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Abstract

A certifying compiler preserves type information through compi-
lation to assembly language programs, producing typed assembly
language (TAL) programs that can be verified for safety indepen-
dently so that the compiler does not need to be trusted. There
are two challenges for adopting certifying compilation in prac-
tice. First, requiring every compiler transformation and optimiza-
tion to preserve types is a large burden on compilers, especially
when adopting certifying compilation into existing optimizing
non-certifying compilers. Second, type annotations significantly
increase the size of assembly language programs.

This paper proposes an alternative to traditional certifying com-
pilers. It presents iTalX, the first inferable TAL type system that
supports existential types, arrays, interfaces, and stacks. We have
proved our inference algorithm is complete, meaning if an assem-
bly language program is typeable with iTalX then our algorithm
will infer an iTalX typing for that program. Furthermore, our algo-
rithm is guaranteed to terminate even if the assembly language pro-
gram is untypeable. We demonstrate that it is practical to infer such
an expressive TAL by showing a prototype implementation of type
inference for code compiled by Bartok, an optimizing C# compiler.
Our prototype implementation infers complete type annotations for
98% of functions in a suite of realistic C# benchmarks. The type-
inference time is about 8% of the compilation time. We needed to
change only 2.5% of the compiler code, mostly adding new code
for defining types and for writing types to object files. Most trans-
formations are untouched. Type-annotation size is only 17% of the
size of pure code and data, reducing type annotations in our pre-
vious certifying compiler [4] by 60%. The compiler needs to pre-
serve only essential type information such as method signatures,
object-layout information, and types for static data and external la-
bels. Even non-certifying compilers have most of this information
available.

Categories and Subject Descriptors D.3.1 [Programming Lan-
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1. Introduction

Internet users regularly download and execute safe, untrusted code,
in the form of Java applets, JavaScript code, Flash scripts, and
Silverlight programs. In the past, browsers have interpreted much
of this code, but the desire for better performance has recently
made just-in-time compilation more common, even for scripting
languages. However, compilation poses a security risk: users must
trust the compiler, since a buggy compiler could translate safe
source code into unsafe assembly language code. Therefore, Nec-
ula and Lee [17] and Morrisett et al. [15] introduced proof-carrying
code and typed assembly language (TAL). These technologies an-
notate assembly language with proofs or types that demonstrate the
safety of the assembly language, so that the user trusts a small proof
verifier or type checker, rather than trusting an entire compiler.

Before a verifier can check the annotated assembly code, some-
one must produce the annotations. Morrisett et al. [15] proposed
that a compiler generate these annotations: the compiler preserves
enough typing information at each stage of the compilation to gen-
erate types or proofs in the final compiler output. The types may
evolve from stage to stage; for example, local variable types may
change to virtual register types, and then to physical register types
and activation record types [15] or stack types [16]. Nevertheless,
each stage derives its types from the previous stage’s types, and all
compiler stages must participate in producing types. Furthermore,
typical typed intermediate languages include pseudo-instructions,
such as pack and unpack, that coerce one type to another. The com-
piler stages must also preserve these pseudo-instructions.

Implementing type preservation in a compiler may require sub-
stantial effort. In our previous work, we modified about 19,000
lines of a 200,000-line compiler to implement type preservation [4].
Even a 10% modification may pose an obstacle to developers trying
to retrofit large legacy compilers with type preservation, especially
when these modifications require developers to interact with the
complex type systems that are typical in typed compiler interme-
diate languages [4, 10, 14–16]. As a result, programmers currently
face a trade-off: use a popular existing compiler that does not cer-
tify the safety of its output, or use one of the few available exper-
imental type-preserving compilers, which are less optimizing, less
documented, and less supported.

This paper proposes another approach to building certifying
compilers—a type inference system called iTalX. Instead of hav-
ing each stage explicitly track the type of each variable/register, our
type inference algorithm will infer the types of the assembly lan-
guage after all stages finish. This eases the implementation of both
new certifying compilers and those retrofitted from legacy compil-
ers, and vastly reduces the number of type annotations that com-
pilers pass from stage to stage. iTalX requires only two kinds of
annotation for instructions: the types of null-pointer literals and the
length of jump tables. Null literals and jump tables appear only oc-
casionally in code anyway. All other required type annotations are
coarser-grained metadata: function signatures, object-layout infor-



mation, and types of static data and external labels. Furthermore,
there are no special pseudo-instructions, such as pack and unpack.

This paper makes the following contributions. First, we define
a practical type system, iTalX, for assembly language, supporting
classes, arrays, interfaces, casts, stacks, structs, by-reference argu-
ments, and function pointers. We believe this to be the most ex-
tensive type system for object-oriented assembly language code at
present.

Second, we prove that inference for iTalX is decidable and
complete: if a fully annotated program is well-typed, we can erase
the type annotations on basic blocks, and the inference algorithm
can still infer valid types for the basic blocks.

It is very difficult to infer a type system with general existential
quantification. First-class quantification easily leads to undecidable
type inference [22, 23]. To make type inference decidable, we re-
strict quantification to class variables and integer variables. Never-
theless, our type system still supports expressive subclassing and
integer constraints, making it suitable for typing realistic compiled
object-oriented code.

Third, we implement type inference for the x86 assembly lan-
guage, and show that our implementation can completely infer
types for 98% of functions compiled from real, large C# bench-
marks by the Bartok optimizing compiler. As far as we know, no
other systems are able to infer types for real-world x86 benchmarks
at a similar scale. Furthermore, omitting basic-block types reduces
the size of type annotations in the generated TAL files by 60%.
Type inference takes about 8% of the compilation time.

2. Language iTal

We first present iTal, a small inferable typed assembly language
which is a stripped down version of iTalX. Although iTal is too
small to be directly usable on real-world code, it illustrates the
main features of our inference system, such as the treatment of
type variables, subtyping, and joins. Section 3 shows how the full-
fledged type system iTalX supports real-world features.

For many class-based, object-oriented languages without quan-
tified types, type inference is straightforward. For example, Java
bytecode omits type annotations from local variables, and uses a
forward dataflow analysis to infer these types [12]. The analysis
must be able to join types that flow into merge points in the byte-
code: if one branch assigns a value of type τ1 to variable x, and
another branch assigns a value of type τ2 to variable x, then where
the two paths merge, x will have type τ1 ⊔ τ2, where τ1 ⊔ τ2 is the
least common supertype of τ1 and τ2, known as the join (which,
even in Java’s simple type system, is subtle to define properly [6]).

Like Java bytecode, our inference algorithm uses a forward
dataflow analysis, but unlike Java bytecode, it supports quantifica-
tion over type variables. Such type variables allow us to check indi-
vidual assembly language instructions for method invocation, array
accesses, casts, and other operations (in contrast to Java bytecode,
which treats each of these operations as single, high-level bytecode
instructions). Consider a class Point with three fields and a virtual
method Color that takes an instance of class RGB and returns void.
The following code invokes incorrectly the Color method on p1:

class Point { int x; int y; RGB c;
virtual void Color(RGB c); }

void Unsafe(Point p1, Point p2) {
vt = p1.vtable; // fetch p1’s vtable
m = vt.Color; // fetch p1’s Color method
m(p2, p1.c); // call with p2 as "this"

}

class Point3D : Point { int z; }

This code above unsafely passes the wrong “this” pointer to p1’s
Color method: if p1 is an instance of the subclass Point3D, Color
may refer to fields defined in Point3D, which p2 does not neces-
sarily contain, since p2 may not be an instance of Point3D. Most
type systems for object-oriented typed assembly languages use type
variables to distinguish between safe method invocations and un-
safe code [3, 4, 10]. LILC [3], for example, describes p1’s type and
p2’s type by existentially quantifying over a class variable α: both
p1 and p2 have type ∃α≪Point. α, which says that p1 and p2 are
each instances of some class that is a subclass of Point. The vir-
tual methods of the existentially quantified dynamic class α of p1
require the “this” pointer to be an instance of α. The type system
conservatively assumes that the α for p1 may differ from the α for
p2, ensuring that only p1 can be passed to p1’s methods, and only
p2 can be passed to p2’s methods.

The rest of this section builds ideas from LILC into a small
class-based object-oriented typed assembly language iTal (inferable
Tal), which supports type inference with existential types: type in-
ference can infer all the types inside each function of any typeable
iTal program without needing any annotations within the function
bodies. It requires no type annotations on basic blocks, no annota-
tions on instructions, and no type-coercion instructions.

We have proved that iTal is sound and that type inference is
decidable and complete. The proofs and complete formalization of
the semantics of a slight variant of iTal and its join algorithm can
be found in our technical report [21].

The purpose of iTal is to shed some light on the more realis-
tic iTalX described in the next section. Both systems use the same
mechanisms for subtyping, joining, and inferring existential types,
and both systems follow similar restrictions to keep inference de-
cidable.

To make the key ideas stand out, iTal focuses on only core
object-oriented features such as classes, single inheritance, object
layout, field fetch, and virtual-method invocation. iTalX, however,
applies to more expressive languages with arrays, casts, interfaces,
stacks, by-reference parameters, and structs. The first three features
require more significant changes to the type system. Others are
mostly straightforward. The extensions are discussed in Section 3.

2.1 Syntax

iTal borrows ideas from LILC , a low-level object-oriented typed
intermediate language [3]. LILC preserves classes, objects, and
subclassing, instead of compiling them away as in most previous
object encodings. iTal is even lower level than LILC in that iTal is
at the assembly language level.

iTal uses the type Ins(C) to represent only instances of the
“exact” class C, not C’s subclasses, unlike most source languages.
An existential type ∃α≪C. Ins(α) represents instances of C and
C’s subclasses where class variable α indicates the dynamic classes
of the instances. The subclassing bound C on α means that the
dynamic class α is a subclass of the static class C.

The source language type C is translated to the above existential
type. An instance of a subclass of C can be “packed” to have
type ∃α≪C. Ins(α). A value with type ∃α≪C. Ins(α) can be
“unpacked” to have type Ins(β), where β is a fresh class variable
(distinct from any existing class variables) indicating the dynamic
class of the instance, and the constraint β ≪ C records the fact that
the instance’s dynamic class inherits C.

The separation between static and dynamic classes guarantees
the soundness of dynamic dispatch (Section 2.3 explains a virtual-
method invocation example). A type system without such separa-
tion cannot detect the error in the previous unsafe example.

Class variables in iTal have subclassing bounds and are instan-
tiated with only class names. The bounds cannot be arbitrary types.
This simplifies both type inference and type checking in iTal.



The syntax of iTal is shown below.

class type ω ::= α | C
reg type τReg ::= Int | Code(Φ → Φ′) | Ins(ω) | Vtable(ω)
term type τ ::= τReg | ∃α≪C. Ins(α)
value v ::= n | ℓ
operand o ::= v | r | [r + n]
instr ι ::= bop r, o | mov r, o | mov [r1+n],r2 | call o

binary op bop ::= add | sub | mul | div

instrs ιs ::= jmp ℓ | bz o, ℓt, ℓf | ret | ι; ιs
func prec Φ ::= {ri : τi}

n
i=1

function f ::= (Φ → Φ′) {
−−−�
ℓ : ιs}

A class type ω is either a class variable (ranged over by α, β,
and γ) or a class name (ranged over by B and C). A special class
named Object is a superclass of any other class type.

iTal supports the primitive type Int and the code-pointer type
Code(Φ → Φ′) where Φ → Φ′ describes function signatures
with precondition Φ and postcondition Φ′. The other types are
object-oriented: the type Ins(ω) describes instances of “exact” ω,
and the type Vtable(ω) represents the virtual-method table of class
ω. All these types can be used to type registers in basic-block
preconditions, and are called register types. Type ∃α≪C. Ins(α)
represents objects of C and C’s subclasses. The existential type can
be used to type fields in objects and registers in function signatures,
but not registers in basic-block preconditions. Both register types
and the above existential types are called term types.

Values in iTal include integers n and heap labels ℓ. Operands
include values, registers r, and memory words [r+n] (the value at
memory address r + n). All values are word-sized.

Instructions in iTal are standard. Instruction bop r, o computes
“r bop o” and assigns the result to r. Instruction mov r, o moves
the value of o to register r. Instruction mov [r1 + n], r2 stores the
value in r2 into the memory word at address r1 + n. Instruction
call o calls a function o.

Instruction sequences ιs consist of a sequence of instructions
ended with a control-transfer instruction. Instruction jmp ℓ jumps to
a block labeled ℓ. Instruction bz o, ℓt, ℓf branches to ℓt if o equals
0 and to ℓf otherwise. Instruction ret returns to the caller.

A function (Φ → Φ′) {
−−−�
ℓ : ιs} specifies its signature Φ → Φ′

and a sequence of basic blocks, each of which has a label ℓ and a
body ιs. The notation −�a means a sequence of items in a.

2.2 Subclassing and Subtyping

We describe selected static semantics of iTal. The static semantics
uses the following environments:

class decl cdecl ::= C : B{−�τ ,
−−−−−�
Φ → Φ′}

class decls Θ ::= • | Θ, cdecl

constr env ∆ ::= • | ∆, α ≪ C

reg bank type Γ ::= • | Γ, r : τReg

state type Σ ::= ∃∆.Γ

Class declaration C : B{−�τ ,
−−−−−�
Φ → Φ′} introduces a class C with

superclass B, fields with types −�τ , and methods with signatures
−−−−−�
Φ → Φ′. It specifies all fields and methods of C, including those
from superclasses. Method bodies are translated to functions in the
heap. Therefore, only method signatures are included in class dec-
larations, not method bodies. Θ is a sequence of class declarations,
which the compiler preserves to iTal.

The constraint environment ∆ is a sequence of type variables
and their bounds. Each type variable has a superclass bound. The
register bank type Γ is a partial map from registers to register types.

iTal uses state types Σ, another form of existential types, to rep-
resent machine states, including preconditions of basic blocks. A

state type ∃∆.Γ specifies a constraint environment ∆ and a regis-
ter bank type Γ. iTal automatically “unpacks” a register when it is
assigned a value with an existential type ∃α≪C. Ins(α): the exis-
tentially quantified class variable is lifted to the constraint environ-
ment of the state type corresponding to the current machine state,
and the register is given an instance type. In a state type ∃∆.Γ,
∆ records the type variables for the “unpacked” registers so far,
and Γ never maps a register to an existential type ∃α≪C. Ins(α).
This convention eliminates the explicit “unpack” and makes type
inference and type checking easier. Rules corresponding to the tra-
ditional “pack” operation will be explained later in the section.

Subclassing. iTal preserves source-level subclassing between
class names. Judgment Θ;∆ ⊢ ω1 ≪ ω2 means that under the
class declarations Θ and the constraint environment ∆, class type
ω1 is a subclass of ω2. A class C is a subclass of B if C declares
so in its declaration (rule sc-class). A class variable α is a subclass
of a class name C if C is α’s bound (rule sc-var). Additionally,
subclassing is reflexive and transitive.

Θ(C) = C : B{. . .}

Θ;∆ ⊢ C ≪ B
sc-class

α ≪ C ∈ ∆
Θ;∆ ⊢ α ≪ C

sc-var

Subtyping between State Types. Subtyping between two state
types is used to check control transfer. It is the key to type inference
in iTal, allowing subtyping between two state types without first
unpacking one type and then packing to the second type. No type
coercion is necessary. The judgment Θ ⊢ Σ1 ≤ Σ2 means that
under class declarations Θ, state type Σ1 is a subtype of Σ2.

θ : dom(∆′) → (dom(∆) ∪ dom(Θ))
∀r ∈ dom(Γ′).Γ(r) = Γ′(r)[θ]

∀α ≪ C ∈ ∆′. Θ;∆ ⊢ θ(α) ≪ C

Θ ⊢ (∃∆.Γ) ≤ (∃∆′.Γ′)
st-sub

A state type ∃∆.Γ is a subtype of ∃∆′.Γ′ if a substitution θ
maps each class variable in ∆′ to either a class variable in ∆ or a
constant class name in Θ, such that Γ′(r) after substitution is the
same as Γ(r) for all registers r in dom(Γ′). The substitution must
preserve subclassing in ∆′: for each constraint α ≪ C in ∆′, θ(α)
must be a subclass of C under ∆. The substitution is computed
during type inference and made ready to use by the type checker.

We can derive the following from st-sub, one case of the tra-
ditional “pack” rule for existential types, using a substitution that
maps α to C:

Θ ⊢ ∃∆.(Γ, r : Ins(C)) ≤ ∃(∆, α ≪ C).(Γ, r : Ins(α))

Subtyping between state types is reflexive and transitive, as implied
by the st-sub rule. Reflexivity can be proved by using the identity
substitution. Transitivity can be proved by composing substitutions.

No Subtyping between Term Types. Although iTal includes sub-
typing between state types Σ, it omits subtyping between term
types τ , instead using a weaker notion of assignability. Omitting the
subtyping relation τ ≤ τ ′ avoids issues of covariant and contravari-
ant subtyping within code-pointer types, which makes it easier to
join types. Our larger language iTalX allows subtyping, restricting
function arguments to be contravariant to guarantee soundness and
nearly invariant to guarantee decidability of inference.

Assignability. Assignability decides if the value in a register can
be assigned to a memory location or a formal of a method, both of
which can have existential types. Assignability allows a value of
type τ to be assigned to a location of type τ . More importantly, it
handles “packing” subclass instances to superclass instances (with
existential types) by allowing a value of type Ins(ω) to be assigned
to a location of type ∃α≪ω′. Ins(α) whenever ω ≪ ω′ can be



inferred from the constraint environment. iTal uses assignability to
avoid confusion with subtyping between state types.

2.3 Type Inference and Type Checking

Type inference computes the precondition for each basic block in a
function from the function signature. The precondition of the entry
block is the function signature with all registers unpacked.

Type inference then uses a forward dataflow analysis, starting
from the entry block. For each basic block, if type inference finds
a precondition, it then type checks the instruction sequence in the
block, until it reaches the control-transfer instruction. If the control-
transfer instruction is “ret”, the block is done. Otherwise (“jmp”
or “bz”), type inference propagates the current state type to the
target(s). If a target has no precondition, the current state type will
be the new precondition for the target. Otherwise, type inference
computes the join of the current state type and the precondition
of the target, and uses the result as the new precondition for the
target. If the precondition of the target changes, type inference goes
through the target again to propagate the changes further.

Type inference continues until it finds a fixed point. When
joining two state types, the result is a supertype of both state types.
The type system does not have infinite supertype chains for any
given state type, which guarantees termination of type inference.

We use the following code segment to explain type inference
and type checking. The example is contrived to show various as-
pects of type inference. Most compilers would generate better op-
timized assembly code.

The function Foo takes an instance of the previous class Point
(in r1), an instance of Point3D (in r2), and an integer (in r3). Block
L0 branches to L1 if r3 equals 0 and to L2 otherwise. L1 and
L2 merge at L3, which calls the Color method (at offset 4 of the
vtable) on either the instance of Point or the instance of Point3D,
depending on the value of the integer. Instructions 3), 4), and 7) are
added for the purpose of showing joining of types.

//void Foo(r1: Point, r2: Point3D, r3: int)
L0: 1) bz r3, L1, L2 // branch on r3 equals 0
L1: 2) mov r4, r1 // true branch

3) mov r5, r1
4) mov r6, r2
5) jmp L3

L2: 6) mov r4, r2 // false branch
7) mov r5, r2
8) jmp L3

L3: 9) mov r6, [r4+12] // get the RGB field
10) mov r7, [r4+0] // get vtable from r4
11) mov r7, [r7+4] // get the Color method
12) call r7 // call the Color method

The signature of Foo is represented in iTal as ΦFoo → {}, where
ΦFoo is {r1 : ∃α≪Point. Ins(α), r2 : ∃α≪Point3D. Ins(α), r3 :
Int}. The precondition of block L0, Σ0, is then ∃α1 ≪ Point,
α2 ≪ Point3D.{r1 : Ins(α1), r2 : Ins(α2), r3 : Int}, by un-
packing r1 and r2 in ΦFoo and lifting the two fresh (and distinct)
class variables α1 and α2 to the constraint environment.

Block L0 has precondition Σ0. It has only one control-transfer
instruction 1). Type inference checks that r3 has type Int and
propagates the state type Σ0 to L1 and L2 since instruction 1) does
not change the machine state.

Block L1 now has precondition Σ0. Checking instruction 2)
adds the mapping r4 : Ins(α1) to the current state type because
r4 now contains a value of type Ins(α1), and checking 3) and
4) is similar. Now we reach instruction 5) with state type Σ′

1 =
∃α1 ≪ Point, α2 ≪ Point3D.{r1 : Ins(α1), r2 : Ins(α2), r3 :
Int, r4 : Ins(α1), r5 : Ins(α1), r6 : Ins(α2)}, which becomes the
precondition of the successor L3.

Similarly, checking block L2 produces post condition Σ′

2 =
∃α1 ≪ Point, α2 ≪ Point3D.{r1 : Ins(α1), r2 : Ins(α2),
r3 : Int, r4 : Ins(α2), r5 : Ins(α2)}. The successor L3 has its
precondition already, so we need to compute the join of Σ′

1 and
Σ′

2. The result will be the new precondition of L3.

Join. Computing the join (least upper bound) of two state types
is the most important task during type inference. We use Σ1 ⊔ Σ2

to represent the join of Σ1 and Σ2, and α̂ to represent variables
created during the joining process (called generalization variables).
Generalization variables are not different from other class vari-
ables. We use the special notation to ease the presentation.

The join operation is performed in two steps. The first step
generalizes the two register bank types in Σ1 and Σ2 to a common
register bank supertype. To generalize Γ1 and Γ2, for each register
r that appears in both Γ1 and Γ2, it generalizes Γ1(r) and Γ2(r)
to a common supertype and maps r to the supertype in the result
register bank type. The generalization omits registers that appear in
Γ1 or Γ2 but not both.

Generalization recursively goes through the structure of types.
Generalizing Int and Int returns Int. Generalizing Ins(C) and
Ins(C) returns Ins(C). Otherwise, generalizing Ins(ω1) and Ins(ω2)
returns Ins(α̂), where α̂ is a fresh class variable (generalization
variable). Generalization also records two mappings α̂ 7→ ω1 and
α̂ 7→ ω2 to track where the new variable is from. The mappings
will be used to construct substitutions for the subtyping rule st-sub.
The bound of α̂ will be computed in the second step of join.

Generalizing ∃α≪ω1. Ins(α) and ∃β≪ω2. Ins(β) returns
∃γ≪α̂. Ins(γ), where α̂ 7→ ω1 and α̂ 7→ ω2. Generalizing
Vtable(ω1) and Vtable(ω2) returns Vtable(α̂) with similar maps.

Code-pointer types Code(Φ1 → Φ′

1) and Code(Φ2 → Φ′

2) are
generalized to Code(Φ → Φ′) if Φ1 and Φ2 are generalized to Φ
and Φ′

1 and Φ′

2 to Φ′, provided no registers are dropped in either
case. Our treatment of arguments is sound because iTal does not
have subtyping on term types, as explained earlier.

Two types with different structures, such as a code-pointer type
and a vtable type, cannot be generalized. If a register has differently
structured types in the two register bank types to join, the join result
will not contain the register.

For our example, r4 has type Ins(α1) in Σ′

1 and type Ins(α2)
in Σ′

2. Generalization creates a fresh variable α̂ and two mappings
α̂ 7→ α1 and α̂ 7→ α2 for Σ′

1 and Σ′

2 respectively. For r5, it creates

another fresh variable β̂, different from α̂, and mappings β̂ 7→
α1 and β̂ 7→ α2. Generalization also creates new generalization
variables for r1 and r2, but for simplicity of presentation, we keep
the types of r1 and r2 unchanged after generalization, since Σ′

1 and
Σ′

2 agree on their types and α1 (α2) means the same dynamic type
of r1 (r2) in both Σ′

1 and Σ′

2. The result of generalization is then

{r1 : Ins(α1), r2 : Ins(α2), r3 : Int, r4 : Ins(α̂), r5 : Ins(β̂)}.
Register r6 is omitted because it does not exist in Σ′

2.
The second step of the join operation is factorization. The goal

is to compute the constraint environment of the result state type,
using the least number of generalization variables. This step is done
by unifying equivalent generalization variables.

We define an equivalence relation on generalization variables:
two variables are equivalent iff they are results of generalizing

the same two types. For example, in our example, α̂ and β̂ are
equivalent because both come from generalizing α1 and α2.

Factorization then creates the final join result ∃∆.Γ, where ∆
collects arbitrarily chosen representatives of equivalence classes for
generalization variables, and Γ is the register bank type resulting
from generalization after substituting each generalization variable
with the representative of its equivalence class. The bound of a
representative α̂ in ∆ is the least common superclass name for ω1

and ω2, where α̂ comes from generalizing ω1 and ω2.



For our example, the join of Σ′

1 and Σ′

2 is Σ3 = ∃α1 ≪
Point, α2 ≪ Point3D, α̂ ≪ Point.{r1 : Ins(α1), r2 : Ins(α2), r3 :
Int, r4 : Ins(α̂), r5 : Ins(α̂)}. α̂ is chosen for the equivalence class

{α̂, β̂} and given bound Point because Point is the least common
superclass name for Point (α1’s bound) and Point3D (α2’s bound).

Σ3 is a supertype of Σ′

1 and Σ′

2, using the st-sub rule. The
joining process generates two maps, α̂ 7→ α1 and α̂ 7→ α2. Using
the former map as the substitution in st-sub, we get Σ′

1 ≤ Σ3. The
latter map evidences that Σ′

2 ≤ Σ3 holds. We have proved that the
join process always computes the least upper bound [21].

Continuing our example, we now check block L3 with the new
precondition Σ3. Instruction 9) loads into r6 a field of r4 (an
instance of α̂), using the object-layout information provided by
the compiler. This is one of the few places where type inference
needs hints (metadata here) generated by the compiler. The layout
information maps a field offset to the field type. The class variable
α̂ is not a concrete class, and thus its layout is statically unknown.
From the fact that α̂ is a subclass of Point, the checker knows that
an instance of α̂ has at least those fields declared in Point, and
at the same offsets as in Point. It looks up the offset 12 (for the
field c) in the layout information of Point and finds an existential
type ∃γ′≪RGB. Ins(γ′). When a register is assigned a field with
an existential type, it is unpacked automatically. r6 is given type
Ins(γ), where γ is fresh and γ ≪ RGB is added to the constraints.

Instruction 10) loads into r7 the first word—the vtable—of r4.
The type system gives type Vtable(α̂) to r7, indicating that r7
points to the vtable of r4’s dynamic type.

Instruction 11) loads into r7 the method pointer for Color. the
checker uses the layout information of Point to find the code-
pointer type Code({r4 : Ins(α̂), r6 : ∃η≪RGB. Ins(η)} → {}).
The first parameter is the “this” pointer, whose type is the same
as the dynamic type of the object from which the method pointer
is fetched. The second parameter is an instance of RGB. The two
parameters are consumed by the method, returning nothing.

Instruction 12) calls the method in r7. The checker checks if the
precondition of the callee is satisfied by the current machine state.
Register r4 has the required type. Register r6 has type Ins(γ′)
in the current state, and the callee requires an existential type
∃η≪RGB. Ins(η). We use assignability rules: register r6 can be
assigned to the parameter because r6 has type Ins(γ) and γ ≪
RGB can be inferred from the constraint environment, so r6 can be
packed to the existential type. After the call, the state type contains
the remaining registers and type inference continues.

This example illustrates how the various features of iTal work
together to produce an inferable typed assembly language capable
of verifying a simplistic object-oriented language. Many of the
strategies we use in iTal can be extended to more expressive type
systems. The use of existential quantification of class variables,
the separation of assignability and subtyping, and the creation of
generalization variables with mappings in order to join types are
all more broadly applicable, as we demonstrate in the next section.

3. The iTalX Type System

This section describes how our more realistic type system iTalX
expresses common language features, such as interior pointers,
covariant arrays, type casts, interfaces, and the stack. iTalX is
robust with respect to the common optimizations most compilers
have, meaning these optimizations can be applied to any typeable
program and the resulting program will still be typeable.

iTalX uses the same substitution-based subtyping rules for ex-
istentially quantified state types as iTal, and extends iTal’s type-
inference algorithm. iTalX introduces singleton integer types and
integer variables with constraints to handle array-bounds checking.
iTalX treats integer variables with constraints the same way as class

variables with constraints with respect to subtyping and joining,
which demonstrates the flexibility of our type system (Section 3.3).

iTalX uses the same existentially quantified state types for pre-
conditions of basic blocks as iTal does. In fact, this is the only
form of existential quantification in iTalX. iTalX uses a type
SubInsPtr(C) to represent the iTal type ∃α ≪ C.Ins(α). iTalX
disallows existential quantification in term types—those used to
type registers, stack slots, fields in objects, etc. Such quantification
in term types is not needed in iTalX. We removed nested existential
quantification from iTalX because having two layers of quantifica-
tion causes complications with the join process. These complica-
tions do not arise in iTal because iTal does not have subtyping at
the term-type level.

Many of the extensions in iTalX require complex constraints
for class variables, whereas iTal needs only one simple subclass-
ing constraint (an upper bound) for each class variable. Covariant
arrays may need bounds that are arrays themselves. Type casting
needs class variables with lower bounds and with other class vari-
ables as bounds. Interfaces have multiple inheritance, which means
that class variables may have multiple bounds. iTalX separates
class variables from their bounds to allow complex constraints on
class variables. One environment collects all class variables (with-
out constraints), and another collects constraints on class variables.
iTal uses a single environment ∆ for both purposes because a class
variable is constrained only by a single upper bound. We use con-
straints and bounds interchangeably in this section.

3.1 Requirements for Inference

It is challenging to make a type system as expressive as iTalX
inferable. For example, if class variables can be bound by other
variables, the join of the tuples 〈ArrayList, IList, IList〉 and
〈Hashtable, Hashtable, IDictionary〉 is ∃α≪β≪γ.〈α, β, γ〉
(where ArrayList implements IList and Hashtable imple-
ments IDictionary). Even though both types being joined use
only two classes each, three variables are required to describe the
join. The join also has to recognize the left-to-right inheritance hi-
erarchy. Furthermore, as illustrated in Section 3.8, adding a simple
feature such as null pointers can break type inference.

Fortunately, iTalX uses the results of an abstract framework
based on category theory (described in our technical report [21]) to
guarantee inferability. The framework describes how to construct
joins in any existential type system that satisfies three properties,
stated informally as follows: (1) if τ1 ≤ τ2, every free class
variable in τ2 occurs in τ1; (2) term types have joins disregarding
existentially quantified variables; (3) bounds and substitutions have
a factorization structure [1], the metatheory behind the factorization
process used in constructing joins for iTal. By computing joins, our
type inference algorithm is made complete, meaning our inference
algorithm will always infer a typing for any typeable program.

For decidability of inference, the main requirements are as fol-
lows: (1) instruction typing is monotonic, that is, if τ1 ≤ τ2, the
postcondition when checking an instruction with τ1 as the precon-
dition should be a subtype of the postcondition when checking the
same instruction with τ2 as the precondition; (2) subtyping is well-
founded: there are no infinite chains of strict supertypes.

We have translated both iTal and iTalX into the category-
theoretic framework, and proven that they satisfy the requirements
above. This proves that they are both inferable.

The rest of this section explains major extensions in iTalX. We
introduce the constructs of iTalX as needed.

3.2 Interior Pointers and Records

iTal uses only a simple model of memory: registers may point to
objects, which in turn may have fields pointing to other objects.
Languages like C# support a more complex memory model, for



example, a method may pass a reference to a field of an object as an
argument to another method. The compiler represents this reference
as an interior pointer into the middle of the object, and iTalX must
be able to type such pointers. Furthermore, a C# reference may
point to not just a single word in the object, but to an entire struct
of multiple fields embedded directly in the object. In addition, even
if the language does not require interior pointers, an optimizing
compiler may introduce such pointers (e.g. when iterating through
array elements).

To model this, iTalX breaks iTal’s named reference type Ins(ω)
into separate pointer types and name types, and adds a distinct
record type where individual field types are made explicit:

name ::= INS(ω) | VTABLE(ω) | . . .

τHeap ::= int | HeapPtr(name) | HeapPtr
N
(name) |

SubInsPtr(ω) | . . .

rw ::= R | RW
recslot ::= • | (rw : τHeap)
rec ::= {..., recslot, ...}
τReg ::= HeapRecPtr(name : rec+ n) |

HeapRecPtr
N
(name : rec+ n) |

RecPtr(rec+ n) | . . .

Name types include INS(ω) to name a class’s instance type and
VTABLE(ω) to name a class’s vtable type.

The HeapPtr(name) and HeapPtr
N
(name) represent pointers

to objects on the heap. The subscript N denotes that the pointer
may be null. For example, the iTalX type HeapPtr

N
(INS(ω)) cor-

responds to the iTal type Ins(ω). There is also SubInsPtr(ω), which
is equivalent to ∃α ≪ ω.HeapPtr

N
(INS(α)), but it has more re-

strictive subtypings than general existential quantification. Intu-
itively, SubInsPtr(ω) should be a subtype of SubInsPtr(ω′) when-
ever ω inherits ω′; however, this breaks the rule that all vari-
ables in a supertype are present in the subtype. We can still allow
HeapPtr

N
(INS(ω)) to be a subtype of SubInsPtr(ω), though.

Records. Record types rec are used to represent object layouts.
A record type contains zero or more record slots, each with a τHeap

type. Each record slot is either read-write or read-only.
The separation of name types and record types avoids the diffi-

culty of recursive types, such as when a class C has a field with type
C. Slots of record types in iTalX do not contain other records or
pointers to other record types — they only contain pointers to name
types. When the program assigns a pointer-to-name type into a reg-
ister or stack slot, iTalX automatically opens the name to a record
type describing the corresponding layout. For example, when the
type HeapPtr(name) is assigned into a register, it is converted into
the type HeapRecPtr(name : rec + 0), where rec is the record
type describing the layout of name. HeapRecPtr(name : rec+n)
represents an interior pointer, offset by n, to a record of type rec
that is in the heap. A HeapRecPtr

N
(INS(ω) : rec + 0) can be as-

signed to a SubInsPtr(ω′) field of a record provided ω inherits ω′.
Note that this is not subtyping, but simply type-checking an assign-
ment, so it does not break our framework. This reuses the concept
of assignability that we used in iTal.

Whereas a HeapRecPtr points to records in the heap, a RecPtr
can also refer to the stack of the caller. A HeapRecPtr

N
can for-

get its heap structure and become a RecPtr. Subtyping for record
pointers is primarily inherited from prefix subtyping of their record
types, but it can be more flexible to also incorporate offsets.
HeapRecPtr(name : rec + n) and RecPtr(rec + n) represent
interior pointers when the offset n is positive.

When opening a name to a record type, we may not statically
know the layout of the entire record, such as when the name refers
to the dynamic type α of an object. Opening a name INS(α)
(representing an instance of α), where α is a subclass of C, results

in a record type that contains C’s fields, except the vtable field has
name VTABLE(α) to guarantee soundness of dynamic dispatch.

3.3 Arrays

Adding support for arrays goes as follows. First, we introduce class
types for array classes and adjust how to join existential types ac-
cordingly. Second, we add existential quantification of integers and
simple arithmetic expressions in order to do array-bounds check-
ing. Third, we add ordering constraints on integers. Fourth, we in-
troduce extended records to encode records (array headers) with a
subrecord which repeats an unknown number of times (array ele-
ments). Lastly, we allow names to open to existentially quantified
extended-record types.

Array Classes. In iTal, a class type is either a class variable or a
class constant. Now we add a class constructor Array:

ω ::= . . . | Array(ω)

Array(ω) always extends the Array class, per C#’s array classes.
When constructing the join we have to infer when to use array

classes. For this, we again use the two maps constructed during
generalization in iTal’s join algorithm (we refer to them as R1 and
R2). If R1 maps a generalization variable α̂ to Array(ω1) and R2

maps α̂ to Array(ω2), we introduce a fresh generalization variable

β̂ mapping to ω1 and ω2 and substitute α̂ with Array(β̂). If β̂ also
maps to two array types, we repeat this process recursively.

Existentially Quantifying Integers. To verify array accesses, we
add existentially quantified integer variables. By integers, we mean
mathematical integers, not 32-bit integers. Existential quantifica-
tion may introduce integer variables i with simple arithmetic ex-
pressions of the form I = i ∗ a + b as constraints, where a and b
are (mathematical) integer constants. The type Int(I) is a singleton
integer type representing the single integer value I:

τReg ::= . . . | Int(I)

Joining existentially quantified simple arithmetic expressions poses
an interesting challenge. The join of the states {r : Int(4)} and
{r : Int(10)} is ∃i.{r : Int(i ∗ 6 + 4)} or equivalently ∃i.{r :
Int(i ∗ 6 + 10)}. The join of the states:

• ∃i.{r : Int(i ∗ 4 + 4), r′ : Int(i ∗ 8)}

• ∃j.{r : Int(j ∗ 6 + 2), r′ : Int(j ∗ 12− 4)}

is ∃k.{r : Int(k∗2+4), r′ : Int(k∗4)}, with substitutions k 7→ i∗2
and k 7→ j ∗ 3 − 1. More broadly, the join generalizes integer
types by introducing variables to represent them, similar to iTal’s
generalization of class types: Int(I1) and Int(I2) are generalized to

Int(̂i) where Int(̂i) is a fresh generalization variable and î 7→ I1
and î 7→ I2.

As with iTal’s join in section 2.3, the join for integer types de-
fines an equivalence relation on generalization variables. Consider,
for simplicity, equivalences for types of the form I = i ∗ a where

a ≥ 1. Then the equivalence î ≡ ĵ holds if:

• R1(̂i) = k1 ∗ a1 and R1(ĵ) = k1 ∗ b1

• R2(̂i) = k2 ∗ a2 and R2(ĵ) = k2 ∗ b2

•
a1

a2

= b1
b2

(so that a1

gcd(a1,a2)
= b1

gcd(b1,b2)
)

The join then designates a fresh variable k for each equivalence
class of generalization variables, then substitutes each generaliza-
tion variable with an appropriate expression in terms of k. Sup-

pose we have a generalization variable î with R1(̂i) = k1 ∗ a1,

R2(ĵ) = k2 ∗ a2, and k is the fresh variable designated for î’s

equivalence class; then the join substitutes î with k ∗ gcd(a1, a2)
where gcd is the greatest common divisor. The mappings k 7→



k1 ∗ a1

gcd(a1,a2)
and k 7→ k2 ∗ a2

gcd(a1,a2)
serve as evidence that

this construction forms a common supertype of the two types be-
ing joined. The use of gcd is necessary since a coefficient for k
smaller than gcd(a1, a2) would fail to yield the best common su-
pertype, while a coefficient larger than gcd(a1, a2) would fail to
yield a common supertype at all.

The generalization of the join beyond I = i ∗ a to all forms of
I is straightforward (see Granger [7] for a thorough discussion of
joining integer equalities).

Ordering Integer Expressions. To check array bounds, our exis-
tential quantifications also need to include ordering constraints of
the form I1 <32+ I2. This constraint means that, viewed as un-
signed 32-bit integers, I1 is strictly less than I2. Thus, we view
the machine as capable of manipulating mathematical integers, but
the comparisons are limited to a 32-bit perspective on these math-
ematical integers. Dereferencing also has a 32-bit perspective, so
we can rely on 32-bit ordering constraints to verify array accesses.
The reasons for this unusual perspective are contained within our
abstract framework. In short, complications arise because i ∗ 4 is
not an injective operation on 32-bit integers.

iTalX restricts which ordering constraints can be present in an
existential type. In particular, iTalX permits the ordering constraint
I1 <32+ I2 to be present in an existential type if both I1 and I2 oc-
cur in the body of the existential type. iTalX also allows the above
ordering constraint if I1 is a constant and I2 occurs in the body. A
constraint is not permitted if it does not satisfy either of these con-
ditions. This restriction bounds the number of constraints present in
iTalX’s existential types, essentially discarding all constraints that
are irrelevant to type checking the program. We found this bound
to be important to achieving an efficient implementation.

At present, iTalX does not use any arithmetic inference rules
in its subtyping rules, only that <32+ is transitive. This prevents
any complications with arithmetic overflow, but also prevents iTalX
from handling array-bounds-check elimination. The above restric-
tion on constraints, however, would allow us to extend iTalX with
arithmetic inference rules that are sound even in the presence
of arithmetic overflow, while still keeping the type system well-
founded as required by our inference algorithm. Such an extension
is considered future work.

Extended Records. An extended-record type is used to represent
array layouts. It consists of a record type (array header), a “fixed-
length” name (the elements), and an integer expression (the number
of elements): rec ◦ nameI . Although in general a name can
actually describe an extended-record type, a fixed-length name
must describe a record type of a predetermined length. This allows
us to identify which index of an array and which field within that
index that an interior pointer is referencing.

Arrays have statically indeterminable lengths. To refer to the
length of an array, we allow names to open to existentially quan-
tified record types, although any existentially quantified vari-
ables and constraints are immediately pulled into the outer ex-
istential bound upon opening the name. For example, the name
INS(Array(α)) opens to the existentially quantified record type

∃ℓ.







R : HeapPtr(VTABLE(Array(α)))
R : HeapPtr(RUNTIME(α))
R : Int(ℓ)







◦ SUBINSPTRREC(α)ℓ

where ℓ is an existentially quantified integer variable indicating the
length of the array, and ℓ would be pulled into the environment. We
represent the fact that the third field of the header is also the length
of the array by using ℓ in both positions. The second field is used
to type check covariant arrays using the techniques described next.
SUBINSPTRREC(α) is the fixed-length name for the record type

{RW : SubInsPtr(α)}, representing the elements of the array. Thus,
iTalX type checks arrays and array accesses by combining our
earlier concepts of existential quantification, records, and names.

3.4 Type Casts and Runtime Types

Type checking downward type casts requires adding class variables
with lower bounds and variables bounded by other variables.

Downward type casts test at run time whether an object is
an instance of a class. Each class has a unique identifier, called
its runtime type. Two runtime types are equal if and only if the
corresponding classes are the same. The runtime type of a class
points to the runtime type of its immediate superclass, and such
pointers form a runtime type chain. A typical implementation of
downward type casts walks up the chain to find if a superclass
matches the class to which we want to cast.

iTalX uses the name RUNTIME(ω) to represent the runtime type
of a class ω:

name ::= . . . | RUNTIME(ω)

To represent the pointer to the runtime type of the superclass, we
reuse the concept of existentially quantified records that we intro-
duced for arrays. RUNTIME(ω) opens to the following existentially
quantified record type:

∃β ≫ ω.{. . . , R : HeapPtr
N
(RUNTIME(β)), . . .}

Note that if ω were a class variable α, this would introduce a
constraint α ≪ β between two class variables, justifying the need
for more complex constraints in iTalX.

When walking up the runtime type chain to cast an object of
class α to a class C, if a (possibly null) runtime type with name
RUNTIME(γ) matches the (non-null) runtime type of our target
class C, the type inference concludes that γ = C, and uses that to
check the instructions that follows. In particular, the quantification
used above would inform us that α inherits γ, so the equality γ = C
informs us that α inherits C, indicating that the object can be safely
treated as an instance of a subclass of C.

3.5 Interfaces

To support interfaces, iTalX distinguishes class variables that can
be instantiated with classes from those instantiated with interfaces,
using a subscript “C” or “I” on a variable respectively. For example,
iTalX uses the constraint αC to indicate that the variable α can only
be instantiated with classes. Furthermore, variables can have more
than one bound because classes can inherit multiple interfaces.

To compute the join of class variables with such constraints,
we again use the two generalization maps R1 and R2. A gener-
alization variable α̂ will inherit all of the (possibly implicit) con-
straints on R1(α̂) and R2(α̂). For example, if both R1(α̂) and
R2(α̂) are constrained to be classes, the generalization variable α̂
will be as well. Similarly, given two generalization variables α̂ and

β̂, if R1(α̂) ≪ R1(β̂) and R2(α̂) ≪ R2(β̂) hold, we add the

constraint α̂ ≪ β̂. We also have to infer inheritance constraints
with respect to class and interface names such as ArrayList and
IList. For upper bounds this poses no problem since any class or
interface only inherits a finite number of classes and interfaces. For
lower bounds, however, due to multiple inheritance there may be an
infinite number of classes and interfaces which inherit both R1(α̂)
and R2(α̂). To address this issue, we also allow class variables to be
bounded below by a tensor ⊗ of class and interface names provided
there exists a class or interface that inherits all those in the tensor.
This restriction on valid tensors bounds their size in a given pro-
gram, which keeps our type system well-founded. Finally, if a class
or interface inherits all the tensored classes and interfaces bound-
ing α, then that class implicitly inherits α as well. Thus, the join of
ISerializable and IList is ∃αI ≫ ISerializable⊗IList.α



and we can infer that ArrayList inherits α since ArrayList im-
plements both ISerializable and IList. These techniques grant
us an inferable type system capable of casting and even interface-
method lookup in a multiple inheritance context (the latter process
is described in detail in the Appendix).

3.6 Generics

To support generics, we can reuse many of the same techniques we
used to support array classes. If generic class types C(ω1, . . . , ωn)
and C(ω′

1, . . . , ω
′

n) are generalized to a generalization variable α̂,
we introduce n fresh generalization variables α̂i mapping to ωi and
ω′

i and substitute α̂ with C(α̂1, . . . , α̂n). If any of the α̂i also map
to two similar generics, we repeat this process recursively.

We also have to extend the constraint environment to include
constraints of the form α ≪ C(~ω) or C(~ω) ≪ α, where ~ω
may also contain class variables. In fact, the lower bound on an
interface variable α may need to be a tensor of generics (with their
arguments supplied). However, we never need constraints of the
form C(~ω) ≪ D(~ω′); because of how inheritance can be specified
in C#, constraints of this form can always be simplified. Even with
these more complex constraints, type inference is still decidable.

3.7 Using the Stack

iTal has no concept of a stack, an obvious shortcoming since the
stack plays such an important role at the assembly level. Here we
make simple extensions to iTalX to let it use the stack intraproce-
durally and interprocedurally. We represent the stack essentially as
a partial map from non-negative integers, marking stack slots in the
current stack frame, to register types. We use StackPtr(n) to ac-
cess and manipulate the stack. By using only non-negative integers
in the stack, we prevent a callee from changing the caller’s stack.
These simple extensions allow iTalX to use the stack intraprocedu-
rally, but we need to refine code-pointer types in order to use the
stack interprocedurally.

Code Pointers. A code-pointer type in iTalX, as in iTal, is spec-
ified simply as a required input state type and a produced output
state type. These state types are a stack type and a register bank
type; however, they cannot refer to register types τReg (defined in
Section 3.2, along with heap types τHeap). The output state type can
only refer to heap types and stack-pointer types. The input state
type can only refer to heap types, minus code-pointer types, and
stack-pointer types along with two additional types. The first type,
ReturnAddress, tells the caller where the return address should be
stored. ReturnAddress is also a register type, used to type check
the ret instruction. The second type is ParamPtr(name), a new
pointer type which can be used only as an input type. Unlike the
other input pointer types HeapPtr and SubInsPtr, ParamPtr need
not refer to the heap. In the callee, a ParamPtr(name) will be trans-
lated into a RecPtr of the record type that name opens to; thus, the
caller can pass any pointer whose referenced space will look like
the appropriate record type for the duration of the call. This allows
the caller to pass even a stack pointer, provided the referenced por-
tion of the stack is appropriately typed at the time of the call and
does not overlap with the callee’s stack frame. ParamPtrs allow us
to pass references to local variables, fields, and array indices per
the pass-by-reference semantics of C#’s ref keyword.

Callee-Save Registers A common calling convention requires the
callee to ensure that the values of certain registers upon entering the
function are the same upon exiting the function. This convention is
known as callee-save registers. We incorporate this into iTalX by
having each code-pointer type declare the set of registers whose
values will be preserved. Subtyping of code-pointer types allows
this set to be smaller in supertypes. We type check callee-save
registers in the usual manner: each callee-save register is given its

own type variable at the beginning of the function body and must
have that same type variable upon returning from the function.

3.8 Null Pointers

The extensions above capture most features of C# except one seem-
ingly unremarkable feature: null pointers. Although iTalX has nul-
lable heap pointers, it does not have an explicit null type. We do
this for a very good reason: null pointers break joins in the pres-
ence of existential quantification, breaking the inference process.
Our framework even suggests this, since the α in the simple rule
null ≤ HeapPtr(INS(α)) is not used in the subtype null. With-
out changing null to already refer to α, there is no way to re-
solve this problem. Fortunately, we can illustrate the problem con-
cretely and concisely using some shorthand. Take the two exis-
tentially quantified triples τα := ∃α.〈null, α, null〉 and τβ :=
∃β, β′.〈β, null, β′〉. The join of τα and τβ cannot contain null.
The two existentially quantified triples τγ := ∃γ, γ′.〈γ, γ, γ′〉 and
τδ := ∃δ, δ′.〈δ, δ′, δ′〉 are both supertypes of both τα and τβ . Their
only common subtype without null is τρ := ∃ρ.〈ρ, ρ, ρ〉, but τρ is
not a supertype of τβ . Thus, τα and τβ have no join. This example
illustrates how some of the most intuitive types can break an infer-
ence algorithm. Although C# has null, it always occurs where the
class that it is a null pointer of can be easily discerned. In the lower-
ing stage, when we replace null with 0, we include an annotation
indicating that that occurrence of 0 has type NullPtr(ω), where ω is
the class or interface associated with that use of null. NullPtr(ω)
is a subtype of both HeapPtr

N
(Ins(ω)) and Int(0).

3.9 Theorems

We have proven the following properties for inference of iTalX:

Decidability. The inference algorithm described in Section 2.3
extended to iTalX halts.

Completeness. If an iTalX function is typeable, the inference
algorithm described in Section 2.3 extended to iTalX infers a valid
typing of that function.

These theorems result primarily from our categorical framework
for existential types described in our technical report [21]. The
proof strategy extends the strategies used for iTal. The proofs for
a slight variant of iTal can also be found in our technical report.

4. Implementation

Here we present our prototype implementation of a type inference
engine for iTalX on the output of a large-scale object-oriented opti-
mizing C# compiler called Bartok. We show that: (1) it is practical
to infer types for an expressive TAL such as iTalX; (2) type infer-
ence needs much less effort from the compiler and much fewer type
annotations, compared to traditional certifying compilation.

Our base compiler Bartok compiles Microsoft .NET bytecode
programs to standalone x86 executables. It is not a just-in-time
compiler. The compiler has about 200,000 lines of code, mostly
written in C#, and is fully self-hosting. Performance of Bartok’s
generated code is comparable to performance under the Microsoft
Common Language Runtime (CLR). According to the benchmarks
tested, programs compiled by Bartok are 0.94 to 4.13 times faster
than the CLR versions, with a geometric mean of 1.66. Throughout
this evaluation we compare against our previous work [4] in which
we built a traditional certifying compiler, also based on Bartok, by
making every compilation phase preserve types.

For our benchmarks, about 98% of methods are inferable. As far
as we know, no other systems are able to infer types for real-world
x86 benchmarks at a similar scale.

We changed about 2.5% of the compiler code, about 5,000 lines
of code out of 200,000 lines. Among the 5,000 lines, about 4,500



lines are for adding new code to define iTalX types and to write
metadata such as the class hierarchy, record layouts, and func-
tion signatures into the object files in terms of iTalX’s type sys-
tem. The compiler transformations and optimizations are mostly
untouched. Our previous traditional certifying compiler changed
about 10% (19,000 lines) of the compiler code. It required every
transformation and optimization to preserve types, and therefore
modified many more compilation phases. Although our experience
showed that most optimizations can be made to preserve types eas-
ily, changing 19,000 lines of code is still a large burden on the com-
piler writers, especially figuring out where changes are needed and
what types in the complex TAL type system to use. Compiler writ-
ers who build certifying compilers from scratch also have to think
about maintaining the right type information in every optimization
if they follow the traditional type-preserving approach.

Our type inference engine mainly consists of the iTalX defini-
tions (5,000 lines of C# code), an x86 disassembler (4,700 lines),
and the type inference (about 4,100 lines). The main differences
between our type inference engine and our previous traditional cer-
tifying compiler’s type checker are the definitions of state types and
the computation of joins, which add up to about 1,300 lines of code.
We chose to increase the trusted computing base slightly to relieve
the compiler from full-blown certifying compilation. In order to re-
duce the trusted computing base, we could separate type inference
and type checking into two phases so that only the type checking
phase would be trusted.

Type annotation needed by our type inference implementation
is about 60% less than that required by our previous traditional
certifying compiler. Size of type annotations required by inference
is only about 17% of the size of pure code and data in object
files, compared with 36% for the previous certifying compiler. It
indicates that type-annotation size may no longer be a big obstacle
for adopting certifying compilation.

Our implementation supports allocating C# structs on the stack,
without annotations specifying the struct type during allocation.
Type inference supports initializing a struct field by field and then
using a pointer to the first field as a pointer to the whole struct. It
even supports passing structs as parameters on the stack. We are
unaware of any other systems with similarly flexible stack support.

The implementation also supports jump tables (a more efficient
way to compile switch statements) by disassembling the data sec-
tion where the jump tables are stored to figure out the jump tar-
gets. The compiler only needs to annotate the jump instruction with
the length of the jump table. We also extend our permitted integer
constraints to include expressions bounded above by constants less
than or equal to the length of the largest jump table in the function.
This way we can ensure the assembly code is accessing the jump
table correctly, while still keeping our type system inferable.

The implementation extends iTalX slightly to address features
such as type arguments for polymorphic methods. For polymorphic
method calls, we infer the type arguments instead of relying on type
annotations. Type inference for type arguments of polymorphic
functions is in general undecidable [19], but currently we support
only polymorphic methods for type casts and memory allocation,
where inferring type arguments is simple in these special cases.

Our implementation does not support exceptions or delegates.
Those are considered future work. Our framework can handle
generics, but our prototype does not include it because Bartok fully
instantiates generics before code generation. We have not yet added
type annotations for null literals, as discussed in Section 3.8. This
would only cause our type inference to report null-related type er-
rors when it should not. We expect that the missing annotations
would have little impact on type-annotation size.

Measurement. Here we describe measurement of type-annotation
size and type-inference time on our benchmarks. We chose the

Name Description Obj. Size (B)

ahcbench Adaptive Huffman Compression. 54,922

asmlc A compiler for ASML. 21,276,036

bartok An older version of Bartok itself. 10,051,871

lcscbench The front end of a C# compiler. 9,623,384

mandelform Mandelbrot set computation. 78,544

sat solver a SAT solver written in C#. 369,797

zinger A model checker for the zing model. 1,167,567

Table 1. Benchmarks.

Benchmarks Succ. Total Succ./Total (%)

ahcbench 67 67 100.0

asmlc 15,820 16,462 96.1

bartok 7,037 7,222 97.4

lcscbench 5,718 5,860 97.6

mandelform 12 12 100.0

sat solver 274 274 100.0

zinger 1,125 1,189 94.6

Geomean 97.9

Table 2. Number of Successfully Inferred Methods

Benchmarks Infer. TAL Infer./TAL (%)

ahcbench 3,320 5,936 55.9

asmlc 644,937 2,745,130 23.5

bartok 334,590 1,448,867 23.1

lcscbench 256,116 911,308 28.1

mandelform 3,732 4,716 79.1

sat solver 13,560 22,828 59.4

zinger 45,411 114,084 39.8

Geomean 39.8

Table 3. Type-Annotation Size (in bytes)

seven major benchmarks used in our previous work, which range
from 54KB to 21MB in object file size not including libraries
(see Table 1). We compile the benchmarks separately from the
libraries, to focus on the user programs. The object files include
type annotations for type inference. We compile with all of Bar-
tok’s standard optimizations (more than 40 of them) turned on,
except for three optimizations that our inference cannot yet handle:
array-bounds-check elimination, redundant-type-test elimination,
and inlined memory allocation.

About 98% of methods in the benchmarks are inferable (see Ta-
ble 2). All methods in the small benchmarks (ahcbench, sat solver,
and mandelform) are inferable. For the large benchmarks (asmlc,
bartok, lcscbench, and zinger), type inference fails on a small num-
ber of methods because the methods use unsupported language fea-
tures, such as delegates, or interact with unsafe code, say by using
Platform Invocation Services (PInvoke).

Table 3 compares the type-annotation sizes: type inference
needs about 23%-79% of the type annotation required by our pre-
vious certifying compiler, with a geometric mean of 40%, which
is about a 60% reduction on the type-annotation size. We see more
size reduction on large benchmarks than on small ones because
small benchmarks do not have many annotations to begin with and
types for static data and function signatures are more dominating
than those in large benchmarks.



Benchmarks Infer. Comp. Infer./Comp. (%)

ahcbench 0.1 4.8 1.9

asmlc 21.6 135.2 16.0

bartok 24.2 69.6 34.7

lcscbench 8.5 61.3 13.9

mandelform 0.1 10.5 1.3

sat solver 0.6 6.7 9.3

zinger 2.1 15.2 13.7

Geomean 8.2

Table 4. Type-Inference Time vs. Compilation Time (in seconds)

Table 4 shows the type-inference time compared with compila-
tion time (including writing metadata to file). The numbers were
measured on a PC running Windows Vista with a 3GHz quad core
CPU and 4GB of memory. Type inference in our current imple-
mentation is slower than type checking in the previous certifying
compiler: type inference takes about 1%-35% of compilation time,
with a geometric mean of 8%, whereas type checking in the previ-
ous certifying compiler takes less than 3% of the compilation time.

The difference is mainly because type inference is more sensi-
tive to the control flow structures of methods. Straight-line code is
easy to infer; type inference scans code only once and thus can be as
efficient as type checking. For methods with complex loops, type
inference sometimes takes much longer to reach a fixed point for
preconditions of basic blocks without the guidance of type anno-
tations. The type checker with full annotations needs to scan code
only once no matter how complex the code structure is, because a
basic block at each control merge point is annotated with its pre-
condition. The Bartok benchmark is an outlier for type-inference
time. It has more than 7,000 methods. The largest 23 methods in
the benchmark have complex control flow graphs and together take
about half of the total type-inference time.

One approach to getting more efficient type inference even with
complex control flow structures is to ask for slightly more type
annotation from the compiler, such as loop invariants, so that the
type inference engine can reach the fixed point faster. We consider
this approach future work.

One lesson we learned from our implementation experience is
that memoizing large types does not pay off when we do not com-
pare those types for equality often. State types in iTalX are large
and complicated because they model machine states. Our first im-
plementation memoized state types, which required substitutions
(because state types are quantified types) and structural equality,
and the type-inference time took about 3%-323% of the compila-
tion time (with a geometric mean of 36%). With no memoization of
state types and a few other fine-tunings, our current implementation
is much more efficient.

5. Related Work

Hindley-Milner type inference [13] is used by the ML and Haskell
programming languages. The Hindley-Milner algorithm discovers
omitted types by using unification to solve systems of equations be-
tween types. For a simple enough type system, this algorithm can
infer all types in a program without relying on any programmer-
supplied type annotations (unlike our forward dataflow analysis, it
does not require a method type signature as a starting point). Un-
fortunately, this remarkable result does not extend to all type sys-
tems. In particular, first-class quantified types are known to make
type inference undecidable [23]. Extensions to the Hindley-Milner
approach supporting first-class quantified types require some type
annotations [9, 11] or pack/unpack annotations [8]. Alternatives to

the Hindley-Milner approach, such as local type inference [20],
also require some type annotations. Although these extended and
alternative algorithms [8, 9, 11, 20] were developed for functional
languages, they could be applied to a typed assembly language like
iTalX by treating each basic block as a (recursive) function. Unfor-
tunately, this would force a compiler to provide type annotations on
some of the basic blocks, which our approach avoids.

Much of the difficulty in inferring first-class quantified types
stems from the broad range of types that type variables can repre-
sent. In the type ∃α. α, many type systems allow α to represent
any type in the type system, including quantified types like ∃α. α
itself. In order to accomplish type inference, iTalX restricts what
quantified variables may represent. In this respect, our work is most
similar to the Pizza language’s internal type system [18], whose
existential types quantify over named classes rather than over all
types. Like iTalX, Pizza’s internal type system defines a join opera-
tion over existential types. However, to the best of our understand-
ing, the operation computes the join of ∃α.IList(α) with itself

as a type of the form ∃α ≪ ~C.α, where ~C is a set of classes not

containing α. Regardless of the contents of ~C, this type cannot be
equivalent to ∃α.IList(α), and therefore cannot be the join. This
complication is simply a demonstration of how challenging infer-
ence of existential types can be.

SpecialJ [5] is a certifying compiler for Java that uses a proof
generator to create proofs of safety for assembly language. How-
ever, SpecialJ’s proof generation relies on compiler-generated loop
invariants, whereas iTalX infers loop invariants automatically.

With respect to inference in assembly language, our work is
most similar to Coolaid [2], which performs a forward dataflow
analysis to infer values and types of registers for code compiled
from a Java-like language. Coolaid’s inference introduces “sym-
bolic values” to represent unknown values, corresponding to ex-
istentially quantified variables in iTalX’s state types. Coolaid is
more specialized towards a particular source language and a partic-
ular compilation strategy than most typed assembly languages are,
whereas iTalX encodes objects and classes using more standard
general-purpose types (namely existential quantification). This
makes us optimistic that our framework will more easily grow to
incorporate more advanced programming language features, such
as generics with bounded quantification. Chang et al. [2] state that
“We might hope to recover some generality, yet maintain some sim-
plicity, by moving towards an ‘object-oriented’ TAL”. We envision
iTalX as exactly such an object-oriented TAL.

6. Conclusions

We have formalized and implemented type inference for iTalX, a
typed assembly language capable of verifying optimized assembly
code compiled from object-oriented languages like C# and Java.
Currently, the implementation completely infers the types for about
98% of functions in our benchmark suite. Inferring most of the re-
maining 2% appears to be a matter of engineering the inference
implementation to recognize idioms such as Bartok’s implementa-
tion of delegates. It may also require modifications to the compiler,
such as propagating types of null-pointer literals, but such mod-
ifications are minor compared to the effort of implementing type
preservation throughout a large compiler. Based on this, it appears
feasible to use inference as the primary mechanism for generating
TAL types from a large optimizing compiler, only rarely disabling
optimizations or falling back to a smaller type-preserving compiler.

Although our type system is not yet able to support all optimiza-
tions (e.g. array-bounds-check elimination), it supports the com-
mon optimizations essential to generating good code from object-
oriented languages. Only 3 out of more than 40 optimizations in
Bartok are not supported. Based on the abstract framework under-



lying our type system, we believe that inference can readily be ad-
justed to accommodate new language features. We are currently
investigating adding null-dereference checking and more powerful
array-bounds checking directly to our type system by expanding
the capabilities of our existential bounds. As languages like Java
and C# evolve, so will our inferable typed assembly language.
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Appendix. Interface-Method Lookup in Detail

Here we describe in detail how we type check the common but
surprisingly challenging process of looking up an interface method
implementation. Suppose we have an instance of some class α
implementing the interface IList, and we want to invoke the
method getCount declared in IList. A typical implementation
first loads the vtable for α from the instance. Then it must load
α’s interface table from the vtable. This table is an array of all
the interfaces implemented by α. Each entry in the interface table
corresponds to an interface implemented by α and consists of two
pieces of information about that interface: the runtime type as well
as the offset of the appropriate interface-method table from the
beginning of α’s vtable. So, the program has to go through each
index of α’s interface table until it finds an interface matching
IList. It then adds the offset at that index to the vtable to get
α’s interface-method table for IList. From that we finally retrieve
α’s implementation of getCount. This is all accomplished by
the assembly code in Figure 1 (for simplicity we assume that the
important fields for this example are always at offset 0).

Now we wish to type check this assembly code. First, we start
at the beginning of the block. There is an instance of IList at stack
offset -4, corresponding to the first stack slot, so we give that slot
the type HeapPtr(INS(α)), where α is an existentially quantified
class variable. We use the variable α to refer to the exact class of
this instance. We know α is a class, so we have the constraint αC.
Furthermore, we know the instance implements IList, so we also
have the constraint α ≪ IList. Since we have a HeapPtr in a
stack slot, we automatically open the name INS(α) to the record
type {R : HeapPtr(VTABLE(α)), . . . } (using the metainformation
provided by the compiler). Thus, the first stack slot is given the
following type:

HeapRecPtr(INS(α) : {R : HeapPtr(VTABLE(α)), . . . }+ 0)

This way we may both use the instance as an object in the heap and
have access to the fields of its record. Now, instruction 1) simply
copies this type into register EAX.

Instruction 2) replaces the type in EAX with the type of the first
field of the instance’s record: HeapPtr(VTABLE(α)). Once again,
we automatically open the name type to the following record type:

{R : HeapPtr(ITABLE(α)), . . . }

ITABLE(α) is the name for α’s interface table. Instruction 3) saves
the vtable for later use by copying EAX to the third slot on the stack.

Instruction 4) replaces the type in EAX with the type of the
first field of α’s vtable: HeapPtr(ITABLE(α)). Once again, we
automatically open the name type ITABLE(α) to a record type.
Because ITABLE(α) represents an array, this actually opens to the
following existentially quantified extended-record type:

∃ℓ.{R : Int(ℓ)} ◦ ITABLEENTRY(α)ℓ

The existentially quantified variable ℓ (the length of the array) is
automatically pulled into the environment. ITABLEENTRY(α) is
a fixed-length name representing the length-2-record type compris-
ing each entry of the interface table, which we will examine in more
detail later. Instruction 5) loads the first field of α’s interface table.
This field is the singleton integer type representing the length of the
array. Comparing with this value will enable us to ensure that the
assembly code is accessing the array with a valid index. Instruc-
tion 6) is an optimization which adds 4 to EAX so that EAX points
to the first element of the interface table’s array. We can handle this
optimization since our HeapRecPtr and RecPtr types have an offset.
Specifically, EAX will have the following type:

HeapRecPtr(ITABLE(α) : {R : Int(ℓ)} ◦ ITABLEENTRY(α)ℓ+4)

Note the offset +4, and that ℓ is now in the environment.
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1st 7→ HeapRecPtr(INS(α) : {R : HeapPtr(VTABLE(α)), . . . }+ 0)
2nd 7→ HeapRecPtr(RUNTIME(IList) : {. . . }+ 0)
3rd 7→ HeapRecPtr(VTABLE(α) : {R : HeapPtr(ITABLE(α)), . . . }+ 0)

C
C HeapRecPtr(RUNTIME(IList) : {. . . }+ 0) with HeapRecPtr(RUNTIME(β) : {. . . }+ 0)

Figure 2. An existentially quantified state type inferred during interface-method lookup

// stack offset -4 contains an instance of IList
// stack offset -8 contains runtime type of IList

1) mov EAX, [ESP-4] // load instance into reg
2) mov EAX, [EAX] // load vtable
3) mov [ESP-12], EAX // store vtable on stack
4) mov EAX, [EAX] // load interface table
5) mov EBX, [EAX] // load table’s length
6) addi EAX, #4 // move to head of array
7) movi ECX, #0 // start at index 0

L0:8) cmp EBX, ECX // compare length and index
9) jbe L1 // break if length <= index
10) mov EDX, [EAX+ECX*8] // retrieve runtime type
11) cmp EDX, [ESP-8] // compare with IList
12) je L2 // break from loop if equal
13) addi ECX, #1 // increment index
14) jmp L0 // continue looping

L1:15) throw exception // not an instance of IList
L2:16) mov EDX, [EAX+ECX*8+4]// load offset from table

17) add EDX, [ESP-12] // add offset to vtable
18) mov EAX, [EDX] // load getCount

// stack offset -4 contains an instance of IList
// EAX contains getCount implementation for the instance

Figure 1. The assembly code for looking up an interface method

Instruction 7) loads the constant 0 into register ECX (which
tracks the index into the interface table), so that ECX has the sin-
gleton integer type Int(0). The block starting at L0 iterates over
each interface-table entry until it finds the one (if any) correspond-
ing to IList. Notice that instruction 14) jumps back to L0 for the
next iteration. Normally, we would proceed to type the instructions
with ECX having type Int(0) until we get to instruction 14), at which
point we would join that type with the current type and repeat the
whole process. In the interest of saving time, we will simply replace
the type of ECX with Int(i), where i is a fresh existentially quanti-
fied integer variable representing the index of the current iteration.

Instruction 8) compares EBX, which has type Int(ℓ), with ECX,
which has type Int(i). The state type is augmented to note that
the condition code results from comparing Int(ℓ) with Int(i). If
ℓ ≤32+ i holds, instruction 9) jumps to instruction 15) to throw
a runtime exception as there is no IList entry. Otherwise, we can
only proceed to instruction 10) if i <32+ ℓ holds, so we add this
constraint to the environment when type checking instruction 10).

Instruction 10) accesses the interface array. Since 4 was added
to the address of the interface table earlier, EAX already points to
the first element of the array. Instruction 10) accesses this array at
offset ECX ∗ 8. Since ECX has type Int(i), we know the value of this
offset is i ∗ 8. Since the name ITABLEENTRY(α) always refers to
a record with 2 fields, amounting to 8 bytes of data total, we can
deduce that offset i ∗ 8 is accessing the first field of the ith index of
the array. The constraint i <32+ ℓ is in the environment due to the
earlier comparison, so we can ensure that this is a safe access into

the array. In order to load the first field of the ith index, we must
open the name ITABLEENTRY(α), which results in the following
existentially quantified record type:

∃β : βI, α ≪ β.

{

R : HeapPtr(RUNTIME(β))
R : IMTableOffset(α, β)

}

β represents the interface corresponding to that index, and the vari-
able is pulled out into the environment. The constraint βI indicates
that β is an interface, and the constraint α ≪ β indicates that
α implements β. The first field has type HeapPtr(RUNTIME(β)),
indicating it is the runtime type of β. Instruction 10) copies this
type into EDX and opens the name RUNTIME(β) to a record type as
usual. Furthermore, we tag the extended-record type for the inter-
face table with [last : i 7→ β], indicating that the last index accessed
was i and β is the interface corresponding to that index. This is a
feature of iTalX (not mentioned earlier) used specifically for any
extended-record types whose fixed-length name opens to an exis-
tentially quantified type, the above case being the most important
example. The purpose of this feature will be demonstrated later.

Instruction 11) compares the runtime type of IList with the
runtime type in EDX corresponding to interface β. The state type is
augmented to note that the condition code results from comparing
these two types. Figure 2 shows the entire existentially quantified
state type after instruction 11). Instruction 12) breaks from the loop
if the two runtime types are the same. Otherwise, we proceed to
instruction 13). No useful information is gained from knowing that
the runtime types differ, so the state type stays the same except
that the condition code is forgotten. Instruction 13) adds 1 to ECX,
so ECX is given the type Int(i + 1). Instruction 14) jumps back to
instruction 8), so we simply check that whether the current type is
a subtype of the type before instruction 8), which is the case due to
our earlier shortcut.

Instruction 12) could also break from the loop and proceed
to instruction 16). This can only happen if the runtime type of
IList matches the runtime type of β. From this, iTalX infers
that these two class types are equal and merges them, essentially
substituting all uses of β in the state type with IList. In partic-
ular, the tag we added earlier to the interface table’s extended-
record type becomes [last : i 7→ IList], so that we know that
index i corresponds to IList. Thus, when instruction 16) loads
the second field of index i into EDX, the type of that field is
IMTableOffset(α, IList). This type represents the integer offset
which, when added to HeapRecPtr(VTABLE(α) : {. . . } + 0),
results in HeapPtr(IMTABLE(α, IList)), which is precisely the
effect of instruction 17). IMTABLE(α, IList) is the name of the
record containing α’s implementations of IList’s methods, all of
which expect an instance of a subclass of α as the “this” pointer.
Instruction 18) fetches the first field from this record, which our
metainformation informs us corresponds to getCount. Thus, after
all this effort, iTalX is finally able to type check a call to getCount
using the original instance as the “this” pointer.


