Inferable Existential Quantification

Ross Tate!, Juan Chen2, and Chris Hawblitzel?

! University of California, San Diego
2 Microsoft Research, Redmond

Abstract. Abstract interpretation is an excellent tool for designing complete dataflow analyses [6]. Existential
quantification is an excellent tool for designing precise dataflow analyses. However, these two tools are difficult
to combine. Abstract interpretation requires algorithms for deciding subtypes and constructing joins. This is prob-
lematic for existential quantification because simply subtyping with existential quantification is undecidable in
general [17], not to mention the additional challenge of joining with existential quantification.

This paper presents a category-theoretic framework for designing abstract domains for complete inference and
analysis using constrained but expressive forms of existential quantification. This framework is constructive in that
it supplies the abstract algorithms for deciding subtypes and constructing joins. This framework is also instructive
in that it provides guidelines to follow while designing the abstract domain and existential quantification in order to
guarantee inferability. Finally, the framework is practical for real-world applications, as demonstrated by its critical
role in designing an inferable typed assembly language for C# [16].

1 Introduction

Existential quantification grants a great deal of precision. In typed assembly languages [14], existential quantification
over classes with inheritance constraints has been used to verify dynamic dispatch and runtime casts [3-5, 11, 16];
existential quantification over integers with ordering constraints has been used to verify array accesses [12, 16]; and
existential quantification over arbitrary types has been used to verify closures [13, 14]. Existential quantification is
particularly useful because it can track connections between separate abstract values. For example, existential quan-
tification can express that an instance in one register and a vtable in another register both correspond to the same class
which implements Shape:
Jo <« Shape.{EAX — INS(«),EBX — VTABLE(«)}

Or existential quantification can express that the integer in one register can be used to access the array in another
register:
Ji <304 ¢.{EAX — INT(4 * 7),EBX — INS(Square)[¢]}

However, the expressiveness of existential quantification comes with a price. Subtyping with existential quantification
is generally undecidable [17], so these typed assembly languages would often use pack and open/unpack pseudo-
instructions, provided by the type-preserving compiler, essentially in order to inform the type checker how to subtype
the existential types [4,5, 11, 14]. Similarly, each merge point in the control-flow graph would be annotated with the
existential type at that point so that the type checker would never need to compute joins of existential types [4, 5].

For our inferable typed assembly language [16], these annotations were unavailable and so we had to determine
some way to infer types even with existential quantification. However, we still had at least function signatures available
to us, so we decided to apply forward abstract interpretation [6]. This was no small challenge. As we would find out,
it can be quite difficult to predict which features are or are not inferable in the presence of existential quantification
using abstract interpretation. For example, generic classes, a more recent addition to C#, required almost no change
to our type inference algorithm, whereas classic null pointers, which are typically straightforward to incorporate into
inference, turn out to make type inference incomplete in the presence of existential quantification. Complete inference
was important to us because we wanted our type checking algorithm to be predictable. The compiler writer should be
able to know which program transformations will preserve typeability, and an executable which type checks with one
valid implementation of the type checker should type check with all valid implementations of the type checker. Thus
we would prefer a type system with a predictable inference algorithm over a more expressive type system but with an
incomplete inference algorithm.

Recognizing early on that existential quantification would be the key challenge to designing an inferable typed
assembly language, we created a category-theoretic framework for designing existentially quantified abstract domains

with a complete inference algorithm. This framework provided us with a lot of flexibility as we designed our typed
assembly language, even enabling us to trade off between precision and efficiency while maintaining predictability.
Our framework is instructive in that it provides guidelines to follow while designing the existentially quantified ab-
stract domain. These guidelines were critical to designing our inferable typed assembly language. For example, they
informed us that the standard null-pointer type would likely be problematic, and we went on to prove this to be the case
and designed another way to handle null pointers. Our framework is also constructive in that it provides the abstract
algorithms required by abstract interpretation. Our implementation was almost completely specified by these abstract
algorithms [16].

Because our framework is expressed categorically, it can be applied to many abstract domains besides our original
application. Not only can our framework be used to design an inference algorithm for a setting which already has
existential quantification, but it can also be used to add existential quantification to an existing abstract domain in
order to produce a more expressive abstract domain and precise analysis. In short, our framework brings existential
quantification into the settings of complete type inference and complete program analysis.

In this paper we make the following contributions:

In Section 2, we explain existential quantification and its categorical interpretation, separating an existentially

quantified abstract domain into bounds and bodies.

— In Section 3, we present our restrictions on the bodies of an existentially quantified abstract domain, closing with
our abstract algorithm for subtyping with existential quantification.

— In Section 4, we present our restrictions on the bounds of an existentially quantified abstract domain, closing with
our abstract algorithm for joining with existential quantification.

— In Section 5, we present tools for proving co-well-foundedness and monotonicity with existential quantification
as required by abstract interpretation.

— In Section 6, we present techniques for incorporating nested existential quantification into an existentially quanti-

fied abstract domain.

These components form a complete inference or analysis algorithm using abstract interpretation. Lastly in Section 7,
we conclude the paper with a summary of our framework, connections to related work, and opportunities for future
work. In our appendices, we provide a toolset for designing entirely new expressive forms of existential quantification
meeting the requirements of our framework so that our framework can be applied to settings entirely different from
those we have encountered and present here.

2 Existential Quantification

Before we get into existential quantification, first consider an abstract domain without any quantification whatsoever.
Elements in such an abstract domain (which we will call simple types T) might look like the following:

{EAX — INS(Square),EBX — INT(5)}

This simple type abstracts all concrete states o such that EAX contains a pointer to some instance of exactly Square
and EBX contains the 32-bit representation of 5. Now we can add another layer of abstraction by using existential
quantification:

Jo <« Shape, i <ga4 5.{EAX — INS(a),EBX — INT(3 % i + 2)}

Here o represents an statically unknown class which is statically known to extend Shape, and ¢ represents a statically
unknown integer whose unsigned 32-bit representation is statically known to be strictly less than that of 5. This
existentially quantified abstract domain now abstracts the original abstract domain of simple types:

¢ is a valid mapping of variables in I” to constants T < 7'[¥)]
7o 3nT

We use double-lines to indicate that the above inference rule is 2-way (i.e. it is an if-and-only-if statement). The
judgement 7 :: 317" indicates that the simple type 7 is abstracted by the existential type 31".7". The judgement 7 <
7'[¥] indicates that 7 is smaller than 7/[J] in the original abstract domain. We can go one more step and compose the
two layers of abstraction to see which concrete states are abstracted by an existential type:

9 is a valid mapping of variables in I" to constants o T[]

o dlT

Thus existential quantification simply serves as an additional layer of abstraction. However, we have yet to define the
ordering on this existentially quantified abstract domain. This ordering is key to understanding and using existential
quantification.

2.1 Existential Subtyping
Orderings on existential types (which we will call existential subtyping) are actually fairly simple:

0 is a permitted mapping from I" to I’ 7 < 7'[0]
Ar-car.s

The mapping € can be composed with any valid mapping ¢ from I to constants to produce a valid mapping 6 ; 9 (i.e.
9 o 0) from I to constants; thus any simple type or concrete state abstracted by 3I".7 is also abstracted by 31".7".
Note that we use < for subtyping without quantification, and E for existential subtyping.

Now, we purposely used the word permitted above rather than valid, because choosing which mappings are per-
mitted grants a lot of important flexibility to the designer of the existentially quantified domain. For example, consider

the following two existential types (where c is any constant between 1 and 232 — 2):
Ji<sot C.{EAX '—)INT(i + 1)} and 3j <go4 ¢+ 1.{EAX P—)INT(j)}

Mapping j to ¢ + 1 would be valid; however, permitting this mapping for any ¢ would actually produce an abstract
domain whose height is at least 232 — 2. This abstract domain would be impractical in an analysis setting; it would
take at least 232 — 2 iterations to reach a fixed point for the following common program:

if (EAX < 1)
while (EAX < arr.length)
arr [EAX] ++;
EAX++;

Thus the designer may choose not to permit mappings like the one above in order to produce an efficient analysis. Also,
the designer of the abstract domain may prefer to not have to include a decision procedure for constraint inclusion of
inequalities in modular arithmetic within their analysis (or type checker in the case of a typed assembly language).
Thus, the designer may choose to permit maps whose integer constraints can be satisfied by using only simple laws
such as reflexivity and transitivity or other laws which they know are particularly useful for their application. Or they
may decide to disallow expressions such as 7 + 1 and only use integer variables. Regardless, our framework grants the
flexibility for the designer to make these decisions depending on what they think is appropriate for the situation.

2.2 A Category of Bounds

Once the designer of the existential types has decided what kind of existential bounds they would like (e.g. classes with
inheritance or integers expressions with inequalities) and what mappings they permit, they have essentially specified a
category Bnd of bounds and mappings.

A category C has two components and two operations that must satisfy two properties. Categories are an abstract
concept, so we interleave the definition of Set, the category of sets and functions, in order to provide the reader with a
concrete example to connect these abstract concepts to. Similarly, we show how the existential bounds and mappings
specified by the designer form a category Bnd. The two components of a category are:

— A set Obj of objects, like vertices in a multigraph
In Set, Obj is the set of sets (putting details aside).
In Bnd, each object is a bound I" which can be used in an existential type (as in 37°.7).
— For each two objects 4 and B, a set Mor (4, B) of morphisms from 4 to B, like directed edges in a multigraph
In Set, the set of morphisms from a set X" to a set) is the set of functions from X to).
In Bnd, each morphism from a bound I” to another bound I is a permitted mapping 6 from I" to I".

We use a convenient shorthand for morphisms; 4 i> B and f : 4 — B indicate that # is a morphism from 4 to B. A
category also has two operations which make it more than just a multigraph. These operations are the key aspects of
categories:

— id assigns to each object 4 a special morphism in Mor (4, 4), which we denote as id 5.
In Set, the identity morphism for a set X’ is just the identify function on X
In Bnd, this requires that the set of permitted mappings from /" to I" includes the one mapping each variable to
itself.

— Composition assigns to each chain of morphisms 2 i> 3% ca morphism directly from 4 to ¢, which we denote

asﬂl%é‘orﬂﬂ)c.

In Set, composition of morphisms is the standard composition of functions.
In Bnd, this essentially requires the set of permitted mappings to be closed under composition.

Lastly, these operations must satisfy two important properties:

— Identity morphisms must be identity elements for composition:
Vf:A—=B. idag;f =f=Ff;ids

— Composition must be associative:
Vﬂiwaﬂciwp. (f;9);h=1;(g;h)

These properties obviously hold for Set as defined above. These properties hold for Bnd since it essentially uses
composition of functions.

If we were to have just plain existential quantification of variables without constraints or expressions, then our
category of bounds Bnd would look a lot like Set (although restricted to only finite sets). However, in our examples
above we also had inheritance constraints such as v < Shape that needed to be preserved by the mapping 6 for 6 to
be valid. For this category of bounds, the objects are more than just sets, they have some additional structure (in this
case a binary relation), and the mappings must preserve this structure. Below we define Rel, the category of binary
relations and relation-preserving functions. The fact that morphisms are relation-preserving functions captures the fact
that inheritance constraints such as o < Shape must be satisfied after substituting o.. Rel is defined as follows (proofs
aside):

— Anobject X in Rel is a set X’ with a binary relation <y on X.

— A morphism £ in Rel from X to 9" is a function f : X —) mapping related elements to related elements:
Ve, o' € Xz <y 2’ = f(z) <y f(2)).

— Identity and composition are the same as in Set.

Rel has a subcategory that is particularly useful, say for modeling inheritance. Prost is the category of preordered
sets and relation-preserving functions. Prost is like Rel but only contains objects X for which <y is reflexive and
transitive, hence it is a subcategory of Rel. Later, this subcategory will be particularly important for formalizing
subtyping and subtype-preserving substitutions.

In order to existentially quantify integers, we could use the category of finitely generated injective integer ring
actions. Details aside, this category corresponds to allowing mappings of the form ¢ — ¢y * j + co. The ring-
action aspect allows the abstract domain to use the arithmetic equalities ¢ * (¢1 % Jj + c2) = (¢*¢1) * j + (c* ca)
and (c1 % j + c2) + ¢ = ¢1 * j + (ca + ¢). This category is in fact the basis for our treatment of integers in our infer-
able typed assembly language [16], although with some additional structure for tracking unsigned 32-bit inequalities
<32+ . Furthermore, we can take the product of two categories, such as the categories for classes with inheritance and
for integer expressions with inequalities, in order to form a category for existential quantification over both classes and
integers.

2.3 A Functor for Bodies

An existential type 37.7 has two parts: the bound I" and the body 7. Above we just showed how can to formalize the
bounds in an existential type system using a category. Here we formalize the bodies in an existential type system using
a functor.

First we recognize that for a bound I" there may be many bodies 7 such that 371".7 is a permitted existential type.
Thus, for a context I", we have a set Bodies(I") of permitted bodies for bound I". This is very much like the set of
types which type check under some context. Furthermore, there is a subtyping relation <p on the set of bodies for
I" because these bodies come from an abstract domain. This subtyping relation is reflexive and transitive (i.e. it is a
preorder). Thus an existentially quantified abstract domain essentially specifies, for each bound I, a preordered set of

bodies permitted in bound I'. In other words, Bodies maps objects in Bnd to objects in Prost; this forms the first
component of a functor.

Second, we recognize that any permitted mapping 6 from bound I” to bound I essentially specifies a substitution
[] mapping bodies for I" to bodies for I". This substitution replaces the I" variables in a body 7 with the expressions
they map to in terms of the I variables, so that 7[6] is a body using only variables in I"'. Furthermore, if 7 is a subtype
of 7/ in bound I, then 7[f] will be a subtype of 7/[f] in bound I". Thus [f] is a relation-preserving function from the
preordered set of bodies in I” to the preorder set of bodies in I"'. In other words, the substitution operation [—] maps
each morphism 6 : I' — I"” in Bnd to a morphism [0] : Bodies(I") — Bodies(I"") in Prost; this forms the second
component of a functor. Thus, we can formalize the informal concepts of bodies and substitution that we are already
familiar with by using the categorical concept of functors.

Functors are like morphisms, but they go between categories rather than objects. A functor is comprised of two
operations which must satisfy two properties. The operations of a functor F' from category C to category D are:

— A map F from Objc to Objp
— For each two objects 4 and B in C, a map from Morc(4, B) to Morp(F(A4), F(B)) (these maps are also
denoted using F)

The operation Bodies mapping each bound I" to a preordered set of permitted bodies for I', paired with the operation
[—] specifying for each permitted mapping 6 : I' — I a relation-preserving function [0] : Bodies(I") — Bodies(I"'),
combine to form a functor (Bodies, [—]) from Bnd to Prost. The operations of a functor must preserve the opera-
tional structure of categories by satisfying the following two properties:

— Preserves identities: V.4 € Objc. F(id 1) = id p(a)
In particular, this means [id] must be the identity function.

— Preserves composition: V.4 LN C.F(f;9)=F(f);F(g)
In particular, this means 7[6 ; §'] must always equal 7[6][0'].

2.4 Categorical Specification

Now that we have introduced the concepts of categories and functors and showed how they relate to existential quan-
tification, we can formalize our representation of an existentially quantified abstract domain and existential subtyping.
Our perspective is in line with that of op-indexed/fibred category theory [8], which demonstrates that our perspective
properly formalizes the universal properties associated with existential quantification.

Definition 1. An existentially quantified abstract domain is defined by two components:

— A category Bnd specifying bounds and permitted mappings
— A functor (Bodies, [—]) from Bnd to Prost specifying the preordered set of permitted bodies for each bound and
the substitution for each permitted mapping

The elements of this existentially quantified abstract domain are of the form AI.T where I is an object of Bnd and T
is an element of Bodies(I"). The ordering on this existentially quantified abstract domain is defined by the following:

:I""— I'inBnd 7 <p 7'[0] (< specified by Bodies(I"))
Irrc3ar.gs

Figure 1 gives an example specification of records with existentially quantified classes with inheritance. This
existentially quantified abstract domain could be used as a crude system for modeling memory. The type 3. {«, «, o)
represents a record with three fields, each of which is an instance of the same class «. Prefix subtyping allows us to
essentially forget that a field is present. In our inferable typed assembly language, we use records with prefix subtyping,
but with much more expressive fields [16].

In our example, we do not use constants such as Square, generics, nor covariant arrays solely for the sake of
easing the explanation of our framework. In the appendices, we show how to easily add all of these features and more.
For example, we also show that rules such as Voa.a < S[1 = Fy.a = v[1 Ay < B3, important for type checking
the usage of arrays in C#, are compatible with our framework. The bounds we use in our inferable typed assembly
language [16], including generic classes and arrays with multiple inheritance and simple integer expressions with

Bnd: the subcategory of Rel containing only finite partial orders: (Vr, <r)
Bodies: assigns I to the set List(Vr) with £ <p ¢’ defined as ¢’ is a prefix of £
[—]: substitution for a mapping 6 is simply List.map(6)

Example of existential subtypes: Ja.{a, v,) E FB,7: B <K v.{B,7)
(constraints generated by reflexivity and transitivity are implicit)

Fig. 1. Specification for existentially quantified records of classes

unsigned 32-bit inequalities, was built and adapted using the simple design tools in the appendices. The appendices
also includes significant generalizations of our framework as presented here. However, we use the simple example of
records of classes with partially ordered inheritance in Figure 1 and our simplified framework because these ease the
explanations and still capture the key concepts of our framework.

3 Deciding Existential Subtyping

Subtyping with existential quantification is generally undecidable [17]. For example, subtyping in the Scala program-
ming language is undecidable [17]. Even subtyping in Java with wildcards, which are essentially a very restrictive
form of existential quantification, is believed to be undecidable [2, 10, 17]. However, this does not mean subtyping
with existential quantification must always be undecidable. Here we specify the requirements put forth by our frame-
work for general subtyping. Using these requirements, we will show how the problem of existential subtyping can be
reduced to whether one morphism factors through another morphism in the category Bnd of bounds and permitted
mappings. In the section afterwards, we will show how these requirements can also be used to construct the join of
two existential types. But, before we get ahead of ourselves, we will first discuss skeletal and general types, then we
will show how to apply these simple concepts to existential subtyping.

3.1 Skeletal Types

Every body 7 of an existential type 317 has a component which is independent of the bound I'. That is, even as
we apply substitutions to 7 there is a component of the body will never change. This component is essentially the
shape or skeleton of the body. For example, we can represent the skeleton of the body {«, 8, 5) as the skeletal type
(*, %, x). That is to say that, no matter what substitutions we apply to {«, 5,), it will always be a record with 3 fields.
Informally we can construct the skeletal type of a body by replacing every expression dependent on the context with
a star x. Each % in a skeletal type essentially identifies an existentially quantifiable slot. Understanding and tracking
these slots turns out to be essential for inferring existential types.

To formalize the simple but useful concept of skeletal types, we use the classic category theoretic concept of a
terminal object. A terminal object in Bnd is a bound I, with the property that every other bound I" has a unique
morphism ! : I" — I’y in Bnd. The fact that this morphism always exists allows us to map any body 7 for any
bound I" to a body 7[!r] for bound I. Furthermore, the fact that this morphism is unique informs us that if we
take a body 7 for I', apply a substitution § : I" — I to get a body 7[f] for I/, and then map to I, resulting in
7[0]['], it would be just as if we had mapped 7 to I, before substituting with 6. The proof is simple: 7[0][!] equals
7[6 ;! /] since substitution is functorial, and 8 ;! equals ! by uniqueness since both are morphisms from I to I,
thus 7[0]['] = 7[0 ;'] = 7['r]. We say the bodies for bound I, are the skeletal types, and the operation [!] (where
the bound I is implicit) is the starring process described above. The fact that [!] produces the same result if applied
before or after any other substitution formally captures the concept of substitution-invariance that skeletal types are
intended to represent.

In our example of existentially quantified records, the terminal object I, is ({x}, {* <, x}). Because there
is only one element, every other set has a unique function to {%x} which is simply the constant function mapping
everything to x. Furthermore, because {x <, %} is the maximum binary relation on {*}, these functions will always
be relation-preserving. The bodies for this context, that is the skeletal types, are simply lists of the singleton set
{*}. Since there is only one element, each list is classified entirely by its length. Thus subtyping ¢ <p, ¢ is simply
length(£) > length(¢"). We call subtyping in I', skeletal subtyping. Skeletal subtyping is much simpler than subtyping
in general since all the quantifiable terms have been removed, and so it is much simpler for an analysis or type system

designer to reason about. For this reason, our framework reduces many of the more challenging properties down to
skeletal subtyping and representers, which we discuss next. For brevity, we will represent the skeletal type of a body
T as T, and skeletal subtyping as <,.

3.2 General Types

Just like every body has a skeletal type, every body also has a general type. This general type is best understood
through skeletal types. In a skeletal type, each slot is represented by . To construct the general type, simply assign
each slot its own variable. Thus, the general type for {*,*,x) is a, 8, v.{«, 3,7). We can do this for any body 7:
apply the substitution [!] to get the skeletal type 7, then replace each in 7, with its own variable to get 3I7.7¢, the
general type for 7. We call I the general bound for T and 7 the general body for 7. Just like skeletal types, general
types are substitution-invariant. In particular, any two bodies with the same skeletal type also have the same general
type.

Once again, to formalize the simple but useful concept of general types, we return to category theory. Given a
skeletal type 7., the general type 31, .7 has the property that, for any existential type 3I".7 with skeletal type 7.,
there is a unique morphism rep_ : I';, — I with the property that 7¢[rep_] equals 7. We call the morphism rep_ the
representer of T. The intuition is that the general type gives a name to each slot, and the representer specifies the value
of each slot in 7. Consider the following example:

Original Type General Type Representer

3o, fra Bo, o, B) Tz, y, 2w, y, 2) {2,y = a,z — [}

We use z, y, and z in the general type to emphasize that it names each slot. The advantage of understanding skeletal
types and general types is that we can now classify each existential type 317 by its bound I, its skeletal type 7, and
its representer rep_: I, — I

3.3 General Subtyping

So far we have simply been making observations of existential types, identifying that an existential type can be broken
down into pieces, and formalizing each of these pieces categorically. Now we describe the first of the two fundamental
requirements of our framework. We will see that this requirement also serves as a guideline, informing the abstract
domain designer early on as to which features will be or may not be inferable.

We have already made a connection between skeletal fypes and general types. Now we want to make a connection
between skeletal subtyping and general subtyping. That is, we require that whenever two skeletal types are subtypes
then their general types are also existential subtypes. In other words, the following must hold:

/ ’ ,
VT, Tyr T S Ty = HFT*-TGEHFT;-TG

This means that for any skeletal subtypes 7, <, 7. there must be a morphism, which we call gen_ ~ s from Fr; to
I';, such that ¢ <p, 75lgen, S*T;] <!
property. The intuition is that, if two existential types are existential subtypes of each other, then it is because the slots

in the body of the supertype somehow match up with the slots in the body of the subtype. For example, in our example
of existentially quantified records with prefix subtyping, we have the following general subtyping:

holds. We additionally require that gen is the unique morphism with this

(*, %, %) <y (x, %)
!
Ja,b,c{a,b,c) T Fz,y.{x,y)
with
genQ*,*,*[}S*(]*,*b = {I —=a,y— b}

Had we used suffix subtyping instead, then gen(., . ., would be {z — b,y — c} instead. Had we used both
prefix and suffix subtyping, then there would be multiple candidates for gen and we will see later why
this is problematic for joining existential types.

There is one more formal requirement we must make to properly capture our concept of general subtyping. Our
requirements above essentially say that the gen morphisms classify subtyping in general bounds, but we want it to

(xS %)

classify subtyping in all bounds. That is, whenever 7 <p 7’ holds for bodies in any bound I', we want our gen
morphisms to capture this subtyping as well. One observation is that whenever 7 <p 7’ holds then 7, <, 7/ also
holds since all substitution, particularly [!], preserve subtypes by assumption. Thus, we can construct the following
diagram:

G <,

I

T !
TepT\ A/TCPT/
r

Our requirement is that this diagram always commutes; composing morphisms along any path always produces the
same result. In this case this means that rep_ogen_ _ _, equals rep,. Intuitively, this requirement says that, whenever

7 is a subtype of 7' in bound I', then each slot that these two bodies have in common actually has the same value
in both bodies. In other words, the representers for 7 and 7’ agree on these common slots identified by gen_ o - A
simple rule of thumb for general subtyping that makes for a good design guideline is that, for each syntactic gubiype
rule, all metavariables which occur in the supertype should also occur in the subtype.

This ends the formalization of our requirement of general subtyping. Next we see how we can apply this require-
ment to deciding existential subtyping. After that, we will give examples of why this requirement is important for
joining existential types, or really examples of type systems that fail to meet this requirement and so also fail to have
joins.

3.4 Abstract Algorithm for Existential Subtyping

Here we present our abstract algorithm for existential subtyping. We call this an abstract algorithm because it does not
provide a decision procedure, but rather it provides an algorithm for reducing the problem of existential subtyping to
a problem that is much simpler for many domains. First, we present our key theorem.

Theorem 1. 3.7 T 37".7" holds if and only if 7. <, T, holds and there exists a morphism 0 : I'" — I" such that the

following diagram commutes:

genT <,T!
<o

Proof. By definition 3I".7 C 3I"".7/ holds if and only if there is a morphism 6 : " — I" such that 7 < 7’[6] holds.
(For brevity, we will simply use gen for gen o)

=—: Assume a morphism 6 : ' — I exists such that T <p 7'[f] holds. This implies that 7, <, 7, holds
since [!1| preserves subtyping by requirement and 7, equals 7/[f], due to the substitution-invariance property of
skeletal types proved earlier. By our last requirement for general subtyping, we know that rep_ o gen equals TeP 01
since 7 <p 7'[0] holds. Thus we have the equalities Té[repT,[e]] =7 [9]0[”}’7'[0}] =7'l0]=T1g[rep, .][0]) = ¢ [rep,, 5 0],
therefore rep_, (0] equals rep_, ; 0 by the uniqueness requirement for representers. And so the diagram commutes because
we have gen _ _, ;rep, = rep, o gen = rep o = rep ;6.

<=: Assume 7, <, 7, holds and there exists a morphism 6 : I — I" such that the diagram commutes. By
requirement for general subtyping, we know that 7¢ <r 74[gen] holds. By requirement [rep_] preserves subtypes, so
we also know that Tg[rep, | <r 7(;[gen][rep_] holds. By requirement, 7¢[rep_] equals 7. By assumption gen ; rep__ equals
rep_, ; 0, so we have the equalities 7, [gen][rep_ | = 7([gen s rep | = 4 [rep_, ;0] = 74 [rep,.,][0], and the last equals 7/[0]
by requirement for representers. By substitution, we therefore have that 7 <p 7/[6] holds.

If such a @ exists, then rep_ogen_ _ is said to factor through rep . For many categories, determining whether

*

one morphism factors through another is decidable. In our example of records with existentially quantified classes with
inheritance, determining whether a constraint o« < [is preserved breaks down to graph reachability. In an analysis for
advanced array-bounds elimination, this question may require a decision procedure for convex polygon containment in
modular arithmetic. Regardless, the above theorem allows us to reduce the challenge of existential subtyping to using
these standard domain-specific decision procedures.

Our abstract algorithm for deciding existential subtyping is defined as follows using the result of our theorem:

DECIDEEXISTENTIALSUBTYPES(II .7, 3I".7"):
if (r[!] <, 7'[]) then

construct gen ,[,], rep_, and rep_,;

T<sT

return rep,_ o gen factors through rep_, ;

T[']< T/
else return false;

In our experience [16], this algorithm is best implemented in two phases. Construct rep_ o Femn <, [and rep_, while

deciding T['] <, 7'[!]. If that process succeeds, use the decision procedure to determine whether rep_ o gen

factors through rep_,.
To understand the algorithm, consider the following examples:

<[]

(1) Ja. () %35,5.45,59

(2) 30,5 : a<<ma,ﬁ>za 16.)

3) o, B.da, B) © 36,2 : 5 < &5,)
(4) Ha.Qa,a,ab é 30,e: 0 < e.(d,¢)

Example (1) fails because {x) is not a skeletal subtype of (x, x). Example (2) fails because the function {z — «,y —
B} does not factor through the function {z,y +— 0}. Another way to think about it is that {x — «,y — [} fails
to satisfy the implicit equational constraints of {x,y +— ¢}. Example (3) fails because, even though the function
{z — a,y — B} does factor through the function { — §,y — &} via the function {6 — «,~ — [}, this function
{§ = a,~y — B} fails to preserve the relational constraint 6 < ¢ and so is not a morphism in our category of relation-
preserving functions. Example (4) succeeds via the function {§,e — «} which preserves the relational constraint
0 < ¢ because partial orders are always reflexive (so o < « is implicitly present in the subtype).

3.5 A Need for General Subtyping

‘We have no proof, or even belief, that general subtyping is truly necessary for an existential type system to have joins,
given the bizarre abstract domains that can be constructed. However, it has been our experience that any extension we
would add that did not satisfy our requirement of general subtyping would actually produce an existential type system
that fails to have joins. Here we present one such example: null-pointer types. We choose this example because we
spent a lot of time trying to extend our framework to handle null-pointer types because it seemed so obvious that they
should work. However, after a lot of suffering we finally realized that there actually are no joins with standard null-
pointer types. Thus be relaying the lessons we learned we hope to save other existentially-quantified-abstract-domain
designers from the same suffering we experienced.

Null-pointer types may be one of the most obvious extensions to add to our existentially quantified records with
classes and inheritance; replacing any field of a record with the null-pointer type produces a subtype of that record,
assuming we are using covariant record types. In particular, we have the following subtype rule:

w can be any term specifying a class in bound I"
(null) <p (w)

However, this rule does not fit within our framework. It specifies that the skeletal subtyping (null) <, (%) should
hold. However, the existential subtyping 3&.{null) E 3x.{x) does not hold: there is nothing to map x to. One might
try to fix this by adding constants, then map x could map to any one of these constants, but then gen (mu11) <, (%) is
no longer unique. One might try to fix this again by specifying that there is only one constant, say Object, so that
FM ma11) <, (+) would be unique. However this would still not satisfy the last requirement of general subtyping: for any
T <r T, 1ep_o gen

<ot must always equal rep_,. In particular, we would have the following counterexample:

Subtypes rep_ Ogen_ o L Tep,,
(null) <(oy (@) {z+ Object} {z — a}

This may seem like a limitation of our framework, as we first suspected, but in fact there are no joins with the
standard null-pointer type. Fortunately, we can concisely demonstrate this fact here. Consider the following two exis-
tentially quantified records:

R, = Ja.(null, a,null) and Rg = 36,5 .(6,null, §’)

They have the following two common existential supertypes:
R, =37, {v,7.7) and Rs =38,8".{6,48",")

IR, is not an existential subtype of I%s, nor vice-versa. However, it is easy to see that, should R, and I?g have a join,
that join must have skeletal type (*, %, x) with no null field. The only common existential subtype of R, and Rs with
that skeleton is R, = Je.{¢, ¢,). However, R, is not an existential supertype of Rg, so R, and Rg have no join.
Thus, abstract interpretation could only produce incomplete analyses using this abstract domain.

This example demonstrates how useful our framework can be to someone designing an existentially quantified
abstract domain. By following our simple guidelines for general subtyping, the designer is saved from attempting to
add seemingly simple but ultimately damaging types such as null-pointer types. In the above example, the fundamental
problem is that it is ambiguous whether the null in Rs should correspond to 3, 3’, or even some other class constant.
In our typed assembly language, we used our framework’s guidelines to determine that inference would be possible if
each null-pointer type were annotated with the class it is meant to be a null pointer to, since this adaptation would sat-
isfy the general subtyping requirement. This is the only intraprocedural annotation requirement of our typed assembly
language, but as we just demonstrated it is an unfortunate but unavoidable cost.

4 Joining Existential Types

Joining existential types is quite challenging. We just showed that even with simple null-pointer types joining existen-
tial types is actually impossible. In the last section we defined the first fundamental requirement of our framework:
general subtyping. General subtyping essentially allows us to track the values of existentially quantifiable slots through
the subtype system. This alone does not solve our problem though. Consider the following two records (temporarily
adding constants to our example type system):

30.{Square, Square, Rhombus) and 3).{Circle, Oval,Oval)

One might expect that because these use only constants their join would be simple, but in fact their join is surprisingly
complex:

Jo, B,y < B K v.{a, B,7)

Not only does a join algorithm need to recognize that, even though there are only two constants in each type it still
needs three variables to represent them because the constants do not line up, but also that there is a left-to-right
inheritance structure because of reflexivity. In this section we present the second fundamental requirement of our
framework and then apply that requirement to define our abstract algorithm for joining types. But before that, let us
examine what tools and information we already have available to us.

Suppose we have two existential types we want to join: 317.7" and 3I5.72. By using skeletal types, we can first
operate in a much simpler space and construct their skeletal join 7= as 7} LI, 72. We can then use general subtyping
and representers to construct the diagram in Figure 2. Recall that the general bound I'-u essentially assigns a separate
name to each slot. Thus the morphisms in Figure 2 are maps from the named slots in 7' to their originating values
defined in I'; and I%. In our earlier example, the generalized type for the skeletal join would be 3z, y, z.{z, y, z) and
we would have maps {x, y — Square, z — Rhombus} and {z — Circle,y, z — Oval}. What we need to construct,
then, is a bound which constrains z, y, and z as much as possible, possibly even merging them, while still having
these maps be valid. Graphically, we need to construct a maximally constrained bound I, with morphisms 6} and
65 so that the diagram in Figure 3. The morphism r describes how to map the general bound I'-u to the maximally
constrained bound I7,. We can use r to convert our general body for the skeletal join 7 into the body 7" = 7g|r].
The resulting type 317,.7" is the join of 3I7.7! and 315.72.

In our example, the maximally constrained bound 77, would be «, 8,7 : @ < 8 < . The morphism r would
be the mapping {z — «,y — 3,z — v}. The body 7" for bound I}, would be {z,y, z)[z — «,y — 3,z — 7] which
evaluates to («, 3, v). Putit all together and we determine that our join type 371 ,.7" is o, 8,7 : a < B < v.{, B,7)
as we presented earlier.

The only piece missing in order to join existential types algorithmically is a technique for constructing the maxi-
mally constrained bound 71,. For this, we use a categorical concept called factorization structures [1]. A factorization
structure will simultaneously provide the maximally constrained bound 7}, and the morphisms r, 6f, and 65'. The
proof that 37},.7" is a join will be concise and direct. The need for a factorization structure is the second of the two

Ili<art Do IMr2<iry
r,<— T,
rep 1y NEL
I I

Fig. 2. Morphisms available due to general subtyping

fundamental requirements of our framework. Note that this section is entirely in terms of the bounds of existential
types, and makes no mention of the bodies. The rule of general subtyping in the prior section is the only constraint on
bodies, so one is free to design bodies without any concern for the concepts in this section. Before defining our join
algorithm, we must define what factorization structures are, beginning with the categorical concept of sources.

4.1 Sources

A diagram of the form B, <f—1 a f—2> B, is called a 2-source: it is comprised of two morphisms with the same domain.
In particular, the diagram in Figure 2 is a 2-source. There are many special kinds of sources, such as mono-sources [1].
Consider the 2-source X; <+ X; X X —2 X» in Set. It has the property that for any two elements p and p’ of A, x
Xy, if 71 (p) equals 71 (p’) and 75 (p) equals 75 (p') then p must equal p’. This makes (X} x X — X;)ieq1,2) amono-
source in Set. More generally, a mono-source (4 = B;);c7 has the property that if two morphisms £, g : ¢ — 4 are
equal after composing with m; for each ¢ in Z, then f mustequal g:Vf,5: C = 4. Vi € Z.fsm =g;m) = f = 4.
The mono-1-sources in Set are precisely the injective functions.

[< o I
Tep_ a1y I, $Tep. 2

Fig. 3. Diagram for the maximally constrained bound /1,

4.2 Factorizations

The category Set has the interesting property that any source (X EiN Z;)iez canbe factored into X = (Y =5 Z)ier
where e is a surjection and (Y RN Z;)iez is a mono-source. Factoring here means that e ; m; equals f; for all ¢ in Z.
To do this, we construct an equivalence relation = on X, defined by = and 2’ are equivalent when f;(x) equals f;(x')
for all 7 in Z. We then define) as ¥/, the set of all equivalence classes. ¢ is the function mapping each element z to
its equivalence class [z]x. m; is the function mapping [x]~ to f;(x), which is well-defined by construction of ~. In a
way, we are merging the elements of &’ as much as possible for each m; to still be a well-defined function. Thus,)
is X maximally constrained by equalities such that each m; is still a well-defined function, tieing back to our strategy
for joining existential types.

Since any source in Set can factor into a surjection and a mono-source, Set is said to have (Surjection, Mono-
Source)-factorizations. More generally, a category C has (€, M)-factorizations, where £ is a class of morphisms and
M is a class of sources, if any source in C can be factored into 4 BN (B R C;)icz Where ¢ belongs to £ and
(B8 5 ¢)ier belongs to M [1].

4.3 Diagonalizations

The category Set has yet another property which we will need to prove our join construction correct. Suppose we
have sets and functions such that the following diagram commutes for all ¢ in Z:

W -5 x (where e is a surjection)

fl \Lgi

Yy T Z; (and (¥ 2% Z;)ie7 is a mono-source)

In this situation, there will always be a unique function d : & —) which cuts the square diagonally and commutes
for all 7 in Z. In fact, d is easy to construct. Since e is surjective, every value in X is of the form e(w) where w is an
element of WW. We define d as d(e(w)) = f(w). To prove that d is well-defined, we have to show that e(w) = e(w’)
implies f(w) = f(w'). Assuming e(w) = e(w’), then g;(e(w)) = g;(e(w’)) holds for all 7 in Z. Since we assumed
the diagram always commutes, this implies m;(f(w)) = g;(e(w)) = g;(e(w’)) = m;(f(w")) for all ¢ in Z. But we
also assumed () % Z;);c7 is a mono-source, so these equalities imply that f(w) actually equals f(w’), which is
our desired conclusion.

Because such a d always exists uniquely in any such situation, we say that Set has unique (Surjection, Mono-
Source)-diagonalizations. More generally, a category C is said to have unique (£, M)-diagonalizations [1] if e : 2 —
B belongs to £ and (C = D;)sez belongs to M implies the following for any morphism £ : 4 — ¢ and source

(8L D,)icr:

a5 3 exists a5 3

) j d,7 |,

f i unique f , 2
wer v VLS e h e
C m Di such that C Di
commutes = commutes

4.4 Factorization Structures

A category C is said to have an (£, M) factorization structure if it has both (£, M)-factorizations and unique (£, M)-
diagonalizations [1]. The factorizations capture the ability to add constraints, and the unique diagonalizations capture
the fact that these constraints are added maximally. Therefore, we require the category Bnd to have some chosen
factorization structure which will be used to construct the maximally constrained bound when joining existential
types. Although factorization structures are an unfamiliar concept, they are very common and the appendices shows a
variety of techniques for building custom categories with powerful factorization structures.

Here we will define the factorization structure we will use for our example of existentially quantified classes with
inheritance. Remember this example category Bnd is the subcategory of Rel satisfying reflexivity, transitivity, and
anti-symmetry. It turns out that reflexivity, transitivity, and anti-symmetry can all be expressed as surjective categorical
implications [1]. Because of this we will show that Rel has a (Surjection, Initial Mono-Source) factorization structure,
and [1] informs us that our example category Bnd automatically inherits this same factorization structure (this is one
of the techniques explained in more detail in the appendices). But first, we will define what an initial mono-source in
Relis.

An initial mono-source [1] (4 =% B;);c7 in Rel is a source whose underlying source (A Ly B;)icz is a mono-
source in Set with the additional property that, for any two elements a and a’ in A, a <4 o’ holds if and only if
m;(a) <z, m;(a’) holds for all ¢ in Z. Essentially, < 4 is the strongest binary relation on A such that each m; is still
relation-preserving. Once again, this connects to our goal of constructing a maximally constrained bound I,.

The first component of a factorization structure is factorizations, so must construct (Surjection, Initial Mono-

Source)-factorizations in Rel. Given a source (4 f—> G;)iez, We start by constructing the (Surjection, Mono-Source)-
factorization of the underlying source in Set: A < (B =% C;);cz. Remember this process constructs B by essentially
merging as many elements of A as possible for each m; to still be a well-defined function (i.e. imposes as many
equational constraints as possible). Next we define b <5 b’ as Vi € Z. m;(b) <, m; ('), the strongest binary relation
on B such that each m; is relation-preserving. Thus by construction, each function m; is a morphism m; : B — ¢;
in Rel and together form an initial mono-source. Lastly, we need to prove that e is a morphism ¢ : 2 — B in Rel.

This is true precisely when a <4 a' implies e(a) <4 e(a’) for all @ and @’ in A. Assuming a <4 o’ holds, we
know f;(a) < fi(a') holds for all 7 in Z since each £; is a morphism in Rel. By construction, this implies that
m;(e(a)) = fi(a) K¢, fi(a") = m;(e(a’)) holds for all ¢ in Z. But this is precisely the definition of e(a) <5 e(a’),
s0 ¢ is a morphism in Rel. By construction, e is surjective and (8 = (;);c« is an initial mono-source. Thus, Rel
has (Surjection, Initial Mono-Source)-factorizations.

Second, we have to construct unique (Surjection, Initial Mono-Source)-diagonalizations. Suppose we have the
appropriate commuting squares. The underlying commuting squares in Set have a surjection and a mono-source. So,
we can construct d : B — C as the uniquely induced diagonal for the underlying commuting squares. We still need to
prove that d is a morphism & : 8 — ¢ in Rel. Assume we have elements b and b’ in B such that b <5 b holds. Since
each g; is a morphism in Rel, we know g;(b) <, ¢;(d’) holds for all ¢ in Z. By construction of d, this informs us
that m;(d(b)) = g;(b) <o, gi(b') = m;(d(¥')) holds for all 4 in Z. Since (C =% D;);e7 is an initial mono-source, by
definition of initial mono-source this implies that d(b) <~ d(b’) holds. Thus, 4 : B — (C is a unique diagonal in Rel.
The remaining requirements are easy to prove from the definition of 4.

Thus, Set has a (Surjection, Mono-Source) factorization structure, Rel has a (Surjection, Initial Mono-Source)
factorization structure, and our example category Bnd for classes with inheritance has the same factorization structure.
Factorization structures are common, and even a single category can have many factorization structures [1]. The
ones above are fairly general purpose factorization structures, but factorization structures can also be constructed for
specialized domains. In order to check array bounds in our typed assembly language, we built a factorization structure
for integer expressions of the form c; * ¢ + co [16]. Different factorization structures have different benefits. Some can
be easier to compute while others can be more expressive.

Next we discuss tight existential types for a given factorization structure. This concept gives some direction as to
which factorization structure to choose for a given category of bounds because our join algorithm will require that all
existential types be tight.

4.5 Tight Existential Types

In order to use our framework, we require that all existential types be tight. This is a necessary requirement, since
it is easy to construct existential types without joins if non-tight existential types are permitted. Intuitively, a tight
existential type is one for which all variables in the bound are used in the body; thus, there are no loose variables in the
bound that should be dropped. Formally, a tight existential type is defined in terms of the (€, M) factorization structure
chosen for Bnd. Remember that each body 7 in bound I" has a general type 31';.7¢ and a representer rep_ : I'- — I

Definition 2. An existential type 3I'.7 is tight for an (€, M) factorization structure if its representer rep_ belongs to
E.

If we use the (Surjection, —) factorization structure of Set, Rel, or our example Bnd for classes with inheritance, this
means that each variable « in bound I" must be mapped to by some variable in I';, which happens precisely when «
occurs as the value of some slot in 7, matching the intuition described above.

This requirement has an important impact on the choice of factorization structure for Bnd. In particular, the larger
& is, the more tight existential types there are, so the more precise the existentially quantified abstract domain can
be. The largest £ can be is the class of epimorphisms [1]. The epimorphisms in Set, Rel, and our example Bnd
are precisely the surjections, so the factorization structures we defined earlier are optimal for precision. In general, an
epimorphism e : 4 — B is a morphism with the property that if ¢; f equals ¢; 4 then f must equal 4. Also, since for
any factorization structure all elements of £ are epimorphisms [1], a morphism € evidencing an existential subtyping
between tight existential types is necessarily unique.

During abstract interpretation, a non-tight existential type may be constructed by the monotonic dataflow function.
Fortunately, there is an optimal way to fighten an existential type 3I".7. Simply factor rep_ (viewed as a 1-source)
into an £-M sequence I, = I % I'. m serves as evidence that 317 is an existential subtype of 3I".7¢|e], and
the diagonalization property can be used to show that any tight existential supertype of 317 is also an existential
supertype of 3I".7¢|e]. In our example with class inheritance, tightening would proceed as in the following:

3o, B,7 s a< By, B, B) L, S0, B - a< Bu{a, B, B)

The bound variable ~ is dropped, along with all constraints pertaining to ~, because it does not occur in the body.
Although tightening may lose information, as much information is retained as possible, and often the lost information
is unwanted anyways (such as bound variables which do not actually occur in the body).

4.6 Abstract Algorithm for Joining Existential Types

At last we have all of the components necessary for joining existential types. We begin with our key theorem which
defines the construction of the join and proves it correct.

Theorem 2. If Bnd has an (€, M) factorization structure, then given two existential types 3I'1.7% and 3T5.72,

en_; .
Imri < ri) rep i
I

suppose T is the skeletal join of the skeletal types T} and T2, and the 2-source (o I)ieq1,2)

, 0
(from Figure 2) has the (€, M)-factorization I'ro — (I'y == I')ic (1,2} (as in Figure 3), then 3I\,.75](r] is an E-tight
existential supertype of both 3I'y.7' and 3I.72%, and any other E-tight existential supertype of both 3I'y. 7" and
3Iy.7% is also an existential supertype of 31,.75]1].

Proof. The existential type 31 ,.75[r] is £-tight since r belongs to & by definition of (£, M)-factorization and r equals
e L, by uniqueness of representers. By our theorem for existential subtyping, the morphism 6y serves as evidence
G

that 31,.75[r| is an existential supertype of 3I.71, and likewise for 65, because the appropriate diagrams commute
by definition of (€, M)-factorization.

The challenging part is proving that 3I7,.75[r| is the tight existential join. Suppose we have some other common
tight existential supertype 3I".7. By our earlier theorem we simply need to prove that 7' is a skeletal subtype of
T, and construct a morphism 6 : I' — I}, making the appropriate diagram commute. By that same theorem we
know 7'*1 <, T, must hold and there must be a morphism #; such that the left-most square in the diagram below
commutes, and likewise for s (note that for clarity we drop the subscripts on the gen morphisms). Because 7- is
assumed to be the skeletal join of 7} and 72, we know that 7" is a skeletal subtype of 7,, so we have the central
gen morphism in the diagram below. Furthermore, from uniqueness of gen morphisms we can deduce that both upper
triangles in the diagram below commute. Lastly, the front squares in the diagram below commute by definition of
(€, M)-factorization. Thus the entire diagram below commutes.

I,
gen ep ge en
I riu I
rep.ay 0, r, Ve,
I glu 92|_I Iy

We can rearrange this diagram into commuting square(s) similar to those we saw earlier when discussing factor-
ization structures:

rep,_
I —— I

INru< ¥
I 0,
¥
Fu T)‘ FZ

)

The top morphism rep_ belongs to £ because we assumed 377 is £-tight. The bottom 2-source (11, 9—i> TI’;) belongs
to M by definition of (£, M)-factorization. Thus because Bnd has unique (€, M)-diagonalizations by assumption,
there is a unique commuting diagonal 6 : I" — I1,. By our earlier theorem, 75 [r] <p, 7[0] holds because r equals
rep.u and the appropriate diagram commutes since 6 is a commuting diagonal for the above diagram. Therefore, as

this holds for any such 3I".7, 311 ,.75[r] is the £-tight existential join of 317 7tand 3T,.72.

At last, we can use the construction in this theorem to define our abstract algorithm for joining tight existential
types:

TIGHTJOINEXISTENTIALTYPES (3T .71, 31%.72):
construct the skeletal join 7" of 7! and 72;
construct the general context [;u and general body Tg of 7Y;
construct gen ,_ . and gen oc cu3
construct repT: an:i rep s ;
construct the maximally-constrained bound I}, and £-morphism r
from the (£, M)-factorization of (gen . _.;rep i)ie{o,1};
(the M-source is not necessary) T
uuby applying substitution [r] to 75;
5

construct 7
return 3I1,.7

Note that this abstract algorithm reduces the problem of joining tight existential types to skeletal joins and (£, M)-
factorization. Skeletal joins tend to be easy to construct because all variables and constants have been removed from
the problem. (£, M)-factorization relies on domain-specific knowledge of the bounds being used. Hence, just like
our abstract algorithm for existential subtyping, we have reduced the problem to skeletal types and domain-specific
knowledge of bounds.
To understand the algorithm, consider the following two existentially quantified records (we use distinct bounds

for clarity):

Ry =3a,8:a < B{a,a,a, f)

Ry =3d,e: 6 < e.d,6,¢,¢,¢€)

Their skeletal join and its general bound and body are as follows:

T = (%, %, %)

I'u =a,b,c,d
76 = {a,b,c,d)

The compositions of their general subtyping morphisms and their representers are as follows:
’\La b cd

Jeoic o TP | 15}

Jem 2 ou TP 0 6 ¢ ¢

Now we need to factor these two mappings using the (Surjection, Initial Mono-Source) factorization structure we
defined earlier for our example Bnd. We defined this factorization structure using the (Surjection, Mono-Source)
factorization structure of Set, which merges all variables that are mapped to the same value by both maps. In this
case, a and b both map to « via the first map and to § via the second map, so they are merged into a single variable.
Thus r, the merging function, maps a and b to the same fresh variable v, c to fresh variable 7, and d to fresh variable
p. We can define the following mono-source in Set in terms of these fresh variables:

Next we need to turn the above mono-source in Set into an initial mono-source in Bnd, so we need to constrain the
fresh variables as much as possible such that the mappings 6 and 65' are still relation-preserving. Because inheritance
is reflexive, v is always mapped to a class which inherits the class mapped to by 7, likewise for 7 and p. Therefore
we add the constraints v < 7 and ™ < p. The variable v is also always mapped to a class which inherits the class
mapped to by p, but the constraint v < p can be inferred from the other constraints since inheritance is transitive, so
we leave this constraint implicit. Lastly, we simply put the pieces together and apply the substitution [r] to the general
type of the skeletal join in order to construct the tight existential join type:

v, p,miv LT L p v, v, p)

In our experience [16], this abstract algorithm has been easy to implement and extend with more complex subtyping
rules and more complex existential quantification. Now that we have an abstract algorithm for deciding existential
subtyping and joining tight existential types, we have nearly all the pieces required by abstract interpretation. In order
for abstract interpretation to terminate, we need our existentially quantified abstract domain to be co-well-founded and
we need the dataflow function to be monotonic. Next we provide tools for both of these remaining requirements.

5 Abstract Interpretation

Abstract interpretation requires a co-well-founded abstract domain with decidable subtyping, joins, and a monotonic
dataflow function [6]. We have already provided abstract algorithms for subtyping and joins. Here we provide tools
for co-well-foundedness and for monotonicity. As we have seen, existential types can be surprisingly difficult, and we
have used the requirements of our framework in order to reduce these difficulties down to skeletal types and domain-
specific algorithms for bounds. We continue to do so here. We also provide techniques for optimally adding constraints
deducible from branch guards in the language or control flow graph.

5.1 Co-Well-Foundedness

Co-well-foundedness for a preorder is the property that, given any infinite chain of supertypes, at some point that
chain simply repeats the same element (up to isomorphism) forever. This property guarantees that the algorithm pro-
vided by abstract interpretation will always terminate (provided the dataflow function is monotonic, which we address
next). Existential quantification makes the abstract domain much more expressive but also much more complex, so
proving co-well-foundedness may seem daunting. However, by satisfying the requirements of our framework, co-well-
foundedness of tight existential types reduces to co-well-foundedness of skeletal subtyping and a categorical property
of Bnd.

For a class of epimorphisms &, each object 4 of a category has a preorder of £-quotients [1]. An £-quotient of 4 is
amorphism e : 4 — B, in £ with domain 4 (the codomain can be any object). An £-quotient of 4 is essentially 4 with
additional constraints imposed upon it. The preordering of £-quotients is defined by e < ¢’ holds whenever ¢’ factors
through e (this is the opposite of the definition in [1]). Essentially, the ordering ¢ < ¢’ holds whenever ¢ imposes fewer
constraints than ¢’. If this ordering is well-founded it intuitively means that constraints cannot be strictly weakened ad
infinitum. We use this to formalize an ordering of constraints on general bounds in our co-well-foundedness theorem.

Theorem 3. Existential subtyping of E-tight existential types in a system satisfying general subtyping is co-well-
Sfounded if skeletal subtyping is co-well-founded and the E-quotient preorder for each general bound is well-founded.

Proof. For simplicity, we assume skeletal subtyping is anti-symmetric. Suppose we have an infinite increasing se-
quence of E-tight existential types (317.7;);en (With Vi € N.3I.7; € 31541.7;41). By our existential subtyping the-
orem, this implies that the skeletal types also form an infinite increase sequence. Since skeletal subtyping is co-well-
founded, there must be some point n at which the same skeletal type 7, is repeated forever. All existential types at n
and beyond then have the same general context /-, and so each can be classified by its representer rep,. . From unique-
ness of gen morphisms, we can deduce that gen_ <im is the identity morphism. Therefore our existential subtyping
theorem informs us that, for ¢ larger than n, rep,. factors through L By assumption each rep,. belongs to &, so for
7 larger than n we have that L < rep_ holds in the £-quotient preorder for I';, by definition, and hence we have
an infinite descending sequence. I, is a general bound, so by assumption its £-quotient preorder is well-founded.
Thus, after some point n’ the rep, are all isomorphisms. Therefore, after n” all existential types 3I;.7; are isomorphic.
Since this holds for any infinite increasing sequence of existential types, tight existential subtyping is co-well-founded.

5.2 Monotonicity

Abstract interpretation requires all dataflow operations to be monotonic. This is, all dataflow operations must preserve
the ordering on the abstract domain. Once gain, in an existentially quantified abstract domain the ordering can be quite
complex. However, it turns out to be quite simple to extend a monotonic dataflow function over an abstract domain of
simple types to a monotonic dataflow function over an abstract domain of existential types. The reason is that dataflow
functions tend to be natural.

Consider the following Hoare triple [7]:

{EAX — PTR({w))} mov EAX [EAX] {EAX — INS(w)}

If we were apply substitution with any mapping 6 to both the precondition and the postcondition then the resulting
Hoare triple would also hold. This means the dataflow function for the instruction move EAX [EAX] is natural, and
dataflow functions typically fall in this category. In the appendices, we formalize this concept and formally state and
prove the following useful theorem.

Theorem 4. Any monotonic dataflow function over a simple abstract domain which is natural extends to a monotonic
dataflow function over existentially quantified variants of that abstract domain. Furthermore if the original dataflow
function is sound then so is the extension to the existentially quantified variants.

5.3 Adding Constraints

A path-sensitive analysis needs to be able to gain information from branch guards. For example, a branch may check
to see if two vtables are equal, and on the true branch the analysis should be able to use the fact that the corresponding
classes are equal. Indeed, this is how our typed assembly language type checks runtime casts [16].

Existential types provide an excellent setting for adding constraints gained from path sensitivity. However, this
process is not necessarily trivial. For example, suppose we have an existential type system for classes with inheritance
which allows constraints of the form o < /3 but not Oval < . In such a system, suppose we have an existential type
such as Ja, 8 : a < B.{a, B) and we determine, say by comparing vtables, that in the current path o must equal Oval.
Then if we choose to refine the type by replacing o with Oval we would have to discard the inheritance constraint and
forget that the first field inherits the second; however if we choose not to refine the type then we would not be able to
exploit the fact that the first field is actually Oval. We say that such an existential type system is incompatible with
equality inference.

We can formalize equality inference by using the categorical concept of coequalizers [1]. Coequalizers force
specified values to become equal and nothing more; that is they do not add other constraints or make other values
equal unless implied by the new equality. This is import for soundness, since an unsound way to resolve the dilemma
above is by also making [also equal Oval. An existential type system is compatible with equality inference if it
has coequalizers and includes the empty bound, which we formalize next. Recalling our formalism for existentially
quantified abstract domains from Section 2, an existential type abstracts all concrete types which arise from a valid
substitution of its variables to concrete values. The empty bound must have the property that each valid mapping
from a bound I to constants corresponds to a permitted mapping from I” to the empty bound; thus the empty bound
embodies constants. By having such an empty bound we ensure that coequalizers correspond to true equality in the
concrete domain, ensuring soundness.

Coequalizers formalize equality inference, but there are many more constraints to be gained from path-sensitivity.
We can use coinserters [9] to formalize inheritance constraints and integer inequalities. Specialized pushouts [1] can
formalize the above kinds of constraints and more. All of these are known as couniversal properties [1]. By using
couniversal properties to formalize adding constraints we ensure monotonicity, and in the presence of an empty bound
we also ensure soundness.

6 Nested Existential Quantification

We have now specified all the requirements necessary for a complete inference algorithm of tight existential types.
However, we have not addressed a common component of existential type systems: nested existential quantification.
For example, in object-oriented languages fields are rarely exact instances of some statically known class but rather
instances of some subclass of a statically known class. Furthermore, the specific subclass often changes as the program
runs because the field keeps being assigned new instances of different subclasses of the statically known class. To
express this, we might give the field a nested existential type, such as o < Oval.INS(«).

Nested existential quantification is problematic, however, because nested existential subtyping does not fit within
our framework. Consider the following rule for nested existential subtyping:

w < w' holds in the bound I”
Jo < w.INS(a) Tf Fa < w'.INS(a)

The problem is that this rule cannot meet our requirement for general subtyping; it does not satisfy the rule of thumb
for general subtyping that each metavariable in the supertype (in this case w’) should occur in the subtype.

In this section we describe techniques for navigating this problem. In our experience, these techniques have been
able to address all our needs [16]. First, since we are not using full nested existential subtyping, for sake of clarity we
also do not use the syntax for nested existential quantification. Instead we introduce openable types such as SUBINS(w)
to represent the nested existential types which arise in the specific type system at hand. Although they do not use
full nested existential subtyping, they are still permitted some subtyping provided it fits within our framework. For

example, we can use the subtyping rule INS(w) < SUBINS(w). To properly handle these hidden existential quantifiers,
we always open these types whenever possible, as we will describe first. To deal with our restricted subtyping, we use a
special assignability relation when checking requirements such as checking that a value is assignable to a field, which
we will describe second.

6.1 Opening

As mentioned before, traditional type systems with existential quantification use an open or unpack operation to
pull out nested existential quantifiers [4, 5, 8, 11, 14]. We do the same with openable types, except we always do so
implicitly whenever possible so that there is no need for explicit open operations. There is no loss of information in
doing so; in fact it is best to open immediately. However, not every openable type in the body can be opened. For
example, an openable type in a mutable field in memory cannot be opened because other operations may change the
value of this field and consequently the existentially quantified values might change. However, an openable type in
a local register can be opened, so we call this an openable location. Should an openable type occur in an openable
location, we always open it implicitly, adding the quantified variables and constraints to the outer existential bound. The
process of adding quantified variables and constraints can be formalized using pushouts [1], much like we discussed
in the last section. This formalism also guarantees that opening is monotonic, as required by abstract interpretation.

6.2 Assignability

Unfortunately we cannot use nested existential subtyping in the ordering for an existentially quantified abstract domain
for sake of complete analysis or inference. Rather, we must restrict existential subtyping to use restricted subtyping
rules for openable types representing nested existential types. However, our strategy of always implicitly opening
nested existential types as soon as possible seems to overcome this limitation. In our experience [16], we only needed
nested existential subtyping when checking whether an operation was valid. For example, we needed nested existential
subtyping when assigning a value of type INS(«) to a field of type SUBINS(Oval), for which we would simply check
whether « inherits Oval under the current constraints. We also needed nested existential subtyping when checking
whether the arguments to a function call were valid. Because of these usage patterns we defined a separate relation
which we called assignability. Assignability is existential subtyping extended with nested existential quantification.
However, assignability is not incorporated into the ordering on the existentially quantified abstract domain. Instead,
assignability is used only for validity checks; that is assignability could only be used to determine if an operation, such
as assigning a value to memory or calling a function, is valid. Although this need for distinguishing between subtyping
and assignability is unfortunate, it is easy to implement and has been successful in our experience.

7 Conclusion

We have presented a framework for incorporating existential quantification into abstract interpretation. The framework
applies a category-theoretic perspective on existential quantification in order to separate problems with existential
quantification into separate and much simpler problems with skeletal types and a category of bounds and mappings.
Using these techniques, the framework provides simple requirements which serve as useful guidelines while designing
the existentially quantified abstract domain. Provided these requirements are satisfied, the framework provides abstract
algorithms for deciding subtypes and for constructing joins, along with tools for proving co-well-foundedness, proving
monotonicity, proving soundness, adding constraints, and handling nested existential quantifiers. The framework is
described in bits and pieces throughout the paper, so we summarize it below.

We represent an existentially quantified abstract domain as a category Bnd of bounds and permitted variable
mappings along with a functor (Bodies, [—|) : Bnd — Prost specifying the bodies and subtyping for each bound as
well as how to extend variable mappings to subtype-preserving substitutions. We define an existential type for such a
system to have the form 3I".7 where I” is an object of Bnd and 7 is an element of Bodies(I"). We define existential
subtyping with the following rule:

0:I'" - T'inBnd 7 <p 7'[0] (< specified by Bodies(I"))
Arrc3r'.s

We then observe that every body 7 in any bound I" has a skeletal type 7, a general bound I';, a general body 7 for
that bound, and a representer rep_: I’y — I" with 7 = 7g[rep_].

Our framework has some requirements of the existentially quantified abstract domain. There must be a terminal
object I, in Bnd. We call the preordered set Bodies(I,) skeletal types with skeletal subtyping. We require a decision
algorithm for skeletal subtyping and an algorithm for joining skeletal types. For each skeletal type 7, we require a
general type 31, .7¢ with the property that, for any existential type 3I.7 with skeletal type 7, there is a unique
morphism rep_ : I"-, — I" with 7 = 7g[rep_] called a representer. For each skeletal subtype 7, <, 7, we require a
unique morphism gen_ _ _, : Iy — Iy, with 7¢ <p, 75[gen_ _ .]. We additionally require that for any subtype
7 <r 7' inanybound I we have the equality rep_ogen _ _ _, = rep_,. We require that Bnd have some chosen (£, M)
factorization structure. We require a decision procedure for aetermining whether a morphism from any general bound
factors through an £ morphism from that same general bound. Lastly, we require an algorithm for constructing the
intermediate object I, and £ morphism r portions of an (£, M)-factorization of any 2-source.

We define a tight existential type to be an existential type whose representer belongs to £. With the above require-
ments, we provide algorithms for deciding existential subtypes and for joining tight existential types. We also provide
tools for proving tight existential subtyping to be well-founded and for the dataflow algorithm to be monotonic and
sound. Should these hold as well, then using abstract interpretation we provide a complete sound inference algorithm
or analysis for tight existential types.

All together these requirements seem overwhelming. However many of them are technical points formalizing
intuitive type-theoretic concepts in category-theoretic terms, and many of them are extremely common with plenty of
tools for satisfying them as shown in the appendices. In our experience [16], this framework was extremely instructive
while designing an inferable type system with existential quantification, producing existentially quantified abstract
domains which are very expressive, easy to extend, and flexible enough to adapt to new circumstances.

We are not the first to use existential subtyping though. As mentioned, Scala uses existential subtyping and conse-
quently type checking is undecidable [17]. Java uses wildcards, essentially a restricted form of existential quantifica-
tion, and type checking with wildcards is also believed to be undecidable [2, 10, 17]. Unfortunately, the impredicative
nature of these type systems makes our framework unhelpful. In fact, we have tried applying it to Java wildcards and
came across the same indicators of undecidability. However, in these explorations our framework has suggested ways
to fix Java’s types so that not only would it be decidable, but it could even use more expressive existential quantification
that would also be inferable. We leave this investigation to future work however.

There have also been prior attempts at inference with existential quantification. One such attempt was with the
existential types used internally in Pizza [15]; however, using the insight from the framework we actually identified a
flaw in the join algorithm as described in the paper, which we have already discussed in prior work [16]. Coolaid[3]
uses a dependent type system very similar to existential quantification. However, the join algorithm for this type system
is incomplete because of the use of dependent types and integer arithmetic [3], and even its specialized handling of
integer expressions would benefit from the same factorization structure we used in our inferable typed assembly
language [16]. Thus, both prior type systems and prior inference systems with existential quantification could benefit
from the use of our framework.

We have illustrated the potential of this framework by using it to design an inferable typed assembly language for
C# [16] and demonstrated that it could also have contributed to prior systems and might still be able to contribute to
existing systems. In our experience this framework is informative, powerful, flexible, and extensible. In particular, the
abstraction granted by category theory allows our framework to adapt to the needs of the designer, rather than just the
needs we anticipated. In fact, the framework is presented here with severe restriction for sake of brevity. In particular,
one could actually use factorization structures for functors [1] to gain a whole new degree of freedom and ironically
simplicity while designing an existentially quantified abstract domain. Our appendices provide much more thorough
instructions of how to use our framework in practice, particularly in its generalized form.

That being said, there is still opportunity for improvement. The framework requires algorithms for deciding when
one morphism factors through another and for constructing (€, M)-factorizations. With these problems as motiva-
tions, we believe this opens a new line of both theoretical and applied research for constructing categories in which
these problems are guaranteed to be computable. Nonetheless, we currently leave the domain-specific problems to
the designer so that they may still benefit from our general framework for inference and analysis with existential
quantification.

References

—

. J. Addmek, H. Herrlich, and G. Strecker. Abstract and Concrete Categories. Wiley-Interscience, New York, NY, USA, 1990.
2. Nicholas Cameron, Sophia Drossopoulou, and Erik Ernst. A model for Java with wildcards. In ECOOP, 2008.
3. B. E. Chang, A. Chlipala, G. C. Necula, and R. R. Schneck. Type-based verification of assembly language for compiler
debugging. In TLDI, 2005.
4. J. Chen, C. Hawblitzel, F. Perry, M. Emmi, J. Condit, D. Coetzee, and P. Pratikaki. Type-preserving compilation for large-scale
optimizing object-oriented compilers. In PLDI, 2008.
5. J. Chen and D. Tarditi. A simple typed intermediate language for object-oriented languages. In POPL, 2005.
6. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by construction or
approximation of fixpoints. In POPL, 1977.
7. C. A.R. Hoare. An axiomatic basis for computer programming. Communications of the ACM, 12(10):576-580, 1969.
8. B. Jacobs. Categorical Logic and Type Theory. Number 141 in Studies in Logic and the Foundations of Mathematics. North
Holland, Amsterdam, 1999.
9. P. T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium, volume 1. Oxford University Press, USA, October
2002.
10. Andrew Kennedy and Benjamin Pierce. On decidability of nominal subtyping with variance. In FOOL, 2007.
11. C. League, Z. Shao, and V. Trifonov. Type-preserving compilation of Featherweight Java. TOPLAS, 24(2):112-152, 2002.
12. G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith, D. Walker, S. Weirich, and S. Zdancewic. TALx86: A
realistic typed assembly language. In Workshop on Compiler Support for System Software, 1999.
13. G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-based typed assembly language. Journal of Functional Programming,
13(5):957-959, 2003.
14. G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to typed assembly language. TOPLAS, 21(3):527-568, 1999.
15. M. Odersky and P. Wadler. Pizza into Java: Translating theory into practice. In POPL, 1997.
16. Ross Tate, Juan Chen, and Chris Hawblitzel. Inferable object-oriented typed assembly language. In PLDI, 2010.
17. Stefan Wehr and Peter Thiemann. On the decidability of subtyping with bounded existential types. In APLAS, 2009.

A Designing Inferable Bounds for Existential Quantification

In the appendices we demonstrate how to apply techniques from category theory in order to build various forms of
existential quantification. We also show how to relax the requirements of our framework as described in the paper
in order to enable yet more flexibility in the designs of these forms of existential quantification. We will begin in
Section B by adding constants to the existential type system, an important ability required of most any existential
quantification. This addition will demonstrate that the framework as described in the paper is overly restrictive, so
in Section C we show how to relax the requirements of our paper by introducing a distinction between bounds and
contexts. In Section D we will take advantage of this distinction in order to add various forms of algebraic structure,
such as generics or arithmetic, to existential quantification. In Section E we present a technique for encoding axioms
or inference rules in category theory so that we can identify which such rules will preserve the factorization structure
required by the framework, and we summarize how to combine the techniques provided in the appendices in order
to design inferable forms of existential quantification. Lastly in Section F we formalize the semantics of existential
quantification and show how to easily extend sound monotonic natural dataflow functions over simple abstract domains
to sound monotonic dataflow functions over existentially quantified abstract domains. We present these techniques and
theorems so that analysis and type system designers may benefit from our experience with category theory and learn
how to build inferable existentially quantified abstract domains.

B Constants

Constants are an important part of any existential type system because the quantified variables are meant to represent
unknown constants. We will continue using the classes with inheritance example from the paper, but now we will add
constant classes with predesignated inheritance. We will temporarily throw out our finiteness requirement so that we
have an infinite set of constants, but we will regain this ability later. With this temporary relaxation, the category of
classes with inheritance (without constants) is the category Poset of partially ordered sets.

B.1 Categorical Interpretation

Now suppose we have our partially ordered set of constant classes with inheritance ©. @ is itself an object of Poset.
Because of this, we can form what is known as the coslice category of © [8] or the category of objects under © [1],
denoted as Poset\©:

— Objects are pairs (4,1 : © — 4)
— Morphisms from (4, u) to (B, v) are morphisms f : 4 — B such that the following commutes:

C]
/N
A4 — B
— Composition and identity are as in Poset

The intuition is that an object (4, «) under © is a class hierarchy that contains © and u specifies just how it contains
O (i.e. u is the inclusion function). Any element of 4 in the image of « is a constant, and all elements not in the image
of u are variables. A morphism f : (4, u) — (B, v) is a relation-preserving function from A4 to 8 which preserves the
contained O structure, that is f is a function which preserves constants. Another way to think of out is that £ must
map each element in the image of u to the corresponding element in the image of v, but all other elements (i.e. the
variables) can be mapped to either constants or variables in B. Hence this formalism captures our basic intuition for
constants.

Now we should consider full subcategories of this coslice category. A subcategory is a category formed from a
subset of the objects and morphisms of a larger category. A full subcategory is formed from a subset of the objects but
contains all morphisms between those objects. Thus by considering full subcategories of the coslice category we are
simply selecting which objects (4, «) under © we want to consider.

First, often with constants we know that these constants are distinct. The classes Oval and Circle will never
represent the same class. However, so far there is nothing which prevents « in (4,) from mapping two different
constants to the same value in 4. Therefore in a setting with distinct constants we may want to permit only objects
under © such that « is a monomorphism (such as an injection in Set or Rel). This way existential bounds cannot
constrain two different constants to be equal. Similarly we may want to only consider existential bounds which are
satisfiable; that is there should be a valid way to assign bound variables to constants. Formally, this requires that u
have at least one post-inverse: a morphism sat : 4 — © such that «; sat equals id . Morphisms which have a post-
inverse are known as sections [1]. Thus we might consider using the full subcategory of sections under @. However,
satisfiability is a closed world concept; a bound which is not satisfiable now may be satisfiable in a future in which the
programmer adds new modules extending the class hierarchy. Thus, we may want to at least require that an existential
bound does not add new inheritance constraints between constants, such as Square < 0val, which will never be true
without actually changing the definitions of these constants. Interestingly this can be formalized by requiring « to be
an initial (mono)morphism. To summarize we have demonstrated that constants can be formalized with (some class of
morphisms) under ©, where the class of morphisms depends on the specific application.

B.2 Constants in our Framework

Here we consider the requirements of our framework in this setting with constants. For the coslice category, we can
actually inherit the factorization structure of the original category. Suppose we have a source in our coslice category:

N

ﬁl—>Cl
i

Notice that (A4 ER G;)icz forms a source in the original category, and so we can use the (€, M)-factorizations of the
original category to produce the following commutative diagram:

o

u vi
use

A —> B > G

Thus the coslice category essentially inherits the factorizations of the original category. It can easily be shown that
it also inherits the unique diagonalizations of the original category, and so inherits the entire factorization structure.
Now let us reconsider our subcategories of certain morphisms under ©. These subcategories also inherit the entire
factorization structure provided that knowing that u and each v; are permitted then u ; e is also permitted in the above
situation. In fact it can be shown that this holds for monomorphisms, sections, and M from the factorization structure
using properties from [1]. In particular, it holds for initial monomorphisms in Poset because Poset has a (Surjection,
Initial Mono-Source) factorization structure. Thus all the formalizations of constants that we described above inherit
the factorization structure of the original category without constants.

We have just addressed factorization structures for constants, but recall that our framework also requires Bnd to
have general bounds and a terminal object. General bounds can be resolved by using coproducts [1], but this is more
cumbersome than it should be. Regardless, the various subcategories of the coslice category generally do not have a
terminal object. Thus we cannot the formalisms we just described cannot be used by our framework as described in
the paper, but in the next section we will show how to relax the requirements of our framework significantly. Our
formalisms for constants easily satisfy these relaxed requirements and we will also be able to use a simpler formalism
for general bounds.

C Relaxing the Framework

In the paper we bundled two concepts for sake of simplicity: bounds and contexts. A context is used to determine which
bodies are valid and how to do substitution. Each bound defines a context, but also defines more complex information
and substitutions. For example, in many type systems a context simply defines the various class or integer terms which
may be used as the value of a slot for bodies in the context. Contexts, on the other hand, also define inheritance or
inequality constraints and have complex rules for substitution such as distinguishing variables in contexts. Here we
show how to relax our framework by separating these two concepts into two separate categories Cxt and Bnd with a
functor Czt : Bnd — Cxt connecting the two concepts.

C.1 Categorical Reinterpretation

First we reexamine our formalization of type systems and existential quantification. A type system is a category Cxt
of contexts and mappings with a functor { Types, [—]) : Cxt — Prost specifying the types and subtyping for each
context and how to extend mappings of contexts to subtyping-preserving substitutions of types. A typing judgement
I' - 7 is valid when I" is an object of Cxt and 7 is an element of Types(I), and there is analogous formalism for
subtyping judgements. An existential quantification for such a type system is a category Bnd of bounds and mappings
and a functor Czt : Bnd — Cxt specifying the context associated with each bound and how to convert mappings of
bounds into mappings of contexts. The (Bodies, [—]) functor used in the paper is simply the composition of Czt and
(Types, [—]). An existential type JA.7 for such a system is an object A of Bnd and an element 7 of Types(Crt(A))
(i.e. satisfying Czt(A) b 7). Existential subtyping then is defined by the following rule:

0: A — A Cot(A) 1 < 7'[0)
JA.rc3A

Before we proceed with the requirements of our framework, let us examine how our formalism for constants can
be fit within this new perspective. Suppose we already have a type system without constants: { Types, [—]) : Cxt —
Prost. Suppose then that our constants form an object @ of the category Cxt. We can then define Bnd as the coslice
category (or a subcategory thereof) Cxt\©. The functor Cxt : Bnd\© simply maps an object under ©, (4, u), to the

object 4 in Cxt; consequently the operation on morphisms is the obvious one. In our existential types perspective,
this amounts to mapping the bound {«, 5} to the context containing «, 3, and all constants. Because Bnd only has
context-preserving morphisms, any substitution using a mapping of bounds will never replace constants with variables
(although it may replace variables with constants as we would expect). Thus we have used our separation of bounds
and contexts to separate constants and constant-preservation from types and simple substitution.

Now we adjust the requirements of our framework to this new formalism. First, we require Cxt, rather than
Bnd, to have a terminal object I',. Types and subtyping in this context are the skeletal types and skeletal subtyping.
This addresses our earlier problem with constants, since even though the category of monomorphisms under © (in
Prost) representing Bnd typically does not have a terminal object, the category Prost representing Cxt does have
a terminal object as we described in the paper. Second, we require each skeletal type to have a general context in
Cxt with the same unique representer requirement for any type in any context with that skeletal type. Similarly we
require each skeletal type to have a unique gen morphism between general contexts satisfying the same equalities with
representers of subtypes in any context. So far we have simply replaced Bnd with Cxt, but our third requirement
requires a factorization structure on the functor Crt : Bnd — Cxt. This is where the design of Bnd becomes key to
designing expressive and efficient forms of existential quantification.

C.2 Factorization Structures on Functors

Before discussing factorizations structures on functors we have to discuss structured sources, and for that we will first
introduce categories of algebras: Alg({2). (2 is a set of operators and an arity (possibly infinite) for each operator. For
simplicity we will consider the category Alg(2) of sets equipped with a binary operator bop:

— Objects 4 are pairs (A, bopg) : A X A — A
— Morphisms £ : (A, bopa) — (B, bops) are all functions f : A — B making the following diagram commute:

Ax A5 n

bOpﬂll lb()pz;

A—— B

f

— Composition and identity are that of functions

A morphism as defined above is known as an algebra homomorphism. Requiring the diagram to commute means that
the equality f(a bops a’) = f(a) bops f(a’) must hold for all a in A; that is f preserves the algebraic structure or dis-
tributes through the binary operator. For example, multiplication by any constant integer is an algebra homomorphism
from (Z, +) to itself since multiplication distributes through addition. This category has a functor U : Alg(2) — Set
simply mapping each algebra (A, bops) to its underlying set A, with the obvious mapping on morphisms.

Now we move on to structured morphisms, using Alg({2) as our running example. An F-structured morphism is

a morphism of the form 4 i> F(B) [1]. Using U from the above example, a U-structured morphism is a function f
from a set X to the underlying set .4 of an algebra (A, bop4). An F-structured morphism g : 4 — F(B) is said to be
generating [1] if it satisfies the following:

Vm,n:B—C. g;F(m)=4g;F(n) = m=n

This property is essentially the F'-structured analog to epimorphisms (i.e. surjections). For example, in our category
Alg(2), the inclusion function {1} — U({{n € Z | n > 0},+)) is generating because all positive integers can be
formed by expressions using only the constant 1 and the algebraic operator +. However, the inclusion function {1} —
U({Z,+)) is not generating since 0 and negative integers cannot be formed in such a way, but {—1,1} — U((Z, +))
is generating. Also, the inclusion function {1} — U(({n € Z | n > 0}, %)) is not generating because only 1 can be
expressed using only 1 and x; thus the specific binary operator, as well as the underlying set, is important to recognize.

The functor U : Alg(2) — Set has the interesting property that any U-structured morphism can be factored
into a generating function and an algebra monomorphism. Given a U-structured function f : X — U((A, bopa)),
form the subset A of A expressible with just the elements f(z) and the operator bop,. This subset is by construction

closed under bop, so it forms a binary algebra (A, bopy). Let g : X — U({Ay, bopy)) be the U-structured function
mapping each element x to f(z) in Ay. g is generating by construction. Let m : Ay — A be the injective function in-
cluding the subset A into A. By definition of bop s, m always satisfies the equality m(a bops a’) = m(a) bopz m(a’)
and so we have an algebra monomorphism m : (As, bops) — (A, bops). Furthermore, g ; U(m) equals f, so we have
factored f into a generating function and an algebra monomorphism.

The functor U : Alg(2) — Set also has an interesting unique-diagonalization property. Given the following

commutative diagram

X —g>U((A, bopa))

ul lU(v)

U(<Bv bop‘B)) U-(—TIS U(<C’ bopC>)

where g is a generating function and m is an algebra monomorphism, there always exists a unique commuting diagonal,
specifically a unique algebra homomorphism & : (A, bopa) — (B, bops) with g;U(d) = wand 4 ;m = v. d is easy

to define:
d(g(x)) = u(x)
d(a bops a') = d(a) bopg d(a’)

It is simple to prove that this is a well-defined function by our assumptions that ¢g;U(v) equals u;U(m), g is a
generating function, and m is an algebra monomorphism [1]. Furthermore d satisfies the equality d(a bops a') =
d(a) bops d(a’) by construction and so forms an algebra monomorphism & : (A, bops) — (B3, bopsz). The remaining
requirements are easy to prove from the definition of 4.

These two properties can also be shown to hold for their more general source counterparts, and so U is said to
have a (Generating, Mono-Source) factorization structure. It should be easy to see how this generalizes to (G, M)
factorization structures for F' : C — D where G is some class of F-structured morphisms (typically generating) and
M is some class of sources in C (typically some kind of mono-source). In fact, a (£, M) factorization structure of a
category C can be seen as actually a factorization structure for the identify functor Idc : C — C, so factorization
structures for functors generalize factorization structures for categories.

C.3 Joining Existential Types

Now we can state our last requirement: Czt : Bnd — Cxt must have some chosen (G, M) factorization structure.
We say an existential type 3A.7 is G-tight if the Ct-structured morphism rep_: I’y — Caxt(A) belongs to G.

Theorem 5. If Cxt : Bnd — Cxt has a (G, M) factorization structure, then given two existential types 3A; .71 and
JA,.72, suppose T is the join of the skeletal types T} and T2 with respect to skeletal subtyping, and the Cxt-structured

en__q .
i<,y rep i

2-source (I'yu I Cxt(A;))icq1,2y has the (G, M)-factorization I';u L Cxt(AL 9—i> Ai)icf,2)
then A,.75(r] is a G-tight existential supertype of both IA;. 7' and 3A.72, and any other G-tight existential super-
type of both 3A.7' and 3As.72 is also an existential supertype of 3A,.78r].

The proof and abstract algorithm are essentially the same as in the paper.

C.4 Restricting Constraints

Here we give an interesting application of this new degree of flexibility which we found useful for making our handling
of integer inequality constraints efficient. Unfortunately we will not describe our techniques formally because doing
so would require a digression into concrete-category theory [1]. However, we believe the reader should still be able to
adapt the informal strategy we describe to their own domain.

In one of our earlier versions of our inferable typed assembly language [16], we used the optimally precise fac-
torization structure of our category Bnd for our integer inequality constraints. This has the effect of preserving all
constraints possible when joining existential types. The problem was, although this usually worked well, occasionally
some fluke of coincidence would cause a quadratic blow-up of our integer inequality constraints. Because integer
arithmetic is complex, simply propagating these constraints through substitutions was rather difficult. These problems
added up, and we found inference time was being prolonged due to these constraints. Upon examining the constraints,

we identified that most of them were useless. The constraints that were useful were always the constraints on just
the simple integer expressions present in the body, so we decided to try changing our factorization structure on the
category Bnd of integer inequality constraints to a factorization structure on the functor Czt mapping a bound to the
set of simple integer expressions valid in that bound.

The observation we made was that each morphism rep_ would simply specify the simple integer expression as-
signed to each slot in 7. Thus, by requiring that all (explicit) constraints be restricted to just the image of the repre-
senter, we effectively restrict all explicit constraints to be just on the simple integer expressions assigned to slots in
the body. This also has the benefit that the number of constraints in a G-tight existential type is limited by the number
of slots in the body, which in our typed assembly language only gets smaller so we do not have to worry about any
massive increases of the number of constraints in a bound. We can define the class of Czt-structured morphisms G to
be all generating functions g : X — Czt(.2) with the property that all explicit constraints in 4 are on only elements in
the image of g. The problem is there is no class M of sources in Bnd which forms a factorization structure with G.
Rather, we have to generalize our framework just a bit to make M dependent.

A Cxt-dependent source class M specifies, for each Czt-structured morphism f : X — Cxt(A), a class of sources
M(f) in Bnd with domain 4. M must also satisfy the property that M(f) is always a subset of M(g; f) for any

g 9 — X. For such a dependent M, a (G, M) factorization of a Cxt-structured source (X ER Cat(4;))iez is

a factorization X % Crt(4 5 ;);ez such that g is in G and (4 5 2,);e7 is in M(g). The unique (G, M)-
diagonalization property is that for any set of commutative diagram such as the following, where g belongs to G and
the source (B —= ¢;) belongs to M (), there is a unique commuting diagonal 4 : 4 — B:

x -2 Cxt(A)

ul let(w)

Cxt(fB& ng’xt (G)

Note that, even with these relaxations, the proof for joining existential types still works, and so our framework can use
these relaxed requirements instead.

In our example, M f) is all mono-sources (4 = B;);cz such that the constraints are as strong as possible on the
image of f for each m; to be relation-preserving (i.e. initial on the image of f). It is easy to show that M(f) is a subset
of M(g; f) for any g since the image of ¢ ; f is always smaller than the image of f. For (G, M)-factorizations, we use
the standard techniques for building functions g and each m;; then, for each pair of values a and a’ in the image of g, we
check whether the constraint m;(a) < m;(a’) holds in each target context, and if so we add the constraint @ < a’. This
makes implementing (G, M) factorizations much easier especially should we use complex integer constraint solvers.
For unique diagonalizations, we use the standard techniques for showing a well-defined diagonal d, and this function
is relation-preserving because G requires all constraints to be confined to the image and M requires all constraints to
be as strong as possible on the image. Thus, although Czt has a more precise factorization structure, this (G, M) is
much more efficient and easier to implement, and the framework grants us the flexibility to decide which system we
prefer.

D Injective Algebras

In the last section we presented categories of algebras Alg/((2). Algebraic structure in existential quantification takes
the form of terms. For example, when using a generic class such as List<T> we can form terms for classes in a
context with class variable o: «, List<a>, List<List<a>>, Thus, the set of classes forms an algebra with a
unary operator List. Simple integer expressions form an algebra too: the terms c; + ¢ * ¢y form a set with operators
(c+) and (xc). However, we have to recognize an additional special property of these algebras in order to use them
properly.

Consider the existential type Ja.{List<a>). Using the (Generating, Mono-Source) factorization structure for U,
this existential type is not tight. The general type is « F {x) and the representer is {z — List<a>}. Notice that «
itself cannot be expressed using only the value List<a> and the operator List; thus the representer for this type is
not generating. However, we need to be able to use the above type in order to type check polymorphic uses of generic

classes. Thankfully we can because generics actually form an injective algebra or mono-algebra, so we can use the
subcategory MonoAlg({2), in which all algebraic operators are injective, instead of Alg((2).

Let U’ : MonoAlg(f2) — Set be the functor mapping each mono-algebra to its underlying set. Suppose we
have a mono-algebra 4, which can be seen as either an object of Alg(f2) or an object of MonoAlg((2). In par-
ticular, any function f : X — U(A4) = U’(A) is both a U-structured morphism and a U’-structured morphism. If
f is U-generating, then f is also U’-generating. However, the opposite is not true. For example, {x — List<a>}
is U’-generating but not U-generating. The reason is that a U’-generating function is only generating for morphisms
to mono-algebras, and may not be generating for morphisms to all algebras. Suppose there were two algebra ho-
momorphisms f and g from terms generated by « and List to some other mono-algebra A4 with the property that
{z + List<a>}; f equals {x — List<a>};g. In particular, this means that f(List<a>) equals g(List<a>). Be-
cause both are algebra homomorphisms, this implies that List<f(«)> equals List<g(«)> (where List is also used
to represent the unary operator in 2). Because 4 is a mono-algebra List is injective, so this implies that f(«) equals
g(a). Because the algebra of terms generated by « and List is generated by «, this implies that f equals g. Since this
holds for any such f and g to mono-algebras, {x — List<a>} is U’-generating. Note that the proof relied on the fact
that 4 is a mono-algebra, and it would not work for algebras in general.

Now that we have established this distinction, U’ also has a (Generating, Mono-Source) factorization structure,
where generating means U’-generating. Since U’-generating includes U-generating, this factorization structure pro-
duces a more precise tight existential type system. For example, Ja.{List<a>) is a tight existential type with respect
to this new factorization structure. When joining two types, if a slot « is mapped to List<w> in one body and List<w’>
in the other body, then 2 will be mapped to a List of something in the join body, and if w and w’ are themselves both a
List of something then the process repeats recursively. Thus the join of existential types Ja.{List<List<List<a>>>)
and 36.(List<List</3>>) using this factorization structure is 3y.{List<List<y>>), as we would expect when using
generics.

Note that these same techniques work for simple integer expressions. (c-+) is injective for any constant ¢. (*c) is
injective for any non-zero constant ¢ (using non-modular arithmetic). The fact that (x0) is not injective means that
3i.{EAX — INT(i % 0)} is not a tight existential type, which makes sense since it is equivalent to 3;.{EAX — INT(0)}
in which ¢ does not occur in the body. The fact that (*c) is not injective for modular arithmetic is why we do not
consider 3@.{EAX + INT(0)} and 3@.{EAX ~ INT(23?)} to be equivalent types in our inferable typed assembly
language [16]. Also, even though (c+) is injective for any constant ¢, + is not itself injective, likewise for %, which
is why we restrict ourselves to simple integer expressions and do not allow expressions such as ¢ + j. Having these
guidelines from our framework to help us identify all these subtleties is one reason why the framework was so useful
to have available while designing our inferable typed assembly language.

E Axioms and Inference Rules

We have shown how to encode constraints in bounds by using a category of relations, and how to encode terms and
expressions by using a category of algebras; here we show how to categorically encode axioms and inference rules
such as reflexivity, transitivity, anti-symmetry, 0 x z = 0, 1 x z = z, multiplication distributes through addition, every
class inherits Object, covariance of arrays, and even that any class which extends an array must itself by an array.
Before we do this we will present a general-purpose category that combines algebras and relations and which will
serve as a basis for these axioms and inference rules.

E.1 Mono(U)PAlg(f2)Rel(P)

Mono(U)PAlg(2)Rel(P) is the category of partial algebras, with some injective operators, and relations. {2 is a
set of operators and an arity (possibly infinite) for each operator. U specifies a subset of operators in {2 which must be
injective. @ is a set of relations and an arity (possibly infinite) for each relation. An object 4 of this category is a set A
with

— a partial function op% : A%%(@) — A for each operator w in {2
— such that op is injective if w is in U,
— and a subset ¢4 of A%*(®) for each relation ¢ in &.

A morphism £ : 4 — B in this category is a function f : A — B satisfying

— for each operator w in {2, if op4 is defined on a then op4 is defined on f(a) and furthermore f(op%(a)) equals

op(f(a))

— and for each relation ¢ in &, if a is in ¢4 then f(a) is in ¢g.

Thus morphisms are simply functions which preserve both the algebraic and relational structure of the objects.

We can make a sorted version of this category; that is one where each object has many underlying sets and the
operators map elements from one underlying set to another and so on. However, a sorting defines an object = of
Mono(U)PAlg(2)Rel(®). The category of objects over = [1] is actually equivalent (essentially isomorphic) to the
sorted version of Mono(U)PAlg(f2)Rel(P) using =. Recall that the category of objects under © inherits factoriza-
tion structures from the original category, and likewise the category of objects over =" inherits factorization structures
from Mono(U)PAlg(2)Rel(®). So we will focus on Mono(U)PAlg((2)Rel($) and rely on this inheritance
mechanism to transfer the results we find to the sorted version as well.

Mono(U)PAlg(f2)Rel(®P) has many useful factorization structures but we will focus on the most precise one:

the (Epimorphism, Initial Mono-Source) factorization structure. A morphism 4 i> B is an epimorphism if all elements
of I3 belong to the smallest set

— containing the image of f,
— closed under each operator w in {2 when defined in B,
- and containing op% (b) for any w in {2 only if it also contains every b in b.

fi . .
A source (4 = B;)ie7 is an initial mono-source whenever

- (A ELN B;)icz is a mono-source in Set,
— for each operator w in {2, op4 is defined on a whenever opj, is defined on f;(a) for all i in Z,
— and for each relation ¢ in Phi, a is in ¢; whenever f;(a) is in ¢, for all ¢ in Z.

Thus an (Epimorphism, Initial Mono-Source)-factorization produces the largest partial algebra generated by the source
which is as constrained as possible. The proof that there are always unique (Epimorphism, Initial Mono-Source)-
factorizations essentially combines the analogous proofs for Rel and Alg((2). Thus we have a category which com-
bines algebras and relations and has the most precise factorization structure possible.

E.2 Categorical Implications

Many axioms can be encoded using categorical implications [1]. For example, we can encode symmetry as the fol-
lowing morphism in Rel(=: 2):

{z—z,y—y}
— 2

sym = ({z,y}, {z ~ y}) Hzyp{z =y, y = x})

In the domain we have the variables x and y with the constraint z ~ y, and on the right we have added the constraint
y =~ x. Essentially this corresponds to the implication Va,y. © = y = y &~ z. An object R of Rel(=x: 2) is said
to satisfy the categorical implication sym if every morphism f : ({z,y}, {x ~ y}) — R factors through sym; that is,
there is a morphism #': ({z,y}, {z = y,y =~ x}) — R such that sym ; £’ equals f. Such a morphism f picks out two
elements f(x) and f(y) in R such that f(x) = f(y) holds. Since sym essentially just adds the constraint y ~ z, f
factors through sym precisely when f(y) =« f(z) also holds. Thus, since R satisfies sym means this must be true for
every f (i.e. every two elements r and r’ of ®_satisfying r a4 1), R satisfies sym precisely when =24 is symmetric.
Thus we have successfully encoded the concept of symmetry categorically as a morphism.

In general, an object R is said to satisfy a categorical implication ? < ¢ if all morphisms from 2 to ® factor
through axiom. Informally, 2 is the premise of the axiom and C is the conclusion of the axiom, so an object R satisfies
axiom if the conclusion holds whenever the premise holds. Given a set .4 of axioms, we can form the full subcategory
containing precisely the objects which satisfy every categorical implication axiom in A. Figure 4 presents a large
variety of common axioms encoded as categorical implications in various Mono(U)PAlg({2)Rel(®) categories.
The advantage of using these categorical implications is that we can use properties of the morphisms in A to show that
the subcategory formed by A inherits the factorization structure of the original category. In this way we can guarantee
joins of existential types still exists even when we allow existential subtyping to make use of these axioms.

In Rel(<: 2)

Reflexivity: Vau. g=a<ka ({a},0) LN {ao}, {a <k a})
Transitivity: Vo, 3,7. AL PABL Y=Ly {a. B} {a<B,8<7)) =5 ({87} {a<B, <, <))
Anti-Symmetry: Ve, 3. aLPAKLazsa=0 ({a, 8}, {a < 8,8 <K a}) ; Ma ? ({vhL{r<})
a, By
In PAlg(+ : 2) (ferm means term is defined)
Totality: Vz,y. g=r+y {z,y}, @) LN ﬁ vy, sh{z +yw— s})
o B {2,951, 52}, {295},
Commutativity: Vz,y. r+yANy+er=c+y=y+x Aﬁa+@lmﬂw+&lmw E&lu ﬁa+@u@+&_ly&,
{2y, 2, 82y, Sy,2, 51, 52}, {2y, 2, 82,, 8y,2, 8},
T+ Y+ Sy, T+ Y+ Say,
Associativity: Vz,y,z. (z+y)+zAz+@y+2)=>(r+y)+z=2+ (y+2) Y+ 2 Sy, — Y+ 2 Sy,
Sa,y + 2+ 81, o1, Sli Szy + 2+ 8,
T+ Sy,z > S2 T+ Sy.r>S
Right Injectivity: Vx,y1, y2. ct+yi=xc+Y2=>Y1 = Y2 AH Y1, Y2, .ww _.é ﬁ.&_g Y, .m“J
u AH:T@T&:T@ml&v HS.IZ AR:T@IMW
In PAlg(0:0,1:0,* :2) (fterm means term is defined)
Right Zero: Vz. zx0=>z%x0=0 Hz,z,p},0=z,z%2=p) —— {z,2},{0 = z,z %z — z})
{p—=}
Right Identity: Vz. zxl=zrxl==x {z,0,p},1 =0,2%x0=p) LN {z,0},{1— 0,z %0+ z})
{p—=}
In PAlg(Object : 0)Rel(K: 2) (term means term is defined)
{0, a}, {0, a},
Bottom: Vo Object = a <« Object {Object — O}, Loty {Object — O},
%) {a < O}
In Mono([1)PAlg([] : 1)Rel(<: 2)
- AQ,QQQOSQET o ﬁQvKQﬁu@mT
Array Covariance: Vo, 8. a< pfAall Al =all <80 {all = aa, B1] — ag}, — {all = aa, B1] — ag},
{a < B} {a < B,aa < ag}
{a, B, aa,as}, , {a, B, aa, a5},
Array Covariance’: Vo, S. allpfld=axp {all = aa, B1] — ag}, RN {all = aa, BI] — ag},
{aa < ag} {a < B,aa < ag}
ﬁQfqu\mT > ﬁQquQ\muQ@J
Array Inheritance: Ve, 3. aK fl=3Fy.a=~I[] {60 — as}, Rl {B] — apg,v[1 — a},
{a < as} {o<ag}

Fig. 4. Encodings of common axioms as categorical implications

A full subcategory S of C is said to be £-implicational if there is a set of morphisms A contained within £ such
that S is precisely the full subcategory of objects satisfying all categorical implications in A [1]. If C has an (£, M)
factorization structure, then S is closed under the formation of M sources [1]: for any M-source (R. R Ri)ieT, if
each ®; is in S then so is R (and consequently each m; since S is a full subcategory). In particular, for any (£, M)-
factorization ®. (s R T;)iez of a source in S, the new intermediate object § (and all intermediate morphisms)
is also in S. Similarly, the unique (£, M)-diagonalization morphisms 4 for appropriate squares in S will also be in
S since S is full. Therefore S inherits the (£, M) factorization structure of C whenever it is formed by categorical
implications in €. Also, in this situation if U : C — D has a (G, M) factorization structure then Ulg : S — D (U
restricted to the subcategory S) also has a (G, M) factorization structure.

E.3 Designing Existential Bounds

All the categorical implications in Figure 4 are epimorphisms in the relevant Mono(U)PAlg({2)Rel(P) category
(note that the array inheritance categorical implication arrinfi is epimorphic because [] is required to be injective). We
showed earlier that Mono(U)PAlg(2)Rel(®) has an (Epimorphism, Initial Mono-Source) factorization structure.
Therefore all implicational subcategories using any combination of the categorical implications in Figure 4 inherit this
factorization structure.

In our experience, we have been able build our category of bounds for our existential type system by inheriting the
(Epimorphism, Initial Mono-Source) factorization structure of some Mono(U)PAlg(f2)Rel(®). First we construct
the objects over some sorting =. Then we select some set of categorical implications representing the axioms and
inference rules we want to permit existential subtyping to take advantage of. Next we identify the object of constants
© and build the category of some class of morphisms under @. Lastly, we may specialize the factorization structure
on Cxt to restrict constraints of some relations in @ to be only on the values of slots in the body of the existential type.
Thus we feel the tools we provide are form a flexible and expressive system for designing the bounds of existential
types.

At this point we should clarify two possible misconceptions the reader may have. First, the techniques we just
provided only construct a category/functor with a useful factorization structure. We do not, however, show that there
is an algorithm for actually implementing factorizations in this factorization structure. These tools identify exactly
what the mathematical function is, but we are forced to leave the implementation to domain-specific methodologies.
The other misconception the reader may have is that the factorization structure provided for the final category of
bounds Bnd formed using the above techniques is not necessarily an (Epimorphism, Initial Mono-Source) factor-
ization structure on Bnd; rather it is the (Epimorphism, Initial Mono-Source) factorization structure inherited from
Mono(U)PAlg(2)Rel(P). The reason these two factorization structures are distinct is that an epimorphism in
Bnd does not necessarily correspond to an epimorphism in Mono(U)PAlg(f2)Rel(®). For example, an epimor-
phism in MonoAlg({?) is not necessarily an epimorphism in Alg((?2), even though MonoAlg((?) is an Alg(2)-
epimorphism-implicational subcategory of Alg(2). The point is subtle, but important to understand should the reader
attempt to make their own advances beyond the techniques we have provided here.

F Semantics

Here we reexamine the semantics of existential quantification so that we may prove soundness and monotonicity. First
we require some category which we call Sem for lack of a better name. There must be functors Sem : Bnd — Sem
mapping a bound to an the object representing its semantics, and Abs : Sem — Cxt specifying the context for
each semantic object, such that Sem ; Abs equals Czt. Because of this equality, we will continue to unambiguously
overload [—] for substitution applied to morphisms in Sem. Often Sem will be some Mono(U)PAlg(2)Rel(I)
category, Bnd will be some category based on that category, and Cxt will be Set or Rel(I"). Lastly we require an
object of constants © in Sem such that the preordered set Types(Abs(©)) forms an abstract domain of simple types
over the concrete domain.

We define the abstract domain of existential types with existential subtyping over the abstract domain of simple
types as the following:

asgn : Sem(A) — O Abs(O) = 1 < 7'[asgn]

T 3AF

This forms a valid abstract domain: 7 < 7/, JA.7"” C 3A' .7, and 7/ :: JA.7" together imply 7 :: A" 7.

Proof. 3A.7" € JA’ 7" holds only if there exists a morphism 6 : A" — A such that Cat(A) F 77 < 7" [Cat(6)]
holds. 7/ :: 3A.7" holds only if there exists a morphism asgn : Sem(A) — O suchthat Abs(O) - 7" < 7"'[asgn] holds.
Lastly, 7 < 7/ < 7"[asgn] < 7""[0][asgn] = 7""'[Sem(0) ; asgn] because [asgn] preserves subtypes, [—] is functorial,
and Sem ; Abs equals Cxt (which we have used implicitly). Thus 7 :: 3A’.7"" holds.

We can compose the two layers of abstraction so that existential types form a valid abstract domain over the concrete

domain:
asgn : Sem(A) — O o T[0)]

o dAT

Now suppose we have a monotonic dataflow function (for some specific concrete instruction) flow : Types(Abs(©)) —
Types(Abs(©)) on the abstract domain of simple types. Monotonicity simply means that this function is actually a
morphism flow : Types(Abs(O)) — Types(Abs(©)) in Prost. This dataflow function is natural as described infor-
mally in the paper if it extends to a natural transformation [1] flow : Types o Abs = Types o Abs. This means there
must be a dataflow function flow , : Types(Abs(X)) — Types(Abs(X)) for each context Abs(X) resulting from a
semantic object 2’ in Sem; in other words the flow function is defined independently of the context. Furthermore, the
result of the dataflow function should be the same before or after any substitution of semantic objects; that is, for every
0 : X — X" in Sem, flow , ;[0] must equal [0] ; flow ;,. These requirements simply formalize the informal definition
of a natural dataflow function provided in the paper and can typically be shown to hold almost trivially.

If a monotonic dataflow function on simple types is natural then we can extend it to the abstract domain of exis-
tential types. We define the dataflow function flow on existential types as:

ﬂowa(ElA.T) = HA.ﬁowsem(A)(T)

Due to monotonicity and naturality of the original flow function flow, this flow function on existential types is also
monotonic.

Proof. Assume JA.7 T FA’.7’ holds. Then there exists a morphism 6 : A’ — A such that Cxt(A) F 7 < 7/[6] holds.
Because flow is monotonic, the above subtyping implies that the subtyping Czt(A) - flow Sem(A) (1) < flow,,) (7'19))
holds. Because flow is natural it commutes with substitution, so we know that flow g, . 1 (7'[0]) equals flow Sem(AN) (")1[0].
By applying this equality to the above subtyping we see that ¢ serves as evidence that 3A.flow,, - () (1) is an exis-
tential subtype of IA’ flow Sem(A (7'), which are the definitions of flow_(3A.7) and flow,(IA’.7"). Therefore flow

is monotonic.

If we additionally know that the monotonic natural dataflow function flow is a sound abstraction of the concrete
function op, then we are also guaranteed that flow3 is also a sound monotonic dataflow function.

Proof. Assume we have a concrete state such that o :: 3A.7 holds. We need to show that op(c) :: flow (3A.7) also
holds. For o :: JA.7 to hold, there must be an assignment morphism asgn : Sem(A) — A such that o :: 7[asgn]
holds. Because flow is a sound abstraction of op, this abstraction informs us that op(c) :: flow(7[asgn]) holds.
Naturality of flow tells us that flow,(7[asgn]) equals flow Sem(A)(T)[asgn}. Therefore asgn serves as evidence that
op(o) A flows,,, y(7) holds, but this is the definition of flow;(3A.7). Thus, op(o) == flow(3A.7) holds, so
flow is a sound abstraction of op.

Therefore sound monotonic natural dataflow functions over a simple abstract domain easily extend to sound mono-
tonic dataflow functions over an existentially quantified variant of that simple abstract domain, provided permitted
mappings between bounds correspond to valid mappings between semantic objects (i.e. the Sem functor must exists).
Note that in the above proofs we only used the categorical interpretation of existential types; we did not need the re-
quirements of our framework such as general subtyping or factorization structures. These requirements are only used
for inference, not for semantics.

