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We present the first sound and complete decision procedure capable of validating nominal object-oriented

programs without type annotations in expressions even in the presence of generic interfaces with irregularly-

recursive signatures. Such interface signatures are exemplary of the challenges an algorithm must overcome

in order to scale to the needs of modern major typed object-oriented languages. We do so by incorporating

event-driven label-listeners into our constraint system, enabling more complex aspects of program validation

to be generated on demand while still ensuring termination. Furthermore, we define type-consistency as a novel

declarative notion of program validity that ensures safety without requiring a complex grammar of types to

perform inference within. While type-inferability ensures type-consistency, the converse does not necessarily

hold. Thus our algorithm decides program validity without inferring the types missing from the program,

and so we instead call it a type-outference algorithm. By bypassing type-inference, the proofs involving

type-consistency more directly connect the design of and reasoning about constraints to the operational

semantics of the language, simplifying much of the design and verification process. We mechanically formalize

and verify these concepts and techniques—type-consistency, type-outference, and label-listeners—in Rocq to

provide a solid foundation for scaling decidability beyond the limitations of structural types.
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1 Introduction
When faced with the challenge of validating a complex unannotated expression in a type-safe

language, type-inference immediately comes to mind. That is, one can ensure safety by determin-

ing how to ascribe types to the components of the expression so that it type-checks. This is so

commonplace that one often assumes validity of such programs is defined as type-inferability.

Consequently, decidability of program validity is often taken as decidability of type-inferability.

But when developing such decision procedures, one often encounters a problematic class of

programs: programs that have no contradictions but also no obvious ascribable types. Given these

programs, type-inferability forces a design choice: add more types to ascribe to these programs, or

add a stage to determine if there are non-obvious ascriptions. The former complicates the language

and proofs. The latter is not always easy to decide. In both cases, the grammar of types seems to

play an overbearing role, especially given that grammars tend to change over time.
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Here we introduce a novel notion of program validity for unannotated programs: type-consistency.
A type-consistent program is one that can be type-checked within some “consistent type space”. A
type space is akin to a grammar, so type-consistency allows one to accept a program by constructing

a grammar specific to that program (e.g. with abstract types representing subexpressions in the

program) provided the behavior of those types (e.g. assumed subtypings corresponding to flows in

the program) can be shown to be consistent (e.g. respect the operational semantics of the language).

In particular, the user-expressible types form a consistent type space, as does any safe grammar of

extended types, so type-consistency includes any notion of type-inferability.

Even though type-consistency is more permissive than type-inferability, we determined it is still

safe, and we found it to be easier to decide soundly and completely. Because a decision procedure for

type-consistency cannot be called a type-inference algorithm as it does not decide type-inferability,

we instead call it a type-outference algorithm as a pun on how such algorithms will generally work

by factoring unknown types out of constraints rather than filling them in. We apply these insights

concretely to nominal object-oriented generics, for which decidable type-inference has been an

open problem for decades despite significant relevance to many major industry languages. Although

type-consistency does not solve the problem entirely on its own, we found that it facilitates the

development of techniques and their proofs of correctness. In particular, we will illustrate how

the extended grammars used for type-inferability caused unexpected problems for the mechanical

verification of early attempts at this work. Because type-consistency bypasses the need for such

extended grammars entirely, it enabled us to develop a much simpler mechanical formalization and

verification of all the definitions and theorems presented here [Tate 2025].

In order to focus on high-level foundational concepts, here we formally address only one key

challenge of object-oriented generics: arbitrarily-recursive generic interfaces. For example, our

interfaces are restricted to monomorphic methods, and inheritance is restricted to just having a

common type that all interfaces inherit. Yet, despite these restrictions, decidable validation is still

quite challenging because structural subtyping with such interfaces is undecidable [DeYoung et al.

2024]. Thus, we exploit nominality in order to overcome the algorithmic limitations of structural

types. In particular, we introduce label-listeners as a controlled means for dynamically adding type

variables and constraints when lower bounds on the label—e.g. interface name—of an unknown type
are derived. Thus, although our calculus is minimal, our techniques provide critical foundations for

exploiting nominality to support more advanced features of object-oriented generics.

The paper is divided into two major parts: the intuition and the formalization. In Section 2, we

demonstrate how arbitrarily-recursive generic interfaces violate a key premise of existing algorith-

mic approaches. In Section 3, we discuss how incorporating event-driven concepts like label-listeners
enables our algorithm to support this feature. In Section 4, we illustrate how traditional means

for ensuring type-inferability using constraint-based algorithms can make significant demands on

the metatheory, which can cause problems for mechanical verification. In Section 5, we provide

insights into how we can develop a simpler, more direct proof by viewing constraint-derivation as

a direct construction of a proof of safety rather than as a means to make constraints easier to solve.

After contributing an informal understanding of the problems and solutions at hand, we move on

to our formal contributions. In Section 6, we define a very simple calculus that is still expressive

enough to require our innovations to overcome past obstacles. In Section 7, we introduce our novel

declarative notion of program validity, type-consistency, and prove it ensures safety without ensur-
ing type-inferability (though it accepts all type-inferable programs). In Section 8, we formalize our

type-outference algorithm, incorporating a mutable configuration state into constraint-derivation

in order to scale functionality while still ensuring termination. In Section 9, we prove that our

type-outference algorithm (efficiently) decides type-consistency. Altogether, these form a new

nominal foundation for decidable validity of programs without expression-level type annotations.
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Interface Method

java.util.stream.Stream<T>
<R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>>)

System.Thread.Tasks.Task<TResult>
Task<TNewResult> ContinueWith<TNewResult>(Func<Task<TResult>,TNewResult>)

scala.collection.immutable.Map[K, +V]
abstract def updated[V1 :> V](K, V1): Map[K, V1]

kotlinx.coroutines.CancellableContinuation<in T>
fun resume<R : T>(R, (Throwable, R, CoroutineContext) -> Unit?)

Fig. 1. Interfaces with generic methods from standard libraries of various major industry languages

interface Foo<in X> {
fun foo1(): Foo<Foo<Foo<X>>>
fun foo2(x: X): Foo<Foo<Foo<X>>>

}

fun bar1(i1: Foo<Any>) {
var v1 = i1
while (true)

v1 = v1.foo1()
}

fun bar2(i2: Foo<Any>) {
var v2 = i2
while (true)

v2 = v2.foo2(v2)
}

Fig. 2. Running example of challenging programs to validate

2 Algorithmic Challenges
While many interfaces in practice are quite simple (albeit sometimes quite large), projects tend

to have a few critical interfaces with complex method signatures. For example, Figure 1 presents

interfaces from standard libraries acrossmajor industry languageswith amethod that is itself generic,
i.e. parametrically polymorphic. In some cases, the signature is furthermore recursive, i.e. referencing
the interface declaring the method, and even irregularly so, meaning with type arguments differing

from the type parameters of the declaring interface. Each of these are problematic because they

cause the structural encoding of these generic interfaces to use features that are known to be

undecidable [DeYoung et al. 2024; Pierce 1992].

While generic methods are beyond the scope that we can cover here, we use irregular recursion

as a first proxy for the challenges posed by such critical generic interfaces. As an example, the

interface in Figure 2 has been minified to illustrate why even just this feature poses a significant

challenge. The interface Foo has method signatures that reference Foo applied to type arguments

that are syntactically larger than its type parameter X. (The reason that the return types are not

simply Foo<Foo<X>> is that such a signature would not be contravariant with respect to X. Note
that X is declared as an in type parameter, which here means it is contravariant, so that Foo<𝜏> is

a subtype of Foo<𝜏 ′> whenever 𝜏 is a supertype of 𝜏 ′—note the change from sub- to super-.) Such

an interface signature is expansively recursive, and as such it cannot be structurally encoded using

regular—i.e. parameterless—fixed-point types. Regularity has been assumed by prior works on

decidable inference [Binder et al. 2022; Castagna et al. 2016; Dolan 2017; Dolan and Mycroft 2017;

Jim and Palsberg 1999; Palsberg and O’Keefe 1995; Parreaux 2020; Parreaux and Chau 2022; Pottier

1998b,b; Sekiguchi and Yonezawa 1994; Tiuryn and Wand 1993],
1
but unfortunately the assumption

does not hold in practice for many major typed object-oriented languages. In the following we

illustrate why such signatures make validation so challenging.

1
MLstruct [Parreaux and Chau 2022] does support methods with irregularly-recursive signatures and even type parameters,

but each invocation of these methods needs to effectively explicitly specify the receiver’s intended interface name so that

the signature can be resolved prior to inference, whereas neither we nor industry languages need such annotation.
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2.1 Infinite Chains of Supertypes
Consider the two example programs also in Figure 2. Both these programs have a mutable variable,

v1 or v2, without a type annotation. Both programs also use an Any type, which here all interfaces

inherit (but which is not a top type here).

One way to attempt to validate these programs is to use the type of the initializing expression as

the inferred type of the mutable variable, which for both programs would be Foo<Any>. However,
due to subtyping, this initial type can be overly precise: subsequent assignments might not be as-

signable to that initial type, but they could be assignable to some supertype thereof. For example, the

assignment in the loop has the type Foo<Foo<Foo<Any>>>, which—because Foo is contravariant—is
a supertype rather than a subtype of Foo<Any>. This problem with overprecise inference arises

frequently in practice particularly due to null being a common initializing expression.

As such, a second way to attempt to validate these programs is to progressively relax the inferred

type of a mutable variable as the variable is subsequently assigned expressions with less precise

types. This relaxation might require revalidating parts of the program. In our example programs,

relaxing the variable’s type to Foo<Foo<Foo<Any>>> requires revalidating the loop body with this

less precise type. This revalidation results in assigning an even less precise type to the variable:

Foo<Foo<Foo<Foo<Foo<Any>>>>>.
Unfortunately, our example programs demonstrate that even this simple type system admits an

infinite chain of supertypes: for any 𝑖 ∈ N, Foo2𝑖+1<Any> is a subtype of Foo2𝑖+3<Any>. This means

such iteration continues forever, failing to ever find a fixed point. Thus, work ensuring subtyping

is decidable [Greenman et al. 2014; Kennedy and Pierce 2007] is only one step towards the goal.

2.2 Infinite Derivations of Constraints
Rather than iterate over the lines of the program, another approach is to collect subtyping constraints

across the entire (encapsulated portion of) the program—introducing “flexible” type variables

as placeholders for unknown types—and then reducing the constraints until the unknowns are

solvable. In some cases, the solutions are constructed by the algorithm during constraint-reduction

or satisfiability-checking [Castagna et al. 2016; Dolan 2017; Dolan andMycroft 2017; Fuh andMishra

1988, 1989, 1990; Kaes 1992; Kozen et al. 1994; Mitchell 1984; Palsberg et al. 1997; Sekiguchi and

Yonezawa 1994; Smith 1991; Stansifer 1988; Tiuryn and Wand 1993]. In other cases, the constraints

are reduced to a point where solutions for the unknowns are guaranteed to exist, but the algorithm

never actually constructs them [Aiken and Wimmers 1993; Aiken et al. 1994; Binder et al. 2022;

Jim and Palsberg 1999; Palsberg and O’Keefe 1995; Parreaux 2020; Parreaux and Chau 2022; Pottier

1998a,b; Trifonov and Smith 1996]. In our view, these latter cases are primarily type-outference

algorithms deciding type-consistency, but the respective type grammars have been extended in

order to ensure that type-consistency furthermore implies type-inferability so that these can also

be classified as traditional type-inference algorithms.

A key challenge for these algorithms is to ensure that constraint-reduction terminates. For

this reason, those that support generic interfaces restrict them to be regularly recursive. This

ensures that constraint-reduction can remain within a finite set of types; thus all infinite reductions

necessarily cycle and can be short-circuited using memoization.

Unfortunately, our example interface Foo requires relaxing this restriction, and our example

programs indeed cause these algorithms to fail to terminate. In particular, the method-invocation

sites are processed into a constraint that the unknown receiver type must have that method

with some signature that is compatible with the unknown input and result types. Initially, the

unknown receiver type is lower-bounded by just Foo<Any>, which does have the required method.

Its result type for that method is Foo<Foo<Foo<Any>>>, which becomes a derived lower bound
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open class Biz1 {
open fun biz() { baz1() }
open fun baz1() { ... }

}

open class Biz2 {
open fun baz2() { ... }
open fun biz() { baz2() }

}

fun buzz(b1: Biz1, b2: Biz2) {
val v = if (flip()) b1 else b2
v.biz()

}

Fig. 3. Example of a challenging program to invalidate

on the unknown result type of the invocation site. That unknown is a lower bound of the loop

variable’s unknown type, which itself is a lower bound of the receiver’s unknown type; consequently,

Foo<Foo<Foo<Any>>> is derived as another lower bound for the receiver. This in turn is checked

to have a compatible signature, from which yet another constraint on the result’s unknown type is

derived, which causes constraint-derivation to proceed forever.

Thus, it seems we need a more specialized technique for method invocation in order to ensure

termination even in the presence of irregularly-recursive generic interfaces.

2.3 Nominal Method Invocations
Another issue is that many languages need to be able to reject programs that many existing

approaches would need to accept. To understand why, consider the programs in Figure 3. While

both open (i.e. inheritable) classes Biz1 and Biz2 have a (open, i.e. overridable) biz method, in

many implementations (such as the JVM) the address of their objects’ implementations for biz
might reside at different offsets within the virtual-method table. As such, in order to use offset-based

implementations (or straightforwardly compile to the JVM), one often wants to reject the invocation

v.biz(). That is, one wants method invocations to be nominal. This is in contrast to existing

approaches, which treat method invocations as structural, relying on them being implemented

uniformly as dictionary-lookups in order to model them as interface-independent constraints.

Interestingly, we will be able to use the same technique to simultaneously enforce this restriction

and prevent the infinite generation of constraints even for irregularly-recursive generic interfaces.

3 An Event-Driven Type-Outference Algorithm
We overcome the aforementioned challenges by incorporating event-driven programming into

constraint-based program validation. Here we informally discuss the technique and walk through

its application to our (first) running example: bar1 from Figure 2.

3.1 Label-Listeners
The aforementioned algorithm essentially resolves the method foo1 for each derived lower bound

of the receiver. This fails to work because each time it does so it ends up creating a new lower bound

for the receiver. Note, though, that each of these lower bounds is of the form Foo<. . .>. Our key
insight is that, once we know the receiver is at most a Foo—regardless of the type arguments—then

we can determine its generic signature: () -> Foo<Foo<Foo<X>>> for some X. While the concrete

signature will differ for each lower bound due to differing type arguments, they will each be

instantiations of this generic form. However, because there might in general be many interfaces

with a foo1 method, each with a different signature, in order to apply this insight we need some

way to react to such abstracted information gained during constraint-derivation.

To this end, we introduce label-listeners. These listen to the label (e.g. interface name—but not type
arguments) of each lower bound derived for certain unknown types during constraint-derivation.

If the set of labels lower-bounding a label-listener changes, eventually a corresponding action fires,

adding unknowns and constraints to the system in order to accommodate the implications of that
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change. For example, we can install a label-listener on the receiver of the invocation of foo1, whose
action—in the case that the receiver’s label becomes lower-bounded by Foo—is to introduce an

unknown 𝑋 and to require the receiver to be a subtype of Foo<𝑋> and the result to be a supertype

of Foo<Foo<Foo<𝑋>>>. This effectively resolves the method at most once per lower-bounding label
rather than at least once per lower-bounding type.

By making a label-listener sensitive to only changes in bounding labels, rather than types, we

cap how many times its corresponding action can fire and thereby cause the set of unknowns

and constraints to expand. Although not necessary for the features in this paper, these actions

can more generally even introduce more label-listeners so long as the total collection of potential

label-listeners remains finite, which is easy to guarantee if label-listeners are tied to syntactic

elements of the (finite) program—such as method-invocation sites. By capping how many times

each label-listener’s action can fire, we ensure termination.

3.2 Supporting Nominal Method Invocation
Now consider the effect this strategy for method-resolution has on the buzz program from Figure 3.

The receiver of biz acquires two lower bounds: Biz1 and Biz2. If we were to resolve biz for each

lower bound, we would accept this program because both lower bounds provide an appropriate

biz method. However, using a label-listener enables us to resolve biz differently for each set of
lower-bounding labels (so long as the action is more restricting the larger the set is).

This gives us a choice in the case where that set is both Biz1 and Biz2. We could resolve the

method for both labels, conceptually making the receiver’s type be the union of Biz1 and Biz2.
Alternatively, we could simply reject the invocation due to Biz1 and Biz2 having no common

superinterfaces. The former choice recreates structural method invocation, accepting the buzz
program. Unfortunately, this is problematic for the compilation strategies discussed in Section 2.3.

The latter choice, on the other hand, rejects the buzz program. In particular, with the latter choice

we essentially are requiring that every label-listener be resolved to use at most one interface’s

method signature, directly supporting nominal method invocation. We go with this latter choice,

though it is worth noting that label-listeners are flexible enough to support the former choice.

3.3 Unreachable Method Invocations
Initially, all label-listeners are tentatively configured to have no lower-bounding labels. For method-

resolution, this means that initially all invocation sites are tentatively resolved to be unreachable,

thereby imposing no constraints on the types of the arguments or result. As constraints are

processed, lower-bounding labels will be identified, and label-listener actions will fire to constrain

these types. However, it is possible that, at the end, no lower-bounding labels are determined for the

receiver of a method invocation. In this case, one can compile the site as unreachable; for example,

on the JVM one can emit an exception throw to bypass its limited unreachability reasoning. Having

this unreachable-resolution option is important because otherwise we would need to arbitrarily

pick an interface providing the method and hope the resulting constraints on the argument and

result types are unproblematic.

3.4 Walkthrough
Nowwewalk through our type-outference algorithm as applied to bar1 of Figure 2. Type-outference
first recurses through this program to construct a core graphical representation of the constraints at

hand. This representation can be found in Step (1) of Figure 4. A straightforward construction would

introduce many more unknowns, but to keep the visualization compact we exploit transitivity

to optimize away the uninteresting unknowns. As such, the visualization starts with just one

unknown—V1—standing in for the unknown type of the mutable variable v1.
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(1)
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ℓ1 .Foo.X

Foo

Foo

Foo

(6)

Foo

Any V1

V1

ℓ1:=Foo

ℓ1 .Foo.X

ℓ1 .Foo.X

Foo

Foo

Foo

(7)

Foo

Any V1

V1

ℓ1:=Foo

ℓ1 .Foo.X

ℓ1 .Foo.X

Foo

Foo

Foo

(8)

Foo

Any V1

V1

ℓ1:=Foo

ℓ1 .Foo.X

ℓ1 .Foo.X

Foo

Foo

Foo

(9)

Foo

Any V1

V1

ℓ1:=Foo

ℓ1 .Foo.X

ℓ1 .Foo.X

Foo

Foo

Foo

Upper Node

Lower Node

Type Argument

Unknown

Label-Listener

Constraint

New

Queued

Processing

Processed

Fig. 4. Example of type-outference with label-listeners (highlight indicates contributors to current step)

Most components of the graphical representation can be sorted into “lower” and “upper” com-

ponents, so that all constraints indicate that a lower component must be a subtype of an upper

component. The visualization displays lower components along the bottom, and upper compo-

nents along the top, with each subtyping constraint visualized as a dashed edge between a lower

component (the subtype) and an upper component (the supertype). On the left of Step (1) is the

representation of the type Foo<Any> of the input i1. Being the type of an input parameter, it

imposes only a lower bound, and as such the Foo node is visualized as a lower component. The

↑ edge indicates the node’s type argument for the type parameter X of the Foo interface. Because X
is contravariant, such edges will always cross ↑ or ↓ between lower and upper components. In this

case, it points to an
Any

node.

In the middle is the representation of the unknown V1 introduced to represent the unknown

type of the program variable v1. Such unknowns are special in that they can occur as both lower

and upper bounds in constraints, which is why V1 V1 spans the vertical.

On the right is the representation of the single label-listener ℓ1 corresponding to the single

method-invocation site in bar1, which the algorithm initially tentatively resolves as unreachable,

as visualized by
ℓ1⋖ . In order to accommodate the changing configurations of label-listeners
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without requiring backtracking, they are restricted to be upper components. As this example will

illustrate, when a derived constraint determines that a tentative resolution would fail due to a newly

derived lower-bounding label on the label-listener, it updates the resolution to a new tentative

solution based on the newly understood constraints (if any potential solutions remain). (Of course,

one could maintain some information during construction to avoid many of these re-resolutions.)

Once the upper and lower components of the graphical representation are constructed, type-

outference proceeds to reasoning about the constraints through a seeding and saturation process:

(1) The seeding constraints are those capturing the guaranteed flows in the expression. In this

case, there are two such flows: from the input i1 to the initializing assignment of v1, and from
the use of v1 to the label-listener for the invocation site of foo1. (Because the invocation is

tentatively resolved as unreachable, the flow from its result to v1 is not yet guaranteed.) In
Figure 4, we use for constraints being added in the current step.

(2) Nearly every step is the processing of a constraint. In the previous step, we added two

constraints, only one of which is processed at a time. We use for constraints in

the queue, for the constraint that is currently being processed, and for

constraints that have been processed. When we process a constraint, we completely ignore

any queued constraints. Because of this, the constraint from Foo<Any> to V1 has no immediate

consequences. It adds a lower bound to V1, but when we examine V1 for upper bounds

(we highlight any additional components that are examined while processing the current

constraint), we ignore the queued upper bound from V1 to ℓ1.

(3) Next we process that constraint from V1 to ℓ1. This adds an upper bound to V1. Because V1
has a processed lower bound, we transitively compose the two constraints, resulting in a new

constraint from Foo<Any> to ℓ1. This marks a key characteristic of outference algorithms:

we do not use these constraints to determine what V1 must be; we only explore what their

transitive implications are, conceptually pulling the unknown V1 out of the constraints.
(4) Next we process the constraint from Foo<Any> to ℓ1. This adds a new lower-bounding

label—Foo—to the label-listener ℓ1. This new label is incompatible with ℓ1’s current tentative

resolution. As such, ℓ1’s action fires. According to the new collection of lower-bounding

labels, the new best resolution candidate for the invocation site is the Foo interface.

(5) The new resolution uses the signature of foo1 declared by Foo. The X type argument of

the receiver is unknown, so we introduce an unknown—ℓ1.Foo.X—to represent it. ℓ1’s ten-

tative resolution is updated to be Foo<ℓ1.Foo.X>. Because this was prompted by the new

lower bound Foo<Any> on ℓ1, a constraint is added to make ℓ1 .Foo.X a subtype (due to con-
travariance of X) of Any. Lastly, the label-listener’s action adds nodes to represent the type

Foo<Foo<Foo<ℓ1.Foo.X>>> in Foo.foo1’s substituted signature, as well as adds a constraint

to make it a subtype of V1 due to the now-guaranteed flow from the invocation’s result to v1.
(6) We first process the newly added constraint between the type arguments of the constraint

we just processed, which has no consequences because ℓ1.Foo.X has no lower bounds.

(7) We next process the constraint that arose from the new result type and flow. In this case, we

compose it using transitivity via V1 to add a constraint from Foo<Foo<Foo<ℓ1.Foo.X>>> to ℓ1.

(8) We process this newly added constraint between a Foo node and a tentatively Foo label-

listener, adding a new constraint between their type arguments.

(9) We process that newly added constraint from ℓ1 .Foo.X to Foo<Foo<ℓ1.Foo.X>>, which has no

consequences because ℓ1.Foo.X still has no lower bounds.

At this point, all constraints have been processed without error. Because saturation determined

that the constraints were consistent, our algorithm accepts the program, with ℓ1’s invocation site

resolved as Foo.foo1.
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3.5 Guaranteeing Termination
Note that the only time nodes were added was when a label-listener’s action fired to change a

tentative method-resolution. Because there are only a finite number of method-invocation sites

in the program, there are only a finite number of label-listeners in the graphical representation,

and each firing necessarily moves the nominal resolution further up the well-founded inheritance

hierarchy. As such, saturation necessarily terminates. In particular, with there being only a finite

number of components (after the relevant finite number of label-listener actions have fired), there

can only be a finite number of constraints to process. By using this finite graphical representation,

when we derive new constraints, we can track which of them have already been processed, and we

can be guaranteed that eventually all of them will have been processed, even in the presence of

irregularly-recursive generic interfaces.

4 Proof Challenges
After developing such an algorithm, traditionally one proves that it decides type-inferability,

sometimes extending the grammar of types in order to express the solutions to consistent constraint

sets. But this approach requires complex constructions that seem to us to obfuscate rather than

elucidate the reasonswhy our algorithmworks correctly.We even discovered that these complexities

create concrete obstacles when one attempts to mechanically verify this approach.

4.1 Extending the Grammar
At the end of our walkthrough, we concluded with the following constraints on our unknowns

(which imply the remaining constraints):

Foo<Any> <: V1 V1 <: Foo<ℓ1.Foo.X> Foo<Foo<Foo<ℓ1.Foo.X>>> <: V1

ℓ1.Foo.X <: Any ℓ1 .Foo.X <: Foo<Foo<ℓ1.Foo.X>>

These constraints can be solved with simple types using the assignments V1 := Foo<Foo<Any>>
and ℓ1.Foo.X := Foo<Any>. However, if we had applied our algorithm to bar2 instead, then we

would have one more constraint to account for (left below) and its derived implication (right below):

V1 <: ℓ1.Foo.X Foo<ℓ1.Foo.X> <: ℓ1 .Foo.X

In this case, there is no solution expressible with simple types; the solutions for both V1 and ℓ1.Foo.X
must necessarily be of the form “Foo applied to itself”. Such a type requires extending the grammar,

say with regular (i.e. unparameterized) equirecursive fixed points: 𝜇𝑡 .Foo<𝑡>.
Should we choose to accept bar1 but reject bar2, we would encounter some problems. First,

distinguishing the two circumstances requires another step in the algorithm. Even if this additional

step were decidable, performing it takes time. Second, many languages also support overloading,

so if we were to eventually add regular equirecursive types to one, then overloadings that were

rejected due to this restriction would become valid, thereby potentially changing the run-time

behavior of existing programs. In general, this latter point suggests such languages would benefit

from a specification of program validity that is not so sensitive to the current grammar of types.

Thus, we opt to accept both programs. This, in turn, requires a proof of type-inferability to use an

extended grammar. In this example, solely regular equirecursive types are sufficient, but even basic

features like inheritance seem to further necessitate unions because an unknown type can be lower-

bounded by interfaces that have multiple common superinterfaces but are not themselves directly

related. And as one looks ahead to advanced features—flow-sensitive refinements of variable types

or higher-kinded polymorphism—it seems even arbitrary equirecursive types might eventually be

necessary. Such a feature creep in the complexity of the extended grammar, even if the types that
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Parameter Interface: Type.

Parameter Arity: Interface → Type.

Inductive UnionType {InterfaceType: Type} {Var: Type}: Type
:= utvariable (variable: Var)
| utbottom
| utunion (ltype rtype: UnionType)
| utinterface (type: InterfaceType).

Arguments UnionType : clear implicits.

#[projections(primitive)]
CoInductive InterfaceType {Var: Type}: Type
:= { itinterface : Interface;

itargument (parameter: Arity itinterface) : UnionType InterfaceType Var }.
Arguments InterfaceType : clear implicits.

Definition ExtendedType (Var: Type): Type
:= UnionType (InterfaceType Var) Var. (* Rocq accepts this definition. *)

Definition utsubst {InterfaceType InterfaceType': Type} {Var Var': Type}
(itsubst: InterfaceType → InterfaceType')
(f: Var → UnionType InterfaceType' Var')

: UnionType InterfaceType Var → UnionType InterfaceType' Var'
:= fix utsubst (type: UnionType InterfaceType Var): UnionType InterfaceType' Var'

:= match type with
| utvariable variable ⇒ f variable
| utbottom ⇒ utbottom
| utunion ltype rtype ⇒ utunion (utsubst ltype) (utsubst rtype)
| utinterface type ⇒ utinterface (itsubst type)
end.

Definition itsubst {Var Var': Type} (f: Var → ExtendedType Var')
: InterfaceType Var → InterfaceType Var'

:= cofix itsubst (itype: InterfaceType Var): InterfaceType Var'
:= {| itinterface := itype.(itinterface);

itargument parameter := utsubst itsubst f (itype.(itargument) parameter) |}.

Definition etsubst {Var Var': Type} (f: Var → ExtendedType Var')
: ExtendedType Var → ExtendedType Var'

:= utsubst (itsubst f) f. (* Rocq rejects this definition—specifically that of itsubst. *)

Fig. 5. Encoding of the extended type grammar (ExtendedType) and substitution thereon (etsubst) in Rocq—
the latter is unnecessarily rejected due to lack of support for mixing corecursion and recursion [Pédrot 2015]

would actually be written by users could remain non-recursive, raises concerns for the long-term

practicality of this approach.

4.2 Metatheoretic Limitations in Mechanized Proofs
We discovered that extending the grammar was particularly problematic for mechanical verification.

In the extended grammar, we want to be able to apply Foo to itself recursively, but we do not want

to be able to apply a union to itself recursively. That is, all equirecursion should be guarded by an

interface application. But in between such recursions one needs to be able to have an arbitrary

(finite) number of union applications.

This is most naturally represented using mutually-defined coinductive and inductive types. Rocq

does not directly support this, but it can encode such mutual recursion, as given by the definition

of ExtendedType in Figure 5. However, Rocq fails to support the corresponding mutual recursion

required for defining substitution over this grammar, given by etsubst in Figure 5. In particular,
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the cofix fails to recognize that the recursive call to itsubst in utsubst is guarded; this failure is

caused by the fix enclosing the call [Pédrot 2015], which Rocq lacks relevant rules for.

Even if Rocq adds support for this feature, its necessity indicates that this proof technique is

heavy-handed for the goal at hand. Furthermore, we found these constructions uninsightful. We

came to wonder if there were a more direct way to prove safety, one that would be simpler (or at

least less demanding of the metatheory) and would better capture why the algorithm is effective.

5 Constraint-Consistency as a Proof of Safety
Rather than viewing constraint-derivation as a means to make constraints easier to solve, we view

constraint-derivation as directly constructing a proof that the program is safe. For example, deriving

constraints from transitivity through unknowns is conceptually simply connecting in-flows to

out-flows. Checking that constraints between interface types have compatible interfaces is simply

checking that produced values are being consumed in compatible ways. Deriving constraints

between their respective type arguments is then capturing the indirect flows stemming from that

potential interaction. Many have observed the close relationship between flow-analysis and type-

inference and that the former can often safely admit more programs than the latter [Palsberg and

Schwartzbach 1992, 1995]. But rather than extending the type grammar to make type-inference

equivalent to flow-analysis [Palsberg and O’Keefe 1995], we prove safety directly from this connec-

tion to flow.

To that end, we consider the type variables introduced during constraint-collection not as un-
known types but rather as abstract types, with the collected constraints describing the key semantic

properties of these abstract types. In other words, constraint-collection is essentially constructing a

customized type space in which that particular program type-checks. For example, bar2 in Figure 2

would type-check in a grammar of types extended with type-constants V1 and ℓ1.Foo.X so long as

subtyping were also extended with rules for those constants corresponding to the collected con-

straints. Of course, extending subtyping rules arbitrarily can lead to unsafety. Constraint-derivation,

then, is ensuring that this custom type space is consistent with the operational expectations of the

execution semantics and therefore safe to use.

From this perspective, the extended grammar with fixed points and unions is merely attempting

to establish a uniform type space that all such consistent type spaces embed into. Thus, the extended

grammar’s metatheoretic complexity stems from its need to be all-encompassing. By formalizing a

means for each program to use its own type space, we will be able to directly use the consistency of

a program’s derived constraints as its proof of safety and bypass this complex extended grammar.

In our experience, making this connection more direct has provided insights into how we can safely

extend a language with new features.

6 A Minimal Calculus
Now we finally discuss our contributions formally. To that end, we introduce a calculus, one made

extremely small in order to focus on the key concepts behind type-consistency and type-outference.

6.1 Grammar
The grammar of our calculus is presented in Figure 6. It consists of three sections.

The first section specifies the grammar of user types 𝜏 , which are the types denotable by the user.

A user type is either a type variable 𝛼 , the type Any, or an interface 𝐼 applied to type arguments.

The notation 𝜏 indicates the grammar for a list of types. Note that there are no top, bottom, union,

intersection, or fixed-point types, and at no point will we define an extended grammar adding such

types. In particular, the role of Any is not to provide a top type or to make constraint-solving easier;
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Type Variable 𝛼

Interface 𝐼

User Type 𝜏 ::= 𝛼 | Any | 𝐼 ⟨𝜏⟩
Variance ± ::= + | −
Kind Context Θ ::= ⟨±𝛼⟩𝛼
Method 𝑚

User Method Signature M ::= 𝜏 → 𝜏

User Body Signature B ::= {𝑚 : M}𝑚
Hierarchy H ::= (𝐼 ⟨Θ⟩ : B)𝐼
Variable 𝑥

Expression 𝑒 ::= 𝑥 | 𝑒.𝑚(𝑒) | 𝐼 {𝑏}
Body 𝑏 ::= {𝑚(𝑥) := 𝑒}𝑚
Program P ::=H ⊩ 𝑒 : 𝜏

Fig. 6. Grammar—· denotes lists, and ⟨·⟩𝛼 , {·}𝑚 and (·)𝐼 denote ordered finite maps with respective keys

Value 𝑣 ::= 𝐼 {𝑏}
𝑒 → 𝑒

𝑒 → 𝑒′

𝑒.𝑚(𝑒′′) → 𝑒′ .𝑚(𝑒′′)
𝑚 ∈ 𝑏 (where [𝑥 ↦→ 𝑒] denotes capture-avoiding substitution)

𝐼 {𝑏}.𝑚(𝑒) → 𝑒𝑏𝑚 [𝑥𝑏𝑚 ↦→ 𝑒]

Fig. 7. Operational semantics

it simply exists to enable non-trivial subtyping relationships between our user types and to support

our running example.

The second section specifies the grammar of a hierarchy H . Each interface 𝐼 in a hierarchy H =

(𝐼 ⟨ΘH
𝐼
⟩ : BH

𝐼
)𝐼 ∈H has a corresponding kind context ΘH

𝐼
. This kind context specifies the type

parameters of the interface and their corresponding variance (+ for covariant or− for contravariant);

the notation ⟨±𝛼⟩𝛼 denotes a list (so order matters) of ±𝛼 elements wherein any 𝛼 occurs in this list

at most once (thereby also encoding a finite map). Lastly, each interface has a user-expressible body

signature BH
𝐼
. Such a body signature specifies the methods𝑚 declared by that interface, along

with a user-expressible method signature M (which is simply an input type and a result type) for

each such method. More generally, when grammatical elements (such as H , Θ, and B) have an

obvious interpretation as records, we will use it as a superscript to denote the obvious projection,

sometimes also with a subscript when that projection is indexed (such as in ΘH
𝐼
, ±Θ

𝛼 , andMB
𝑚 ).

The third section specifies the grammar of programs P. A program P = H P ⊩ 𝑒P : 𝜏P

is a (closed) expression along with an expected (closed) type within a specified hierarchy. An

expression 𝑒 is either a (program) variable, a method invocation, or an object instantiation. An

object instantiation specifies the interface 𝐼 being instantiated and a body 𝑏 comprised of the

method implementations of the object. Note that there are no types within an object instantiation;

both the input type and the result type of all method implementations are missing. Note also that no

type arguments are given for the interface. Thus, only the interface name is given, and everything

else needs to be outferred.
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H | Θ ⊢ 𝜏 : ±
𝛼 ∈ Θ

H | Θ ⊢ 𝛼 : ±Θ
𝛼 H | Θ ⊢ Any

for all ±′𝛼 ∈ ΘH
𝐼
, H | Θ ⊢ 𝜏𝛼 : ± · ±′

H | Θ ⊢ 𝐼 ⟨𝜏𝛼 ⟩𝛼∈ΘH
𝐼
: ±

Fig. 8. Type validity, where ± · ± is notation for + · + = + and + · − = − and − · + = − and − · − = +

⊢ H H | Θ ⊢ B H | Θ ⊢ M

for all 𝐼 ∈ H , H | ΘH
𝐼

⊢ BH
𝐼

⊢ H
for all𝑚 ∈ B, H | Θ ⊢ MB

𝑚

H | Θ ⊢ B

H | Θ ⊢ 𝜏 : −
H | Θ ⊢ 𝜏 ′ : +
H | Θ ⊢ 𝜏 → 𝜏 ′

Fig. 9. Hierarchy validity

6.2 Operational Semantics
The operational semantics of our calculus is provided in Figure 7. A value 𝑣 is simply an arbitrary

object instantiation. Method invocation simply looks up the corresponding method implementation

(if it exists) in the object body and substitutes its input with the argument. (We use a lazy semantics

simply because it is simpler to mechanically formalize.)

6.3 Type Validity
Figure 8 specifies when a type has the appropriate variance with respect to a kind context Θ (and

its type variables are within scope). For example, the rule for type variables specifies that a type

variable 𝛼 has the variance ±Θ
𝛼 assigned to it by the kind context Θ (supposing there is any such

assignment). Note that the rule for interface types uses variance multiplication, which is defined in

the caption of Figure 8.

Lemma 6.1. Given a hierarchy H , a kind context Θ, a type 𝜏 , and a variance ±, H | Θ ⊢ 𝜏 : ± is
decidable.

Proof. The decision procedure is a standard syntactic process. □

6.4 Hierarchy Validity
The hierarchy of the program must respect standard scope and variance, as formalized in Figure 9.

In particular, each interface’s body signature in the hierarchy must respect that interface’s kind

context (because a hierarchyH is a finite map, the notation 𝐼 ∈ H indicates 𝐼 is in the domain of

this map). This holds if each method signature in the body signature respects that kind context.

Specifically, each input type must be contravariant, and each result type must be covariant.

Lemma 6.2. Given a hierarchyH , ⊢ H is decidable.

Proof. The decision procedure is a standard syntactic process. □

7 Type-Consistency
The last step of formalizing our calculus is program validity. To this end, we introduce a novel

notion of program validity: type-consistency. Rather than using a fixed grammar of types for all

programs, type-consistency permits each program to be validated using its own space of types.

However, in order to ensure safety, such a type space must satisfy an additional consistency property.
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H ⊢ 𝜏 <: 𝜏

H ⊢ 𝛼 <: 𝛼 H ⊢ Any <: Any

for all ±𝛼 ∈ ΘH
𝐼
, H ⊢ 𝜏𝛼 <:± 𝜏 ′𝛼

H ⊢ 𝐼 ⟨𝜏𝛼 ⟩𝛼∈ΘH
𝐼
<: 𝐼 ⟨𝜏 ′𝛼 ⟩𝛼∈ΘH

𝐼
H ⊢ 𝐼 ⟨𝜏⟩ <: Any

Fig. 10. User subtyping, where 𝑅± is notation for 𝑎 𝑅+ 𝑏 = 𝑎 𝑅 𝑏 and 𝑎 𝑅− 𝑏 = 𝑏 𝑅 𝑎

7.1 Type Space
We need a way to reason about types without restricting ourselves to a specific grammar of types.

To this end, we introduce type spaces (using the notation 𝑅± defined in the caption of Figure 10).

Definition 7.1. A type space T in a hierarchyH consists of

• a set of “types” (whose elements are referenced by 𝑇 ∈ T ),

• a type AnyT ∈ T ,

• for each interface 𝐼 ∈ H and ΘH
𝐼
-sized tuple of types 𝑇 , a type 𝐼 ⟨𝑇 ⟩T ∈ T ,

• a preorder <:T on types satisfying, for all interfaces 𝐼 ∈ H and type arguments ⟨𝑇𝛼 ⟩𝛼∈ΘH
𝐼
,

𝐼 ⟨𝑇𝛼 ⟩T
𝛼∈ΘH

𝐼

<:T AnyT and ∀⟨𝑇 ′
𝛼 ⟩𝛼∈ΘH

𝐼
.

(
∀±𝛼 ∈ ΘH

𝐼
. 𝑇𝛼 <:T± 𝑇 ′

𝛼

)
=⇒ 𝐼 ⟨𝑇𝛼 ⟩T

𝛼∈ΘH
𝐼

<:T 𝐼 ⟨𝑇 ′
𝛼 ⟩T𝛼∈ΘH

𝐼

• and a predicate ⋖T
on types satisfying

∀𝑇,𝑇 ′ ∈ T . 𝑇 <:T 𝑇 ′ ∧ 𝑇 ′ ⋖T =⇒ 𝑇 ⋖T

In other words, a type space is an algebra, both on its set of types and on its preorder <:T and

predicate ⋖T
. This means we can know there are at least the types and relationships between

them that one would expect, but that a type space is not limited to just the constructs we have

conceived of so far. User types are simply the free type space—given any user type H | Θ ⊢ 𝜏

and assignment of its free type variables Θ ↦→ 𝑇 to types in a type space T , we can construct an

interpretation 𝜏 [Θ ↦→ 𝑇 ]T of that user type within T in the obvious manner; furthermore, this

mapping maps user-subtypes, defined in Figure 10, to T -subtypes due to the algebraic properties

required of <:T . Interestingly, user subtyping is not directly used by our novel definition of program

validity; however, because user types and user subtyping form a type space (the user type space),

user subtyping provides a useful baseline for how users can expect program components to compose.

The predicate ⋖T
of a type space will be used to indicate that a type provides any method

with any method signature. It is used to handle the situation where the receiver of a method is

unconstrained. A bottom type does not necessarily satisfy this property in a nominal setting, nor

does a type satisfying this property necessarily need to be a bottom type. Nonetheless, many

systems do have a bottom type satisfying this property.

7.2 Type-Checking with a Type Space
Given a type space, we can define when an expression type-checks within that space. Figure 11

provides the four rules for type-checking. The first rule states that subtyping is subsumptive.

The second rule is simply variable lookup. (Note that type contexts Γ are defined with respect to

arbitrary types in T , not just user types). The third and fourth rules respectively use judgements

for method invocation and for object instantiation, which we discuss in more detail.

The judgement for method invocation H | T ⊢ 𝑇 .𝑚 : 𝑀 states that 𝑇 ’s signature for𝑚 is 𝑀

(again, using arbitrary types in T , not just user types). It has two cases. The first case incorporates

the key typing behavior of the ⋖T
predicate; the expectation is that this will only be applicable

when the receiver is unconstrained, implying the invocation site is unreachable. The second case is
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Type Contexts Γ ::= (𝑥 : 𝑇 )𝑥
Method Signature 𝑀 ::=𝑇 → 𝑇

Body Signature 𝐵 ::= {𝑚 : 𝑀}𝑚
H | T | Γ ⊢ 𝑒 : 𝑇 H | T | Γ ⊢ 𝑒 : 𝑇 𝑇 <:T 𝑇 ′

H | T | Γ ⊢ 𝑒 : 𝑇 ′ H | T | Γ ⊢ 𝑥 : 𝑇 Γ
𝑥

H | T ⊢ 𝑇 .𝑚 : 𝑇 ′ → 𝑇 ′′

H | T | Γ ⊢ 𝑒 : 𝑇
H | T | Γ ⊢ 𝑒′ : 𝑇 ′

H | T | Γ ⊢ 𝑒.𝑚(𝑒′) : 𝑇 ′′

H | T ⊢ {𝑚 : 𝑇 ′
𝑚 → 𝑇 ′′

𝑚 }𝑚∈𝑏 ⊑ 𝐼 ⟨𝑇 ⟩
for all𝑚 ∈ 𝑏, 𝑥𝑏𝑚 ∉ Γ

for all𝑚 ∈ 𝑏, H | T | Γ, 𝑥𝑏𝑚 : 𝑇 ′
𝑚 ⊢ 𝑒𝑏𝑚 : 𝑇 ′′

𝑚

H | T | Γ ⊢ 𝐼 {𝑏} : 𝐼 ⟨𝑇 ⟩T

H | T ⊢ 𝑇 .𝑚 : 𝑀
𝑇 ⋖T

H | T ⊢ 𝑇 .𝑚 : 𝑀 H | T ⊢ 𝐼 ⟨𝑇 ⟩T .𝑚 : MBH
𝐼

𝑚 [ΘH
𝐼

↦→ 𝑇 ]T

H | T ⊢ 𝐵 ⊑ 𝐼 ⟨𝑇 ⟩ H | T ⊢ 𝑀 <: 𝑀

for all𝑚 : M ∈ BH
𝐼
, H | T ⊢ 𝑀𝐵

𝑚 <: M[ΘH
𝐼

↦→ 𝑇 ]T

H | T ⊢ 𝐵 ⊑ 𝐼 ⟨𝑇 ⟩
𝑇 ′′ <:T 𝑇 𝑇 ′ <:T 𝑇 ′′′

H | T ⊢ 𝑇 → 𝑇 ′ <: 𝑇 ′′ → 𝑇 ′′′

Fig. 11. Type-checking with respect to a type space T in a hierarchyH

standard: an interface provides any method it declares with the explicit signature appropriately

substituted (unrolling the notation M
BH
𝐼

𝑚 , one gets the user method signature for method𝑚 in the

user body signature for 𝐼 given by the hierarchyH ).

The judgement used for object instantiation H | T ⊢ 𝐵 ⊑ 𝐼 ⟨𝑇 ⟩ states that the collection of

method signatures in 𝐵 satisfies the requirements of 𝐼 ⟨𝑇 ⟩. It is also straightforward, simply requiring

that each method declared by the interface has a corresponding signature in the body signature

that refines the substitution of the declared signature.

7.3 Consistent Type Spaces and Safety
On its own, type-checking with respect to a type space is not sufficient to ensure safety. For

example, the expression Foo{}.bar(Unit{}) type-checks in any type space stating that an empty

interface Foo is a subtype of some other interface that has a method bar : Unit -> Unit. The
issue is that, while a type space ensures the expected subtypings are present, it does not exclude

any unexpected subtypings.

To address this issue, we introduce the notion of a consistent type space H ⊢ T , defined in

Figure 12. The definition first states that, because this calculus does not support inheritance,

interface types can be subtypes only when the interfaces are the same and the type arguments

are subtypes or supertypes according to the variance of the interface. Thus, in a consistent type

space, the empty interface Foo cannot be a subtype of an interface with a non-empty signature,

causing consistent type spaces to reject the expression Foo{}.bar(Unit{}) as one would expect.

The definition secondly states that Any cannot satisfy ⋖T
. Lastly, the definition states that no

interface type can either be a supertype of Any or satisfy ⋖T
.

In other words, a consistent type space also has a coalgebraic structure on its subtyping and

predicate, but without requiring any coalgebraic structure on its set of types. The latter permits a
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H ⊢ T (
for all 𝐼 ∈ H , 𝐼 ′ ∈ H , ⟨𝑇𝛼 ⟩𝛼∈ΘH

𝐼
, and ⟨𝑇 ′

𝛼 ⟩𝛼∈ΘH
𝐼 ′
,

𝐼 ⟨𝑇𝛼 ⟩T
𝛼∈ΘH

𝐼

<:T 𝐼 ′⟨𝑇 ′
𝛼 ⟩T𝛼∈ΘH

𝐼 ′
implies 𝐼 = 𝐼 ′ and for all ±𝛼 ∈ ΘH

𝐼 ′ , 𝑇𝛼 <:T± 𝑇 ′
𝛼

)
AnyT ⋖T

does not hold

for all 𝐼 ∈ H , no 𝑇 satisfies either AnyT <:T 𝐼 ⟨𝑇 ⟩T or 𝐼 ⟨𝑇 ⟩T ⋖T

H ⊢ T

Fig. 12. Type-space consistency

type space to arbitrarily extend the grammar of types, while the former ensures the extension still

respects the relationships expected between user-expressible constructs. The user type space is

consistent, and within many proofs of type safety for existing works lie proofs that user subtyping

has consistent coalgebraic structure.

Theorem 7.2. The space of closed user types with user subtyping and with false as ⋖ is consistent.

Yet, by combining the algebraic and coalgebraic structure of consistent type spaces, we are able

to prove progress and preservation for expressions checked using any consistent type space.

Theorem 7.3. Given a hierarchy H satisfying ⊢ H , a type space T satisfying H ⊢ T , and an
expression 𝑒 and type 𝑇 ∈ T satisfyingH | T | ∅ ⊢ 𝑒 : 𝑇 , the following properties hold:

Progress Either 𝑒 is a value 𝑣 or there exists an 𝑒′ satisfying 𝑒 → 𝑒′.
Preservation Any expression 𝑒′ satisfying 𝑒 → 𝑒′ also satisfiesH | T | ∅ ⊢ 𝑒′ : 𝑇 .

Proof. In addition to straightforward lemmas on substitution and the like following from the

algebraic structure of arbitrary type spaces, progress and preservation rely on the following facts:

(1) No value can have a type satisfying ⋖T
.

(2) If a value 𝐼 {𝑏} has type 𝐼 ′⟨𝑇 ⟩T , then there is a body signature {𝑚 : 𝑇 ′
𝑚 → 𝑇 ′′

𝑚 }𝑚∈𝑏 satisfying

both ∀𝑚 ∈ 𝑏. H | T | 𝑥𝑏𝑚 : 𝑇 ′
𝑚 ⊢ 𝑒𝑏𝑚 : 𝑇 ′′

𝑚 andH | T ⊢ {𝑚 : 𝑇 ′
𝑚 → 𝑇 ′′

𝑚 }𝑚∈𝑏 ⊑ 𝐼 ′⟨𝑇 ⟩T .
Both of these facts follow from the coalgebraic structure of consistent type spaces. Consider the
latter fact as an example. The proof that the object type-checks must be an application of object

instantiation (using type arguments 𝑇 ′′′
and body signature {𝑚 : 𝑇 ′

𝑚 → 𝑇 ′′
𝑚 }𝑚∈𝑏 ) followed by a

series of subsumptions. By transitivity of subtyping in type spaces, this means 𝐼 ⟨𝑇 ′′′⟩T must be a

subtype of 𝐼 ′⟨𝑇 ⟩T . Thus, by the coalgebraic structure ensured by the assumed consistency of T , we

know that 𝐼 ′ must be 𝐼 and that𝑇 must be supertypes (modulo variance) of the type arguments𝑇 ′′′

used to validate the instantiation. Putting this together with basic properties ensured by requiring

body signatures to respect variance, one can easily deriveH | T ⊢ {𝑚 : 𝑇 ′
𝑚 → 𝑇 ′′

𝑚 }𝑚∈𝑏 ⊑ 𝐼 ′⟨𝑇 ⟩T .
Using the above two facts, the proofs of progress and preservation are made trivial. □

Shortly we will connect consistency of type spaces to consistency of constraint sets. Eifrig et al.

[1995a] also observed that constraint-consistency ensures safety, but their exploration of the topic

is incomplete. For example, their definition of program validity includes a many-part Simplification
algorithm, and the abbreviated proof of safety provided in the extended paper [Eifrig et al. 1995b]

never mentions how consistency of the constraints contributes to the safety of reduction. Our

observation is that safety follows from constraint-consistency ensuring that a corresponding type

space has a coalgebraic structure that aligns with the operational semantics of the language. For

example, the coalgebraic structure for interface types guarantees that whenever a well-typed

production of an interface type (i.e. an object) flows into a well-typed consumption of an interface
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H | T ⊢ 𝑒 : 𝜏 H ⊢ 𝑒 : 𝜏 ⊢ P

H | T | ∅ ⊢ 𝑒 : 𝜏 [∅ ↦→ ∅]T

H | T ⊢ 𝑒 : 𝜏
H ⊢ T H | T ⊢ 𝑒 : 𝜏

H ⊢ 𝑒 : 𝜏
⊢ H H | ∅ ⊢ 𝜏 : + H ⊢ 𝑒 : 𝜏

⊢ H ⊩ 𝑒 : 𝜏

Fig. 13. Type-consistency

type (i.e. a method invocation), then the resulting reduction is necessarily type-preserving. Thus

this work can be seen as a revival and elaboration of Eifrig et al.’s approach to design and proofs.

7.4 Type-Consistency and Program Validity
By Theorem 7.3, our novel declarative definition of type-consistency, given in Figure 13, accepts

only safe expressions and programs. The judgement H | T ⊢ 𝑒 : 𝜏 states that the (arbitrary)

type space T checks that expression 𝑒 (expected to be closed) has (closed) user type 𝜏 when it

can be checked to have the interpretation of 𝜏 within that type space T , i.e. 𝜏 [∅ ↦→ ∅]T . The
judgementH ⊢ 𝑒 : 𝜏 states that an expression is type-consistent with user type 𝜏 under hierarchyH
when there is a consistent type space T inH that can type-check 𝑒 against user type 𝜏 . Because

user types form a consistent type space, this definition accepts all expressions that are checkable

using only user types. So if users were advised to plan their expressions around user types, we

would accept all expressions they would expect to work. They might be surprised to discover we

can accept even more expressions, but they should never be particularly surprised by an expression

being rejected.

The judgement ⊢ P defines when we consider a program to be valid. The hierarchy H P
is

required to be valid, the user type 𝜏P is required to be closed, and the expression 𝑒P is required to

be type-consistent with respect to 𝜏P . Due to Theorem 7.3, this notion of program validity ensures

safety even though it does not ensure type-inferability. On the other hand, any sound notion

of type-inferability ensures type-consistency; the (extended) grammar of types that inference is

performed within defines a consistent type space, and type-inference verifies that the program

type-checks within that space, thereby demonstrating type-consistency. By using type-consistency

rather than type-inferability, we can add new type constructs in order to allow users to express

more programs without any concern that such additions will change the (in)validity of any existing

programs (or the run-time behavior of any existing overload resolutions). Thus type-consistency

offers a permissive and stable notion of program validity even in the presence of language evolution.

8 Type-Outference
Now we formalize our type-outference algorithm for deciding type-consistency. The first stage

of the algorithm is to construct a finite graphical core representing the program at hand. The

configurations of the label-listeners in this graphical core represent the various ways in which

its method invocations can be resolved. In particular, each configuration of the graphical core

effectively defines a type space in which the program type-checks. The second stage of the algorithm,

then, is to find a configuration—if any—whose corresponding type space is consistent, thereby

deciding type-consistency of the program.

8.1 Graphical Cores
While the end goal is to validate a program, we primarily operate on a graphical core of components

and constraints representing what is needed in order to type-check the program. The following is a

formal description of the structure we informally visualized in Figure 4.
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Definition 8.1. A graphical core C in a hierarchyH consists of

• a finite set of “abstract types” 𝑡 ,

• a finite set of “nodes” 𝑛, each of which has

– an interface 𝐼𝑛 (i.e. its “label”)

– and for each type parameter 𝛼 ∈ ΘH
𝐼𝑛
, an “argument” member 𝜇𝑛𝛼 ,

– where a member 𝜇 is either an abstract type, a node, or Any,
• a finite set of “label-listeners” ℓ ,

• a finite set of “events” 𝜀, each of which has

– a label-listener ℓ𝜀 ,

– an interface 𝐼 𝜀 ,

– and for each type parameter 𝛼 ∈ ΘH
𝐼𝜀
, an “argument” member 𝜇𝜀𝛼 ,

• and a finite set of “constraints” 𝜅, each of which has

– an optional event 𝜀𝜅 (using 𝜀𝜅 = ∅ to denote when the event is absent),

– a “lower” member 𝜇𝜅▽ ,

– and an “upper” component 𝜉𝜅△ ,
– where a component 𝜉 is either a member or a label-listener.

The abstract types 𝑡 represent the unknowns that traditionally would be inferred; being abstract,

they have no structure themselves, but they can occur elsewhere as node arguments and constraint

bounds. The nodes 𝑛 represent interface types; given a user type, one can encode its syntax tree

as nodes (and members) of a graphical core with the obvious labeling and arguments. The label-

listeners ℓ are used both for events and as upper bounds in constraints. The events 𝜀 specify their

firing condition and initial effect: an event 𝜀 fires when its label-listener ℓ𝜀 acquires a lower bound

labeled by its interface 𝐼 𝜀 , at which point each of its argument members 𝜇𝜀𝛼 is constrained to be

bound by the corresponding argument of the lower bound. The constraints 𝜅 indicate that their

lower bounds must be subtypes of their upper bounds, sometimes conditioned upon a specified

event firing; only the upper bound of a constraint is allowed to be a label-listener.

The label-listeners, events, and optional constraint events are our stateless formalization of the

stateful tentative resolutions we used in Figure 4. They are combined with a configuration in order

to represent a particular snapshot of stateful tentative resolutions.

Definition 8.2. A configuration 𝜎 ::= (ℓ → 𝐼 )ℓ∈C of a graphical core C is a (partial) finite map of

the label-listeners ℓ of C to an interface 𝐼𝜎
ℓ
.

When a configuration has no entry for a given label-listener (denoted 𝐼𝜎
ℓ
= ∅), it represents resolving

the corresponding invocation site as unreachable.

In order to support resolution of a method𝑚, one creates a label-listener ℓ , two abstract types 𝑡

and 𝑡 ′, and the following for each interface 𝐼 directly declaring a signature 𝜏 → 𝜏 ′ for𝑚:

• an abstract type 𝑡 ′′𝛼 for each type parameter 𝛼 ∈ ΘH
𝐼
,

• an event 𝜀 with label-listener ℓ and interface 𝐼 , using the newly created 𝑡 ′′𝛼 abstract types as

its member arguments corresponding to the type parameters of 𝐼 ,

• nodes so that 𝜏 [𝛼 ↦→ 𝑡 ′′𝛼 ]𝛼∈ΘH
𝐼
is represented by a member 𝜇,

• nodes so that 𝜏 ′ [𝛼 ↦→ 𝑡 ′′𝛼 ]𝛼∈ΘH
𝐼
is represented by a member 𝜇′,

• and two constraints conditioned upon 𝜀 and respectively requiring 𝑡 <: 𝜇 and 𝜇′ <: 𝑡 ′.

The effect of this is to dynamically constrain the abstract input (𝑡 ) and result (𝑡 ′) types by an

interface’s method signature only when the receiver is determined to belong to that interface.

In our mechanical formalization [Tate 2025], we actually define graphical cores recursively.

Rather than events, we allow a graphical core to associate combinations of label-listeners and
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H | C ⊢𝜎 𝜀 H | C ⊢𝜎 𝜅𝐼𝜎ℓ𝜀 = 𝐼 𝜀

H | C ⊢𝜎 𝜀

𝜀𝜅 = ∅
H | C ⊢𝜎 𝜅

H | C ⊢𝜎 𝜀𝜅

H | C ⊢𝜎 𝜅

H | C ⊢𝜎 𝜇 ⪯ 𝜉 H | C ⊢𝜎 𝜅

H | C ⊢𝜎 𝜇𝜅▽ ⪯ 𝜉𝜅△

H | C ⊢𝜎 𝜇 ⪯ 𝑡 ′ H | C ⊢𝜎 𝑡 ′ ⪯ 𝜉 ′′

H | C ⊢𝜎 𝜇 ⪯ 𝜉 ′′

H | C ⊢𝜎 𝑛 ⪯ 𝑛′

𝐼𝑛 = 𝐼𝑛
′

Θ = ΘH
𝐼𝑛

′

H | C ⊢𝜎 𝜇𝑛𝛼 ⪯±Θ
𝛼
𝜇𝑛

′
𝛼

H | C ⊢𝜎 𝜀 H | C ⊢𝜎 𝑛 ⪯ ℓ𝜀

𝐼𝑛 = 𝐼 𝜀 Θ = ΘH
𝐼𝜀

H | C ⊢𝜎 𝜇𝑛𝛼 ⪯±Θ
𝛼
𝜇𝜀𝛼

Fig. 14. Derived constraints of a graphical core

interfaces with graphical cores to be incorporated only in appropriate configurations. Thus we can

dynamically add more abstract types, nodes, label-listeners, and constraints as needed (so long

as the recursion is well-founded). However, while this recursive definition is both mechanically

simpler and more powerful, it makes the subsequent definitions more complicated, so here we use

a flattened version—specialized to the limited needs at hand—in order to simplify the subsequent

presentation.

8.2 Deriving Constraints
The graphical core of a program only describes the constraints required for the program to type-

check in some type space. That type space should be consistent, so from these constraints we can

derive additional constraints that must also hold in any consistent type space. Figure 14 formalizes

how we can derive such constraints.

The judgement H | C ⊢𝜎 𝜀 specifies that an event 𝜀 is activated in a configuration 𝜎 when its

label-listener ℓ𝜀 is configured by 𝜎 to have the interface 𝐼 𝜀 expected by the event. The judgement

H | C ⊢𝜎 𝜅 specifies that a constraint 𝜅 is activated in a configuration 𝜎 when either it has no

required event or its required event 𝜀𝜅 is activated.

The judgement H | C ⊢𝜎 𝜇 ⪯ 𝜉 specifies when one can derive that the member 𝜇 must be a

subtype of the component 𝜉 in a configuration 𝜎 . Again, only the upper bound is allowed to be a

label-listener. For this reason, we make sure we use the notationH | C ⊢𝜎 𝜇 ⪯± 𝜇′ only when both

sides are necessarily members.

There are four ways in which constraints can be derived:

(1) By assumption, the lower and upper bound of any activated constraint 𝜅 must be subtypes.

(2) By transitivity, any lower and upper bound on a common abstract type 𝑡 ′ must be subtypes.

(3) By consistency, if we can derive that two nodes with the same interface must be subtypes,

then their arguments (for any type parameter 𝛼 of the common interface) must be subtypes

or supertypes according to the declared variance of 𝛼 .

(4) Similarly by consistency, if we can derive that a node must be a subtype of the label-listener of

an activated event with the same interface, then the node’s argument 𝜇𝑛𝛼 (for any type param-

eter 𝛼 of the common interface) must be a subtype or supertype of the event’s corresponding

member 𝜇𝜀𝛼 according to the declared variance of 𝛼 .

Onemightwonderwhy transitivity only applies to abstract types even thoughwe need transitivity

to hold for all types. From an algorithmic perspective, we want to need only track the lower and

upper bounds of abstract types, rather than all components. From a proof perspective, nodes
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H ⊢𝜎 C H ⊢ Cfor all 𝑛 and 𝑛′ ∈ C,H | C ⊢𝜎 𝑛 ⪯ 𝑛′ implies 𝐼𝑛 = 𝐼𝑛
′

for all 𝑛 and ℓ ∈ C,H | C ⊢𝜎 𝑛 ⪯ ℓ implies 𝐼𝑛 = 𝐼𝜎ℓ
no 𝑛 ∈ C satisfiesH | C ⊢𝜎 Any ⪯ 𝑛

no ℓ ∈ C satisfiesH | C ⊢𝜎 Any ⪯ ℓ

H ⊢𝜎 C

H ⊢𝜎 C
H ⊢ C

Fig. 15. Graphical-core consistency

represent interface types, so we will be able to prove transitivity using the subtyping properties of

the interface types they represent. As for label-listeners, the grammar of constraints is restricted so

that they can never have a derived upper bound, so transitivity will never be applicable.

If one reviews the walkthrough of Figure 4, one will notice that nearly every step was simply

determining more derived constraints according to the rules in Figure 14. That is, the algorithm

we employed was primarily just a worklist-based means of computing the complete set of derived

constraints that hold given the activated constraints.

Lemma 8.3. For any hierarchy H satisfying ⊢ H , and for any graphical core C in H and any
configuration 𝜎 of C, the set of members 𝜇 and components 𝜉 satisfyingH | C ⊢𝜎 𝜇 ⪯ 𝜉 is finite and
computable.

Proof. Because the sets of nodes, abstract types, and label-listeners of C are all finite, the set of

potentially derivable constraints is necessarily finite. Given a finite subset of derived constraints,

one can compute which instantiations of the rules in Figure 14 can be applied to derive more

constraints. Because the total set of potentially derivable constraints is finite, repeatedly adding

constraints to such a (initially empty) subset until it becomes closed under the rules in Figure 14

necessarily terminates. □

Thus, a key to termination is keeping the set of potentially derivable constraints finite, which we

do by keeping the set of things that we can derive constraints on finite and ensuring derivations

remain within this finite set. This is in contrast with the extension of structural algorithms to

arbitrarily-recursive interface signatures, which adds types each time a new lower bound is added

to the receiver of a method invocation, which is why it fails to validate our running examples.

8.3 Constraint-Consistency
As many have observed before, many algorithms work by reducing program validity (traditionally

defined as type-inferability) to constraint-consistency [Aiken and Wimmers 1993; Aiken et al. 1994;

Binder et al. 2022; Eifrig et al. 1995a,b; Jim and Palsberg 1999; Parreaux 2020; Parreaux and Chau

2022; Pottier 1998a,b; Trifonov and Smith 1996]. We do the same, albeit incorporating state into

the process. Consistency of a graphical core (H ⊢ C) is defined in Figure 15 using consistency of

a particular configuration (H ⊢𝜎 C). In particular, if one can derive constrains between a node

and a node or a label-listener, then their respective interfaces (in the given configuration) must be

equal. Furthermore, one must not be able to derive Any as a lower bound for either a node or a

label-listener. Thus, taken in combination with the rules for constraint-derivation, whenever we

process a new derived constraint we should often be able to either derive further constraints or

determine that the current configuration of the graphical core is inconsistent. As such, we have a

decision procedure proving the following.

Theorem 8.4. For any hierarchy H satisfying ⊢ H , and for any graphical core C in H , H ⊢ C is
decidable.
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H | T |=𝜎 C H | T |= C
𝑓 is a mapping of the components of C to the types of T
for all 𝜅 ∈ C, H | C ⊢𝜎 𝜅 implies 𝑓 (𝜇𝜅▽) <:T 𝑓 (𝜉𝜅△)

𝑓 (Any) = AnyT

for all 𝑛 ∈ C, 𝐼𝑛 ⟨𝑓 (𝜇𝑛𝛼 )⟩T𝛼∈ΘH
𝐼𝑛

<:T 𝑓 (𝑛) and 𝑓 (𝑛) <:T 𝐼𝑛 ⟨𝑓 (𝜇𝑛𝛼 )⟩T𝛼∈ΘH
𝐼𝑛

for all 𝜀 ∈ C, H | C ⊢𝜎 𝜀 implies 𝑓 (ℓ𝜀) <:T 𝐼 𝜀 ⟨𝑓 (𝜇𝜀𝛼 )⟩T𝛼∈ΘH
𝐼𝜀

for all ℓ ∈ C, 𝐼𝜎ℓ = ∅ implies 𝑓 (ℓ) ⋖T

H | T |=𝜎 C

H | T |=𝜎 C
H | T |= C

Fig. 16. Modeling graphical cores with type spaces

Proof. Initialize 𝜎 to be the empty configuration. We trivially know that any consistent configu-

ration must be a refinement (i.e. maps more label-listeners to actual interfaces) of 𝜎 , an invariant

we will maintain as we mutate 𝜎 . We can easily prove by induction that any constraints derivable

within 𝜎 are also derivable within any refinement of 𝜎 . As such, the set of derivable constraints

will simply grow as we refine 𝜎 .

By Lemma 8.3, we can compute the complete finite set of derivable constraints within 𝜎 . And

by the above observation, we can proceed knowing that they are also derivable for all consistent

configurations. If there are any newly derived constraints upper-bounding Any by a node or a

label-listener, we know that no consistent configuration exists. Otherwise, we enumerate all newly

derived constraints between nodes. If the corresponding interfaces fail to be equal, we know that no

consistent configuration exists. Otherwise, we proceed to enumerate all newly derived constraints

between nodes and label-listeners. If 𝜎 does not specify an interface for the label-listener, then we

know any consistent configuration must configure that label-listener to use specifically the node’s

interface, and so we mutate 𝜎 accordingly and return to deriving constraints. Otherwise, if the

node’s interface fails to equal 𝜎’s interface for the label-listener, then we know that no consistent

configuration exists. Otherwise, we proceed to the next derived constraint. If there are no more

derived constraints to consider, then 𝜎 satisfiesH ⊢𝜎 C.
Because the set of label-listeners is finite, strict refinement of configurations is well-founded,

guaranteeing this stateful process terminates. □

Thus type-outference works by deciding consistency of the graphical core of a program. Of

course, to prove that this decides type-consistency for the program, we need to connect graphical

cores to type spaces and type-consistency.

9 Deciding Type-Consistency
So far we have a notion of program validity that ensures safety using type spaces, and we have

an algorithm for deciding consistency of graphical cores, but we have not formally connected the

two. To that end, we define when a type space models a graphical core, use that to establish how

graphical cores capture type-checking within type spaces, and prove that modeling connects our

various notions of consistency to ensure decidability.

9.1 Modeling
Type spaces are a semantic concept, and graphical cores are an algorithmic concept. Here we

connect them by defining the former as models of the latter. This definition is provided in Figure 16.

A type space models a graphical core (H | T |= C) if it models a configuration of that graphical

core (H | T |=𝜎 C). To do so, it must provide an interpretation 𝑓 of the components of the graphical
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H ⊢ 𝑒

H ⊢ 𝑥
H ⊢ 𝑒 H ⊢ 𝑒′

H ⊢ 𝑒.𝑚(𝑒′)
for all𝑚 ∈ 𝑏, H ⊢ 𝑒𝑏𝑚 for all𝑚 ∈ BH

𝐼
, 𝑚 ∈ 𝑏

H ⊢ 𝐼 {𝑏}

Fig. 17. Type-checkability

core as types in the type space. This interpretation must satisfy all of the constraints activated in

the configuration at hand. It must interpret Any as the type space does. It must interpret nodes as

equivalent to the interface types they represent. It must interpret the label-listeners of activated

events to have at least the structure required by the event. And it must interpret any unresolved

label-listeners with types satisfying ⋖T
. In other words, a type space models a graphical core if its

types provide a solution for the system of constraints specified by the graphical core.

9.2 Extraction
We can use this connection between type spaces and graphical cores to establish how graphical

cores effectively capture the validation problem for expressions.

Lemma 9.1. For any hierarchyH satisfying ⊢ H , for any expression 𝑒 satisfyingH ⊢ 𝑒 , and for any
user type 𝜏 satisfyingH | ∅ ⊢ 𝜏 : +, there exists a graphical core C such that, for any type space T
inH ,H | T ⊢ 𝑒 : 𝜏 holds if any only ifH | T |= C holds.

Proof. The construction of C is tedious and bares no surprises or insights beyond the utilization

of label-listeners already described in Section 8.1, so we leave this as an exercise for the reader

(though it can be found in our mechanization [Tate 2025]). □

Lemma 9.1 states that, for expressions 𝑒 satisfying H ⊢ 𝑒 (which we discuss next), we can

reduce—without loss of generality—the question of whether an expression type-checks within a

given type space T to whether T models a graphical core C we can construct from the expression.

This statement only holds for expressions 𝑒 satisfying H ⊢ 𝑒 , which introduces a new concept:

type-checkability. Type-checkability is defined in Figure 17. It simply asserts that all objects in

the expression have at least some implementation for each method of the corresponding interface

(regardless of whether that implementation type-checks). This is necessary for the expression to

type-check in some type space, regardless of whether that type space is consistent.

Lemma 9.2. For any hierarchy H , for any type space T in H , for any type context Γ in T , for any
expression 𝑒 , and for any type 𝑇 ∈ T ,H | T | Γ ⊢ 𝑒 : 𝑇 impliesH ⊢ 𝑒 .

Proof. Trivial induction. □

Graphical cores are designed to focus on the cases in which an expression is at least type-

checkable (even if not necessarily in a consistent type space), so they rely on the simpler aspects of

validation being performed beforehand.

Lemma 9.3. For any hierarchyH and expression 𝑒 ,H ⊢ 𝑒 is decidable.

Proof. This is a straightforward syntactic process. □

9.3 Soundness
Now that we can extract a representative graphical core C from an expression 𝑒 , we demonstrate

that deciding C’s consistency is a sound and complete decision procedure for 𝑒’s type-consistency.

The first step is soundness. To establish soundness, we need to show that if C is consistent then

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 408. Publication date: October 2025.



Type-Outference with Label-Listeners 408:23

Type 𝑇 ::= 𝜉 | 𝐼 ⟨𝑇 ⟩
H | C ⊢𝜎 𝑇 <: 𝑇 H | C ⊢𝜎 𝜇 ⪯ 𝜉

H | C ⊢𝜎 𝜇 <: 𝜉

H | C ⊢𝜎 𝑇 <: 𝑇

H | C ⊢𝜎 𝑇 <: 𝑇 ′′

H | C ⊢𝜎 𝑇 ′ <: 𝑇 ′′

H | C ⊢𝜎 𝑇 <: 𝑇 ′′

for all ±𝛼 ∈ ΘH
𝐼
,

H | C ⊢𝜎 𝑇𝛼 <:± 𝑇
′
𝛼

H | C ⊢𝜎 𝐼 ⟨𝑇𝛼 ⟩𝛼∈ΘH
𝐼
<: 𝐼 ⟨𝑇 ′

𝛼 ⟩𝛼∈ΘH
𝐼

H | C ⊢𝜎 𝐼 ⟨𝑇 ⟩ <: Any

H | C ⊢𝜎 𝐼𝑛 ⟨𝜇𝑛𝛼 ⟩𝛼∈ΘH
𝐼𝑛

<: 𝑛 H | C ⊢𝜎 𝑛 <: 𝐼𝑛 ⟨𝜇𝑛𝛼 ⟩𝛼∈ΘH
𝐼𝑛

H | C ⊢𝜎 𝜀

H | C ⊢𝜎 ℓ𝜀 <: 𝐼 𝜀 ⟨𝜇𝜀𝛼 ⟩𝛼∈ΘH
𝐼𝜀

H | C ⊢𝜎 𝑇 ⋖ H | C ⊢𝜎 𝑇 <: 𝑇 ′ H | C ⊢𝜎 𝑇 ′ ⋖

H | C ⊢𝜎 𝑇 ⋖

𝐼𝜎ℓ = ∅
H | C ⊢𝜎 ℓ ⋖

Fig. 18. Canonical type space TH,C,𝜎 of a graphical core C with a configuration 𝜎 in hierarchyH

there is a type space that models C (and therefore, by Lemma 9.1, type-checks 𝑒) and is consistent.

To that end, we view a graphical core as defining a custom grammar of types with a custom

configuration-dependent subtyping relation, thereby specifying a type space for each configuration.

An expression’s graphical core, then, specifies the custom type spaces it type-checks within.

Using derived constraints, we define the canonical type space TH,C,𝜎 of a graphical core C with

configuration 𝜎 in Figure 18. Its types are the components of the graphical core along with interface

types generated therefrom. Similarly, subtyping in the type space (judgement H | C ⊢𝜎 𝑇 <: 𝑇 )

is primarily generated from the derived constraints of the graphical core (the top rule) and the

required algebraic structure of type-space subtyping (the middle line of rules). The bottom line of

rules connects nodes (and label-listeners) to the types they represent (in the configuration 𝜎) as

required by anymodel of C. Note that there is no rule for abstract types; they are simply abstractions

whose semantic behavior is entirely captured by the constraints declared (and derived) upon them.

The predicate⋖TH,C,𝜎
is defined inductively via the judgementH | C ⊢𝜎 𝑇 ⋖. The first rule directly

ensures the algebraic structure required of type spaces. The second rule makes any label-listener

that is unresolved in the configuration 𝜎 satisfy ⋖, as required by any model of 𝜎 .

The following two properties of this construction capture why it is the canonical model of 𝜎 .

Lemma 9.4. For any hierarchy H satisfying ⊢ H , and for any graphical core C in H and configu-
ration 𝜎 of C, TH,C,𝜎 is a type space inH , andH | TH,C,𝜎 |=𝜎 C holds.

Proof. Trivial from the definition of TH,C,𝜎 . □

Lemma 9.5. For any hierarchy H satisfying ⊢ H , and for any graphical core C in H and configu-
ration 𝜎 of C,H ⊢𝜎 C impliesH ⊢ TH,C,𝜎 .

Proof. We prove that subtyping between interface types necessarily implies the expected inter-

face equality and type-argument relationships; the other proofs follow the same reasoning.

Given a proof of subtyping between two interface types, one can easily construct a chain of

subtyping proofs (and intermediating types) with no immediate applications of reflexivity or
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transitivity. We will transform this chain through various steps into a chain of applications of

specifically the interface rule.

First, suppose this chain contains an abstract type. Because the end types are interface types,

this abstract type must occur between two proofs in the chain. Because the only applicable rule

for abstract types is the one incorporating derived constraints, we know these two proofs must

be derived constraints. And because we can derive transitive constraints for abstract types, we

can replace these two proofs with a single proof incorporating that derived constraint, thereby

removing the abstract type from the chain. Thus we can repeat this process to produce a chain of

proofs without intermediating abstract types.

Now suppose this chain contains an Any. Because the right end of the chain cannot be Any,
there must be some proof after this Any. Consider the rightmost proof immediately following

an Any. The only possible proof is a derived constraint, thereby providing a derived upper bound

on Any. By the assumed consistency of C, this upper bound cannot be a node or a label-listener.

The upper bound also cannot be an abstract type because we just removed all abstract types from

the chain. And it cannot be Any because then this would not be the rightmost proof. Therefore, no

such derived upper bound can exist, and consequently the chain must already be free of Any.
Now suppose this chain contains a node. This node must be contained within a chain of proofs

starting with a proof relating a node to its interface type (as a supertype thereof), followed by

a (possibly empty) chain of derived constraints, followed by a rule relating a node (or a label-

listener) to its interface type (in configuration 𝜎 through some activated event 𝜀). Due to the earlier

eliminations, and due to our syntactic restriction on derived constraints, the intermediating types in

the chain of derived constraints must all be nodes. By the assumed consistency of C, the interfaces
on the ends and the interfaces of all the intermediating nodes must all be equal. Consequently,

for each type parameter of that common interface, we can construct chains of derived constraints

between the respective arguments of these nodes (and event 𝜀). Thus, we can replace this entire

chain—including the proofs connecting the ends to their interface types—with a single proof

applying the interface rule, using the reflexive and transitive composition of these chains for each

argument. After repeatedly doing so, we are left with not only no nodes in the chain, but even no

label-listeners in the chain due to our syntactic restriction on derived constraints.

Thus we now have a chain of proofs connected by interface types, so all proofs must be ap-

plications of the interface rule. This means that all interfaces in these applications must be the

same, as required for the type space to be consistent. Furthermore, the chain of proofs between the

arguments for each given type parameter of the common interface can be combined into a single

proof using reflexivity and transitivity, ensuring the second requirement for consistency. □

Thus, if we furthermore incorporate Lemma 9.1, TH,C,𝜎 establishes type-consistency of the

expression that C was extracted from if C is decided to be consistent in some configuration 𝜎 .

9.4 Completeness
With soundness established, we move on to completeness.

Lemma 9.6. For any hierarchy H satisfying ⊢ H , for any graphical core C in H , and for any type
space T inH satisfyingH | T |= C,H ⊢ T impliesH ⊢ C.

Proof. Let 𝜎 and 𝑓 be the configuration andmapping evidencing that T models C. Given nodes𝑛
and 𝑛′ satisfyingH | C ⊢𝜎 𝑛 ⪯ 𝑛′, modeling and consistency are easily shown to imply that 𝑓 (𝑛) is
a subtype of 𝑓 (𝑛′). Furthermore, modeling implies that 𝑓 (𝑛) is a supertype of 𝐼𝑛 ⟨𝜇𝑛𝛼 ⟩𝛼∈ΘH

𝐼𝑛
and that

𝑓 (𝑛′) is a subtype of 𝐼𝑛′ ⟨𝜇𝑛′
𝛼 ⟩𝛼∈ΘH

𝐼𝑛
′
. By transitivity and consistency of T , 𝐼𝑛 and 𝐼𝑛

′
must then be

equal, as required for consistency of C. Similar reasoning proves the remaining requirements. □

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 408. Publication date: October 2025.



Type-Outference with Label-Listeners 408:25

Thus, if C were decided to be inconsistent, no type space that can type-check the expression

that C was extracted from can be consistent, ensuring the expression is type-inconsistent.

9.5 Decidability
At this point, we have all the pieces necessary to decide type-consistency of a program.

Theorem 9.7. Given a program P, ⊢ P is decidable.

Proof. By Lemma 6.2, we can decide whether or not ⊢ H P
holds, rejecting P if not. By

Lemma 6.1, we can decide whether or notH P | ∅ ⊢ 𝜏P : + holds, rejecting P if not. By Lemma 9.3,

we can decide whether or notH P ⊢ 𝑒P holds, rejecting P if not by Lemma 9.2. Thus, by Lemma 9.1,

we can extract a representative graphical core C from 𝑒P . Lastly, by Theorem 8.4, we can decide

whether or notH P ⊢ C holds. Consider each case as follows.

SupposeH P ⊢ C holds, necessarily due to some configuration 𝜎 . Then by Lemma 9.5 the type

space THP ,C,𝜎 is consistent. Furthermore, by Lemma 9.4, THP ,C,𝜎 models 𝜎 . Consequently, by the

property of C ensured by Lemma 9.1, H P | THP ,C,𝜎 ⊢ 𝑒P : 𝜏P holds, and so THP ,C,𝜎 ’s consistency
demonstrates P’s type-consistency.

Suppose H P ⊢ C does not hold. Assume P is type-consistent, as demonstrated by some type

space T satisfyingH P ⊢ T andH P | T ⊢ 𝑒P : 𝜏P . By the property of C ensured by Lemma 9.1,

the latter implies H P | T |= C must also hold. Thus, by Lemma 9.6, the consistency of T implies

consistency of C. This contradicts our supposition. Therefore, P must be type-inconsistent. □

Thus, by Theorem 9.7, our novel event-driven type-outference algorithm decides type-consistency,

our novel notion of program validity that ensures safety—by Theorem 7.3—without ensuring type-

inferability. Reviewing the algorithm, we can strengthen our decidability result: the algorithm is

polynomial time with respect to the size of the program.
2
This is ensured by the fact that constraint-

derivation is directed: we always derive a conjunction of constraints (or an inconsistency)—never a

disjunction—which avoids the need for backtracking. So, by taking unknown types out of program
validation and constraint reasoning, rather than inferring them to reduce constraints or type-check

the program, we made program validation not only decidable but efficiently so. Furthermore, by

using type-consistency rather than type-inferability, we were able to formalize and verify our

definitions and claims in Rocq [Tate 2025] despite Rocq’s metatheoretic limitations [Pédrot 2015].

10 Conclusion
We have presented the first sound and complete decision procedure capable of validating nominal

object-oriented programs without type annotations in expressions (beyond the interface name that

each object instantiates) wherein generic interfaces can have irregularly-recursive signatures. Such

interface signatures are exemplary of the challenges that an algorithm must overcome in order to

scale to the needs of modern major typed object-oriented languages. We did so by incorporating

event-driven label-listeners into constraint-derivation, enabling more complex aspects of the valida-

tion problem at hand to be generated on demand while still ensuring termination. Furthermore, we

mechanically verified our algorithm. We did so by defining type-consistency as a novel declarative

notion of program validity that removes the need to construct complex solutions for our graphical

cores even after we validated their consistency. As a consequence, our algorithm does not infer

types, so we call it a type-outference algorithm. These concepts and techniques—type-consistency,

type-outference, and label-listeners—are the foundations upon which we aim to make Kotlin—which

this work is intended for—decidable. Obviously there are many more features we need to address;

fortunately, preliminary investigations suggest that we can adapt them cleanly and efficiently.

2
We have made no attempt to mechanically verify this claim.
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Data-Availability Statement
Our mechanical formalization and verification of our definitions and theorems is provided in a

single Rocq file available online through the ACM DL [Tate 2025].
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