examine the correspondences that we list.

3 How To Use This Framework

In general, the Coq files provide a number of module types that need to be instantiated, akin to the various
requirements in the paper. One can use the instantiations of those module types to instantiate various
modules that the framework provides, akin to the lemmas in the paper, including at the end a subtyping
decider for integrated subtyping with proofs of the expected properties.

We provide a documented example of how to do all of that for a type system with generic classes,
union, and intersection types, reason about its composability, and providing an extension to reason about
disjointness, in EXAMPLE.html. The work on this example provided much of the inspiration for the current
paper.

4


	About Our Artifact
	The Caveat
	Supported Claims
	Claims Not Supported By The Artifact

	How To Evaluate The Artifact
	How To Use This Framework

