
SEMANTICS FOR SECURE SOFTWARE

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Andrew Karl Hirsch

August 2019

© 2019 Andrew Karl Hirsch

ALL RIGHTS RESERVED

SEMANTICS FOR SECURE SOFTWARE

Andrew Karl Hirsch, Ph.D.

Cornell University 2019

In order to build machine-checked proven-secure software, we need formal se-

curity policies that express what it means to be “secure.” We must then show that

the semantics of our software matches the semantics of those policies. This requires

formal semantics for both programs and policies. In this dissertation, we explore

the semantics of effectful programs and the semantics of authorization policies.

The most well-known class of effects are those that can be given semantics

via a monad, though current research also focuses on those that can be given a

semantics via a comonad. We compare three methods for combining these two

popular options: one method requires extra semantic structure, whereas the other

methods can be applied to any monadic and comonadic effects. If the extra se-

mantic structure needed for the first method exists then the three semantics are

equivalent. Otherwise, we show that the two remaining semantics correspond to

strict and lazy interpretations of the effects.

On the other side, we use authorization logics to express authorization policies.

Authorization logics can be given semantics using either models or a proof system.

We build a model theory for an authorization logic that more-closely expresses how

authorization logics are used by systems than traditional models. We also build a

proof system for an authorization logic that ensures that proofs of authorization

respect information-security policies.

BIOGRAPHICAL SKETCH

Andrew K. Hirsch was born and raised in Fort Worth, Texas. In 2009, he

left for undergraduate work at The George Washington University in Washington,

D.C., where he earned a Bachelor’s of Science degree in computer science and

pure mathematics. In 2013, he joined the computer science department of Cornell

University in Ithaca, New York.

iii

To my parents, who raised me to be curious and not a bit stubborn.

To my partner, who is my rock.

iv

ACKNOWLEDGEMENTS

There are many people to acknowledge who have helped me get to this point.

In particular, I want to thank my advisor, Ross Tate, and my collaborators Pedro

H. Azevedo de Amorim, Owen Arden, Ethan Cecchetti, and Michael Clarkson. I

also want to thank my mentors at The George Washington University: Valentina

Harizanov, Bagchi Narahari, Gabe Parmer, Rahul Simha, and Poorvi Vora, as

well as those at Cornell University: Kavita Bala, Robert Kleinberg, Dexter Kozen,

Andrew Myers, Adrian Sampson, Fred Schneider, and Emin Gün Sirer.

Many friends and colleagues have helped me through my time in graduate

school. Besides those above, I especially want to thank Shrutarshi Basu, Soumya

Basu, Eleanor Birrell, Eric Campbell, Natacha Crooks, Jonathan Dilorenzo, Molly

Feldman, Dietrich Geisler, Jed Liu, Tom Magrino, Matthew Milano, Andrew Mor-

gan, Fabian Mühlböck, Vlad Nicolae, Rolf Recto, Oliver Richardson, Michael

Roberts, Xanda Schofield, Eston Schweickart, Isaac Sheff, and Drew Zagieboylo.

They have been my support group both emotionally and professionally.

I will also take the chance to thank those who made a difference in the papers

which this dissertation is based around. Stephen Brooks, Marco Gaboardi, and

Guillaume Much-Maccognoni all provided good discussions and feedback regard-

ing layering, and the Cornell Programming Languages Discussion Group (of which

many members are listed here) gave feedback and helped immensely with editing.

Mart́ın Abadi, Adam Chlipala, Deepak Garg, Joe Halpern, Kristopher Micinski,

Dexter Kozen, Fred Schneider, Colin Stirling, and Kevin Walsh all had discussions

and comments that contributed to the chapter on belief semantics, and the coq-

club mailing list was very helpful when developing the code. The work on belief

semantics was supported in part by AFOSR grants F9550-06-0019, FA9550-11-

1-0137, and FA9550-12-1-0334, NSF grants 0430161, 0964409, and CCF-0424422

v

(TRUST), ONR grants N00014-01-1-0968 and N00014-09-1-0652, and a grant from

Microsoft. Coşku Acay, Arthur Azevedo de Amorim, Eric Campbell, Dietrich

Geisler, Elisavet Kozyri, Jed Liu, Tom Magrino, Matthew Milano, Andrew Mor-

gan, Andrew Myers, and Drew Zagieboylo gave invaluable feedback on FLAFOL.

Funding for FLAFOL was provided in part by NSF grant #1704788, NSF CA-

REER grant #1750060, and a National Defense Science and Engineering Graduate

Fellowship.

Finally, I want to take a chance to thank all of those who I have not named

so far. Many have labored anonymously, such as reviewers who have helped me

become a much better writer and researcher. I appreciate all of your work im-

mensely.

vi

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vii
List of Tables . x
List of Figures . xi

1 Introduction 1

2 Strict and Lazy Semantics for Effects 10
2.1 A Simple Language for Exploring Strictness and Laziness 13
2.2 Consumer Choice and Producer Choice 17
2.3 Capturing Consumer Choice and Producer Choice 21
2.4 Effectful Languages and Their Semantics 28

2.4.1 Singly-Effectful Languages 29
2.4.2 Doubly-Effectful Languages 36

2.5 Languages with Multiple Inputs and Multiple Outputs 49
2.6 Giving Semantics to Choice in Comp 51

2.6.1 A Language without Consumer or Producer Choice 53
2.6.2 Layering Effects . 60

3 Belief Semantics of Authorization Logic 65
3.1 Belief Semantics . 69

3.1.1 Semantic models . 70
3.1.2 Semantic validity . 76

3.2 Kripke Semantics . 78
3.2.1 Modal models . 79
3.2.2 Semantic validity . 80
3.2.3 Frame conditions . 83
3.2.4 Defining Speaksfor . 86

3.3 Semantic Transformation . 87
3.4 Proof System . 93

3.4.1 Unit and Necessitation . 95
3.4.2 Soundness . 98

4 First-Order Logic for Flow-Limited Authorization 100
4.1 FLAFOL By Example . 105

4.1.1 Viewing Pictures on Social Media 106
4.1.2 Integrity Tracking to Prevent SQL Injection 108
4.1.3 Hospital Bills Calculation and Reinsurance 109
4.1.4 Further Adapting FLAFOL 111

4.2 Using FLAFOL . 111
4.3 Proof System . 118

vii

4.4 Proof Theory . 122
4.4.1 Consistency . 123
4.4.2 Signed Subformula Property 125
4.4.3 Compatible Supercontexts 125
4.4.4 Simulation . 128
4.4.5 Cut Elimination . 130
4.4.6 Implications and Communication 132

4.5 Non-Interference . 136
4.5.1 Trust in FLAFOL . 137
4.5.2 Says Statements and Non-Interference 139
4.5.3 Implications . 140
4.5.4 Discovering Trust with Disjunctions 143
4.5.5 Formal Non-Interference . 143

4.6 Respect of Permission Beliefs . 146

5 Future Work 155
5.1 Semantics of Effectful Programs . 155

5.1.1 Probabilistic Game Semantics are Monadic 155
5.1.2 Strict and Lazy Semantics for Effect Systems 158
5.1.3 Connections with Adjunction Models 159

5.2 Semantics of Authorization Policies 160
5.2.1 Model Theory for FLAFOL 160
5.2.2 Secure Checking of FLAFOL proofs 161
5.2.3 Temporal Authorization Logic 162

5.3 Combining Semantics for Programs and Policies 164
5.3.1 Producer Effects in Information Flow 164
5.3.2 Distributed Modal Type Theory 166
5.3.3 A Distributed, Modal, Dependently-Typed Language 167

6 Related Work 169
6.1 Effects, Monads, and Comonads . 169
6.2 Strictness and Laziness . 171

6.2.1 Polarization and Focusing 172
6.3 Linear Logic . 174
6.4 Authorization Logic . 175
6.5 Combining Authorization and Information Security 177

7 Conclusion 180

A Metatheory for Proc 204
A.1 Preservation . 204
A.2 Progress . 204
A.3 Termination . 208
A.4 Confluence . 211

viii

B The Full FLAFOL Proof System 213

C Compatible Supercontexts 216

ix

LIST OF TABLES

A.1 Syntactic Definition of consumed, produced, opened, and closed . . . 205
A.2 Formalization of mentioned and connected 205
A.3 Measures for Procn Processes . 210

x

LIST OF FIGURES

2.1 Comp Syntax . 13
2.2 Comp Typing Rules . 14
2.3 Strict Comp Reduction Rules . 16
2.4 Lazy Comp Reduction Rules . 16
2.5 Rules of Effectful Languages . 29
2.6 Rules of Producer Effectful Languages 31
2.7 Rules of Consumer Effectful Languages 34
2.8 Formalization of Doubly-Effectful Languages 36
2.9 Subsumption for Distributive Doubly-Effectful Languages 39
2.10 Subsumption for Strict Doubly-Effectful Languages 43
2.11 Subsumption for Lazy Doubly-Effectful Languages 46
2.12 Proc Syntax . 53
2.13 Proc Typing Rules . 53
2.14 Proc Reduction Rules . 57
2.15 Strict Translation . 61
2.16 Lazy Translation . 61

3.1 Syntax of FOCAL . 70
3.2 FOCAL validity judgment for belief semantics 75
3.3 FOCAL validity judgment for Kripke semantics 80
3.4 Frame conditions for Kripke semantics 83
3.5 FOCAL derivability judgment . 94

4.1 FLAFOL Syntax . 116
4.2 Permission Rules . 118
4.3 Selected FLAFOL Proof Rules . 120
4.4 Signed Subformula Relation . 123
4.5 Selected Rules for Compatible Supercontexts 126
4.6 says over implication . 133
4.7 says over implication, inverted . 133
4.8 Alice Redacts Cathy’s Belief . 135
4.9 Alice’s Implication . 136
4.10 The rules defining speaks for. 138
4.11 The rules defining the can influence relation. 142

A.1 Formalization of Proc Values . 206
A.2 The Syntax of Procn . 207
A.3 The Type System of Procn . 208
A.4 Annotated Procn Reduction Rules 209

xi

CHAPTER 1

INTRODUCTION

Software manipulates most data. We keep most of our financial records in

cyberspace, socialize via social media, and even perform mundane tasks like uni-

versity registration online. This software must provide results while protecting our

privacy and ensuring that others cannot harm us. In order to provide such assur-

ances, we need machine-checked, proven-secure software, which requires a semantic

understanding of both effectful programs and security policies.

Imagine a college student named Alice, who interacts with many digital sys-

tems. She wants to go online to look at her grades and sign up for classes while

being sure that her mother cannot do so on her behalf. She shares pictures of

college life with her family on Facebook, but she wants to prevent her father from

immediately sharing them all with everyone he knows as well. Finally, she wants

assurance that her credit card will incur no charges without her permission. These

are all examples of security policies that Alice wants the systems that she interacts

with to follow.

Poorly-designed policies or policies that interact in unexpected ways can have

unintended consequences and so harm more than they help. For instance, imagine

that Alice’s university has a policy that parents or other students may not affect

or view a student’s registrar account, including seeing that student’s grades. As

a consequence either (a) Alice’s mother cannot pay for Alice’s tuition (since that

would affect Alice’s registrar account), or (b) Alice must share her registrar ac-

count with her mother, rendering Alice’s policy that Alice’s mother cannot see her

grades violable. The university can get out of this dilemma by adding subaccounts

which may pay a particular student’s tuition bill but not see their grades. In order

1

to ensure that no further such dilemmas appear, the university may wish to math-

ematically prove that their policies are coherent. However, so far we’ve articulated

only informal policies, which we cannot possibly prove anything about. In order to

provide assurances about security policies, we must create mathematically-precise

formal policies, which are amenable to proof. For example, the university may

write its policies in a formal logic, and then prove a (meta-)theorem stating that

subaccounts may pay the tuition for their main account, but they may not see the

grades associated with that account.

When we design systems, we design algorithms and data structures called secu-

rity mechanisms (often shortened to just mechanisms) to help us enforce security

policies. For instance, when Alice logs into her university registrar website the

website might install a cookie on her browser, identifying her to other pages of the

site. That cookie contains a timestamp which the site uses to ensure that it is still

Alice using the account. Thus when Alice tries to check her grades, the site will

check that timestamp and, if it has been too long since Alice logged in, invalidate

the cookie so that Alice is required to log in again. It will also ensure that the

account Alice has logged into is her main account, rather than the subaccount her

mother uses to pay tuition.

Note that in this example the registrar website needs to read and write state

in Alice’s browser, and it also needs to know the current time when setting the

timestamp in Alice’s cookie and when checking for a timeout. Reading and writing

state is a classic example of an effect. Intuitively, we can think of effects as ways

that programs “do more than they say on the tin,” in the sense that they represent

ways that programs can take actions which are not apparent in the program’s type.

Mechanisms often use some effects, such as reading and writing the state of a user’s

2

browser, in order to achieve results. The code that implements these mechanisms

might contain even more effects than the mechanism designer assumed. For in-

stance, the code that sets a cookie in Alice’s browser might throw an exception if

Alice’s browser rejects the cookie. A system designer who is trying to verify this

code must reason about how this new effect interacts with the mechanism.

Ideally developers of secure software use the following stack of abstractions:

To use these abstractions, they start with informal security policies and use those

to develop formal security policies. They use those formal security properties to

develop security mechanisms, and then implement those mechanisms using effectful

code. This process makes it easier to trust both the mechanisms themselves and

the code that implements them.

In reality, developers often do not follow the above process, since they do not

use formal security policies at all. This not only makes it more difficult to trust

the code, but makes formal verification of security near impossible. To see why,

consider the process used to formally verify security. First, we validate that our

formal security policies reflect the informal policies that we started with and we

3

verify that our mechanisms correctly enforce our formal security policies. Finally,

we verify that our code implements the mechanisms correctly. All together, we

can visualize the development and verification process as:

We need to understand the semantics of both policies and code in order to

partake in this process. In particular, verifying that code implements a security

mechanism requires knowledge of the semantics of effectful code, while validation

of a security mechanisms requires knowledge of the semantics of security policies.

Verifying that a mechanism enforces a policy requires both. Let us examine each

step in detail.

Verifying Code In order to verify that some code correctly implements a secu-

rity mechanism, we must have an account of the semantics of effectful programs,

since the mechanism uses some effects. The code might have more effects than

the mechanism uses, and so we must understand how effects combine in order to

establish the security properties of the code.

4

Semantics of Effectful Programs There are many ways to present program

semantics. The security literature mostly presents operational semantics, which

gives programs meaning via rules describing how they act on a computer. This

can give extremely valuable insights by providing a concrete view of how programs

operate. However, in this dissertation we use denotational semantics, especially

categorical semantics. That is, we will interpret programs using mathematical

structures called categories, giving us a more abstract view of programs and pro-

gramming languages and allowing us to reason formally about commonalities be-

tween languages. Moreover, categorical semantics connects to related work on the

semantics of effects, particularly through the use of monads [Moggi, 1989] and

comonads [Petricek et al., 2012, 2014; Uustalu and Vene, 2005]. In Chapter 2, we

will work on the boundary of denotational and operational semantics, using the

categorical semantics of effects to give a denotational account of strictness and

laziness.

Verifying Mechanisms In order to verify that a mechanism correctly enforces a

security policy, we must have an account of the semantics of both effectful programs

and security policies, since we must ensure that the semantics of the mechanism

matches the semantics of the policy. Consider again the example where Alice’s

university registrar checks a cookie when she tries to view her grades on their

website. They have an informal policy that only the student, and not their parents,

can access the student’s grades. They have a mechanism that attempts to enforce

that informal policy by checking a cookie. In order to verify this mechanism, they

have to know that the cookie check actually corresponds to the type of account,

and we must know that the formal policy states that student accounts are allowed

to view grades, but subaccounts are not.

5

Validating Formal Policies In order to validate that formal policies corre-

spond to their informal counterpart, we must have an account of the semantics

of security policies, since we must thoroughly understand the consequences of the

formal policy. It is especially important here to understand how security policies

combine, since this is where unintended consequences can rear their ugly head. For

instance, in the above example the policy that parents not be able to affect their

child’s account conflicts with the policy that parents should be able to pay their

child’s bill. In order to see this conflict we must understand what these policies

mean in context. In Chapter 4, we will see how we can reason about two types of

policy together to prevent this kind of collision from happening between the two

types of policy.

Semantics of Policies In this dissertation, we focus our discussion of security

policies on authorization policies, which limit who may do what in a system. This is

opposed to authentication policies, which discuss how parts of the system gain their

roles, and audit policies, which ensure that actions in a system are logged properly.

For instance, “subaccounts may not view student grades” is an authorization policy

while “a student must have signed in within the last 5 minutes” is an authentication

policy, and “a student’s account name must be logged whenever that student looks

at their grades” is an audit policy. Many policies are authorization policies, so our

focus on authorization policies does not overly limit the results in this dissertation.

In Chapter 4, we will also look at information security policies, which describe how

data may be used.

Our main tool for understanding authorization policies is authorization logic.

We define authorization logics as multi-modal logics with a notion of communica-

tion and a notion of trust, though this definition is far from universally accepted.

6

In other words, authorization logics have a modality (unary logical connective) for

every principal (component of the system) symbolizing when that principal be-

lieves a formula to be true. Principals can then communicate their beliefs, but are

only willing to communicate with principals they trust.

In this dissertation, we use two ways of giving semantics to logics: models and

proof systems. Logicians define models to represent, as mathematical structures,

the universes in which a logic describes truth. They then give meaning to a logical

sentence by describing when that sentence is true in one of these universes. For

instance, we can give meaning to a logic for reasoning about groups by describing

when a formula is true about a group. Logicians usually interpret modal logics as

reasoning about what possible world the reasoner can be in, which they formalize

using a Kripke structure. Since Kripke structures do not have a way to talk

about communication or trust, the few works on model theory for authorization

logics [Genovese et al., 2012; Goguen and Meseguer, 1982] use modified versions

of Kripke structures. However, these modified Kripke structures do not accurately

reflect real systems, so it is unclear to what extent these models tell us when an

authorization logic sentence is true about a system.

In Chapter 3, we develop belief structures, models which more-accurately re-

flect the design of real-world distributed systems. These models keep track of

the worldview of each principal, where the worldview of p is defined as the set of

formulae which that p believes. We then give a proof system for our logic, and

show that our semantics is sound ; that is, that every formula that can be proven

in our proof system is true in every model. Furthermore, any Kripke structure

induces a belief structure, showing that belief structures are at least as expressive

as more-traditional Kripke structures.

7

In Chapter 4, we focus on flow-limited authorization [Arden and Myers, 2016;

Arden et al., 2015], which combines reasoning about authorization with reasoning

about information security. Information-security policies express how information

may be used. For instance, an information-security policy might express that stu-

dent grades are high-integrity, and thus that student accounts and subaccounts

should not be able to affect grades. However, enforcing authorization policies can

cause information-security policy violations. We give a first-order authorization

logic for flow-limited authorization and discuss its proof theory, including a guar-

antee that information-security policies are respected by authorization proofs.

Organization To sum up, the rest of this dissertation is organized as follows:

• Chapter 2 gives a denotational account of strictness and laziness via effects.

This also requires combining a producer effect with a consumer effect, an

active area of research in the theory of effects. This chapter is based on joint

work with my advisor, Ross Tate [Hirsch and Tate, 2018].

• Chapter 3 defines belief structures, which more-closely reflect how authoriza-

tion logics are used in distributed systems. Belief semantics is not only sound

for FOCAL and FOCALE—our example authorization logics—but that it is

at least as expressive as the more-common Kripke semantics. This chapter

is based on joint work with Michael Clarkson, done while we were both at

The George Washington University [Hirsch and Clarkson, 2013a].

• Chapter 4 defines FLAFOL, a first-order logic for flow-limited authorization,

and presents proof-theoretic results for FLAFOL. These proof-theoretic re-

sults make it easier to compare flow-limited authorization with previous work

on authorization logic compared to FLAM, FLAFOL’s immediate predeces-

8

sor. Moreover, we present a non-interference result, a powerful security

result for authorization logics. This chapter is based on work with Pedro H.

Azevedo de Amorim, Ethan Cecchetti, Ross Tate, and Owen Arden [Hirsch

et al., 2019].

• In Chapter 5, we discuss ongoing and future work extending the semantics

of both effectful programs and authorization policies, with a focus on flow-

limited authorization. Moreover, we discuss how the two might be brought

into direct contact; for instance, we describe ongoing work that reasons pre-

cisely about how effects and information-security policies interact.

• In Chapter 6, we discuss related work, including work done in monadic and

comonadic semantics of effects, authorization logic, linear logic, and more.

• In Chapter 7, we conclude by discussing themes that run throughout the

work presented in this dissertation.

• In Appendix A, we present the metatheory of a language used in Chapter 2

to understand how two effects interact. This includes proofs of progress

and preservation for the type system of a language, along with a proof of

termination and confluence for the operational semantics.

• In Appendix B, we give the full proof system for the logic in Chapter 4.

• Finally, in Appendix C, we give the full rules for Compatible Supercontexts,

a proof-theoretic tool that we describe in Chapter 4.

9

CHAPTER 2

STRICT AND LAZY SEMANTICS FOR EFFECTS

The study of the semantics of effects has been quite fruitful. Researchers have

found two particularly important kinds of effects: those that can be given semantics

using a monad [Lucassen and Gifford, 1988; Marino and Milstein, 2009; Moggi,

1989; Nielson, 1996; Nielson and Nielson, 1999; Wadler and Thiemann, 1998], and

those that can be given semantics using a comonad [Brookes and Geva, 1992;

Brunel et al., 2014; Petricek et al., 2012, 2014; Uustalu and Vene, 2005, 2008].

Giving semantics to programs with both kinds of effects is an active area of

research. The most common technique uses a technical device called a distributive

law to describe the interaction of the effects when two effectful programs are com-

posed. However, not every comonad-monad pair has a distributive law [Brookes

and van Stone, 1993; Power and Watanabe, 2002], though often there is one.

But importantly, while Brookes and van Stone had found several comonad-monad

pairs without distributive laws that were interesting in the study of domain the-

ory [Brookes and van Stone, 1993], they did not find any that corresponded to

effects. Consequently, when Gaboardi et al. [2016] studied the semantics of lan-

guages with both kinds of effects, they decided to focus on the common case where

a distributive law exists.

Here we give an example of a pair of effects with a monad and a comonad

that do not have a distributive law. Furthermore, we demonstrate that not having

a distributive law increases the forms of interaction these effects can have, with

the difference between strictness and laziness arising as examples of interactions

between these effects. This poses a challenge, though, because a distributive law

is often used in order to compose such effectful programs.

10

Luckily, we do not need to come up with a completely new semantic technique

to give semantics to programs with the pair of effects that make up our exam-

ple. There are already two different semantic techniques that do not require a

distributive law [Brookes and van Stone, 1993; Power and Watanabe, 2002]. These

techniques previously went unnamed because they were believed to be unnecessary.

Now that we have proven them to be useful, we dub them the layerings, one of

which is the monad-prioritizing layering and the other of which is the comonad-

prioritizing layering.

When it is possible to use a distributive law, all three semantic techniques

necessarily produce equivalent results [Power and Watanabe, 2002]. However, since

there is no distributive law in our example, the semantics specified by the layerings

may produce different results. We show that, in fact, one of the layerings gives a

strict semantics to programs, and the other gives a lazy semantics to programs.

This gives a new perspective on strictness and laziness, one of the oldest sub-

jects in our field [Church and Rosser, 1936]. Instead of thinking of features like

function application as being either strict or lazy, we think of strictness and laziness

as arising from different interpretations of program composition. Of course there

are intimate relationships between these perspectives, and hints of our perspective

can be seen within many of the prior works on strictness and laziness. But we are

bringing it to the forefront, making it bold and clear by showing how changing the

way that programs compose can make even a language with almost no features—no

functions, branches, or even arithmetic, and only one type (N)—change between

strict and lazy semantics.

Beyond giving an important example where the currently-preferred semantic

technique based on distributive laws fails, our example has led us to develop a

11

classification of when that technique can and cannot apply. This classification

describes the linguistic characteristics that the technique based on distributive

laws requires, and contrasts these with the requirements of the layerings.

The rest of this chapter proceeds as follows:

• Section 2.1 introduces Comp, which is a minimal language with observation-

ally distinct strict and lazy operational semantics.

• Section 2.2 brings attention to the effects in Comp that give rise to strictness

and laziness, which we call consumer choice and producer choice. These will

be the example effects for which semantics based on distributive laws do not

work.

• Section 2.3 describes a comonad and a monad that capture consumer choice

and producer choice, both of which come from classical linear logic. To assist

in our exploration, we present several rules of classical and linear logic. The

classical-logic rules here correspond to an effectful calculus (with consumer

choice and producer choice), while the linear-logic rules here correspond to

a (pure) calculus that makes the effects of classical logic explicit.

• Section 2.4 explores the three known techniques for giving semantics to a

program with both kinds of effects, and gives a novel classification of the

linguistic structure that each requires. We present the rules that formalize

what we mean when we say a language is effectful, meaning rules that must be

admissable in a language for that language to be considered effectful. We also

refine these into rules for producer-effectful, consumer-effectful, and doubly-

effectful (i.e. both producer-effectful and consumer-effectful) languages.

• Section 2.6 applies the two layerings to give categorical semantics to Comp.

We show that the choice of layering reflects the choice between strict and

12

Variables x, y, z, . . .
Constants c ::= 0 | 1 | . . .
Expressions e ::= c | x | error
Statements s ::= x := e
Programs p ::= · | p+

Non-Empty Programs p+ ::= s1; . . . ; sn
Types t ::= N
Contexts Γ ::= x : t, . . .

(no repeats)
(unordered)

Figure 2.1: Comp Syntax

lazy semantics. To do so, we introduce Proc, a calculus that captures the

effects of consumer choice and producer choice in Comp using the comonad

and monad from linear logic we explored in Section 2.3.

2.1 A Simple Language for Exploring Strictness and Lazi-

ness

We begin by presenting a language, called Comp, that we designed for exploring

strictness and laziness. As one can see from the syntax in Figure 2.1, Comp is very

simple. We designed it to have only those features that we need for our exploration.

The only possible statements in Comp are assignments, and a program is merely

a list of assignments. For further simplicity, we assume that every variable is

assigned at most one expression in a Comp program. The only complexity in Comp

comes from the expressions that can be assigned to variables. First, constants can

be assigned to variables. Second, one variable can be assigned to another. Finally,

variables can be assigned error, which should be thought of as an expression that

13

` x := c a x : N
Const

y : t ` x := y a x : t
Var

` x := error a x : t
Error

Γ ` p1 a x : t Γ′, x : t ` p2 a y : t′

Γ,Γ′ ` p1; p2 a y : t′
Seq

Γ ` p a y : t′

Γ, x : t ` p a y : t′
(Left)

Weakening

Γ, x1 : t, x2 : t ` p a y : t′

Γ, x : t ` p[x1, x2 7→ x] a y : t′
(Left)

Contraction

Figure 2.2: Comp Typing Rules

throws an error when it is evaluated.

The output of a Comp program is considered to be the value assigned to the

last variable in the program. For example, in the program x := 3; y := 4, the

output is 4.

We provide a type system for Comp in Figure 2.2. The judgments used in the

type system have the form Γ ` p a x : t, where Γ is a set of variable-type pairs.

We read this as “given inputs with types described by Γ, the output of p will be a

value of type t assigned to x.” This makes Comp a multiple-input, single-output

language.

Note that the only possible type is N due to the simplistic nature of Comp.

We present the type system here because the typing derivations are illuminating,

though the types themselves are not. For instance, consider a derivation of ` x :=

3; y := error a y : N. As part of this we will need x : N ` y := error a y : N,

which we cannot obtain by directly applying the Error rule because the Error

rule requires an empty context. So instead, we must first apply another rule to get

14

the following derivation:

` y := error a y : N

x : N ` y := error a y : N

This other rule discards the unneeded input variable x, and is called (Left) Weak-

ening , so called because it introduces a type on the left-hand side of the turnstile.

Most languages admit weakening, but interweave it throughout the typing rules of

their language. We make it explicit here because it is fundamental to one of the

effects that form the central example of this paper.

Comp programs can be interpreted either strictly or lazily, and these interpre-

tations can lead to different results. Let us take a look at an example:

x := 3; y := error; z := x

In strict semantics, assignments are evaluated from left to right. Thus, the

example program assigns 3 to x, and then evaluates the error assigned to y. This

causes the program to throw an error, stepping immediately to z := error as the

output of the program.

In lazy semantics, an assignment is only evaluated when a variable is needed,

rather than each assignment being evaluated in left-to-right order. Thus, the

program looks at the assignment to the final variable, z, and notices that x is

needed to compute the final result. It then evaluates x := 3 and assigns 3 to z.

At this point, z no longer needs any other variables to compute its final value,

so the whole program steps immediately to z := 3 without executing any other

assignments. Notably, since y is not needed at any point, the assignment of error

to y is never executed, keeping the error from being thrown. (This form of laziness

15

x := c; p+ →s p+[x 7→ c]
x := y; p+ →s p+[x 7→ y]

x := error; p; y := e →s y := error

Figure 2.3: Strict Comp Reduction Rules

p+; x := c →` x := c
p; x := e; p′; y := x →` p; p′[x 7→ e]; y := e

p+; x := error →` x := error

Figure 2.4: Lazy Comp Reduction Rules

is call-by-need, which is equivalent to the more-common call-by-name [Ariola et al.,

1995; Maraist et al., 1995] in this case.)

We can formalize these two interpretations using the reduction rules in Fig-

ures 2.3 and 2.4. In Figure 2.3 we have the strict rules, which go through a

program from left to right, substituting variables with values, and jumping to the

end when an error is encountered. The lazy rules, in Figure 2.4, go through the

program from right to left, only substituting variables when needed for the final

result.

Since Comp lacks functions, it might seem surprising that Comp can have

differing strict and lazy interpretations of programs. One of the central results

of this paper is that strictness and laziness can be described as arising from the

interaction of effects during program composition. In previous works, programs

were composed through function application [Ariola et al., 1995; Levy, 2001; López-

Fraguas et al., 2007; Maraist et al., 1995; Plotkin, 1975; Sabry and Wadler, 1997;

Wadler, 2003]. In Comp, programs are composed by being set next to each other

and joined by a semicolon.

The semicolon-based syntax for composition also makes the connection between

16

Comp programs and category theory clear. Category theory is used to study the

compositional structure of languages. This makes it useful in our goal of describing

strictness and laziness as arising from the interactions of effects during composition.

Comp types and programs form a category, although some care must be taken

because Comp programs have multiple inputs. Technically this requires monoidal

category theory [Bénabou, 1963; Mac Lane, 1963], multicategory theory [Lambek,

1969; Leinster, 1998], or (in order to generalize to multiple outputs) polycategory

theory [Szabo, 1975]. This generalization is straightforward, but requires much

technical detail, so we do not present it here.

As a refresher, a category D is a collection |D| of objects along with, for ev-

ery pair of objects a and b ∈ |D|, a collection D(a, b) of morphisms. For a mor-

phism f ∈ D(a, b), we say that a is the domain of f and that b is the codomain of f .

Categories must have an identity morphism ida ∈ D(a, a) for every object a ∈ |D|.

Moreover, it must be possible to compose morphisms, so that if f ∈ D(a, b) and

g ∈ D(b, c), then there is a morphism f ; g ∈ D(a, c).1 This composition operation

must be associative (so (f ; g);h = f ; (g;h)), and the identity morphism must be

an identity for composition (so ida; f = f = f ; idb for any f ∈ D(a, b)). We write

f : a→ b for f ∈ D(a, b). In Section 2.4, we use this connection to category theory

to give formal semantics to effectful languages.

2.2 Consumer Choice and Producer Choice

We have seen that Comp programs can be interpreted either strictly or lazily, and

that this indeed leads to different results. Now, let us investigate why. Consider

1Note that we use diagram-order composition f ; g instead of function-order composition g ◦f .

17

again the example Comp program

x := 3; y := error; z := x

Reviewing our earlier reasoning, we can pinpoint why the strict interpretation

of this program and the lazy interpretation of this program are different. The

expression error is assigned to y, which is not used to compute the final result.

This means that the lazy reduction rules will not throw an error, since they will

never evaluate the assignment to y. Conversely, the strict reduction rules will

throw an error, since they evaluate each assignment regardless of whether it is

needed.

In general, the programs for which the strict and lazy interpretations lead to

different results are exactly those with errors that are not used to compute the final

result. These programs will have the error discarded by the lazy interpretation,

so no error is ever thrown. However, the strict interpretation never throws away

any assignment, so an error will be thrown.

Looking at the typing proofs for our example program, we can see that there

are typing rules that tell us exactly when these two concepts are in play.

` x := 3 a x : N

` y := error a y : N
Error

x : N ` z := x a z : N

x : N, y : N ` z := x a z : N
Weakening

x : N ` y := error; z := x a z : N

` x := 3; y := error; z := x a z : N

Notice the two rules we have labeled: Error and Weakening. The Error rule

tells us that an error is assigned to a variable, while the Weakening rule tells

us that a variable is discarded.

Note that neither the Error rule nor the Weakening rule is reflected in the

types of the program, since the only type in Comp is N. Instead, they tell us

18

something about the internals of the program. The Error rule tells us that some

output is never actually provided. The Weakening rule tells us that some input

is never actually used.

Both rules correspond to effects that are actually fundamental to strictness and

laziness. To see this, note that for any program needing at most one of the two

rules/effects, the strict and lazy interpretations lead to the same result.

The effect of not providing an output we call producer choice (of quantity)

because it is the ability for a program to choose how many times it will provide

an output. In the case of Comp, programs are limited to choosing to produce an

output zero times or one time. The effect of dropping an input we call consumer

choice (of quantity) because it is the ability for a program to choose how many

times it will consume an input. In Comp, programs can choose to use inputs

as many times as they want. The bottom rule in Figure 2.2, known as (Left)

Contraction, allows a program to use a variable more than once, another form of

consumer choice.

Producer choice describes how output is produced. We refer to effects that

describe how output is produced as producer effects. One usually uses a categorical

construct called a monad to give semantics to producer effects [Moggi, 1989; Wadler

and Thiemann, 1998]. That is, if D is a category (such as Set or CPO) in which

pure programs in a language can be interpreted, producer-effectful programs can

be intepreted as morphisms in D with codomain Mb, where M is a monad and

b is some type. A monad M on a category D is a function on the objects of D

along with two operators. The first operator is called the unit of the monad, and

is written η. It specifies a morphism ηa : a → Ma for each object a ∈ |D|. The

second operator is called bind, and it maps each morphism f : a → Mb to a

19

morphism bind(f) : Ma→Mb. These must satisfy the following equations:

• idMa = bind(ηa) for all a ∈ |D|

• ηa; bind(f) = f for all f : a→Mb

• bind(f); bind(g) = bind(f ; bind(g)) for all f : a→Mb and g : b→Mc

Consumer choice does not describe how output is produced, but rather it de-

scribes how input is consumed. Thus, rather than being a producer effect, it is

a consumer effect. Consumer effects are usually given semantics through a cate-

gorical construct called a comonad [Brookes and Geva, 1992; Petricek et al., 2012,

2014; Uustalu and Vene, 2005, 2008], which is the dual of a monad. That is, if D is

a category in which pure programs in some language can be interpreted, consumer-

effectful programs can be interpreted as morphisms in D with domain Ca, where

C is a comonad and a is some type. Formally, a comonad C on a category D

is a function on the objects of D along with counit and cobind operations. The

counit, written ε, specifies a morphism εa : Ca→ a for each object a ∈ |D|, while

cobind maps each morphism f : Ca → b to a morphism cobind(f) : Ca → Cb.

These must satisfy the following equations:

• idCa = cobind(εa) for all a ∈ |D|

• cobind(f); εb = f for all f : Ca→ b

• cobind(f); cobind(g) = cobind(cobind(f); g) for all f : Ca→ b

and g : Cb→ c

Producer choice is often given semantics through the Maybe monad. Values of

type Maybe t are either Nothing, representing a choice not to provide an output, or

20

Some v, where v is of type t, representing a choice to produce an output. However,

it is more difficult to give a simple description of a comonad for consumer choice.

Instead of attempting to do so computationally, we first turn to the world of logic.

We will see that classical linear logic contains a comonad representing consumer

choice and a complementary monad representing producer choice. By studying the

comonad and the monad of classical linear logic, we can develop a comonad that

represents consumer choice in Comp and a monad that represents producer choice

in Comp.

2.3 Capturing Consumer Choice and Producer Choice

The weakening and contraction rules of Comp are inspired by similar rules from se-

quent calculus for classical logic, also called (Left) Weakening and Contrac-

tion [Gentzen, 1935a,b]. Just as Weakening and Contraction provide con-

sumer choice in Comp, classical logic’s versions of Left Weakening and Con-

traction provide consumer choice in classical logic. It also has a Right Weaken-

ing rule, which inspired the Error rule of Comp since, in Comp, errors produce

no output. This rule provides producer choice in classical logic. In fact, classical

logic also has a Right Contraction rule that allows outputs to be produced more

than once, just as the Left Contraction rule allows Comp (and classical logic)

to use an input more than once. This expands the capabilities of producer choice

in classical logic compared to producer choice in Comp.

On the other hand, (classical) linear logic is pure with respect to both con-

sumer choice and producer choice [Girard, 1987]. That is, it has no Contrac-

tion or Weakening rules. Instead, linear logic provides a comonad ! (which is

21

pronounced “bang” or “of course”) to capture consumer choice in classical logic,

and a monad ? (which is pronounced “query” or “why not”) to capture producer

choice in classical logic [Girard, 1987].

We framed our discussion of capturing effects around categories, and we can

see both classical logic and linear logic as categories. For classical logic, the objects

of this category are formulae of classical logic, and the morphisms are (equivalence

classes of) classical-logic proofs. For linear logic, the definition of the category

is similar but uses formulae and proofs from linear logic instead. As mentioned

above, we represent proofs using Gentzen’s [1935a; 1935b] sequent calculus.

Recall that a sequent is a pair of multisets of formulae Γ and ∆, written Γ ` ∆.

In classical logic, we interpret this as saying that if all of the assumptions in Γ are

true, then at least one of the conclusions in ∆ is true. In linear logic, we treat that

same sequent as a process that, given all of the resources in Γ, provides all of the

resources in ∆. Formulae in linear logic can be treated as denoting resources rather

than truth values because linear logic does not have producer choice or consumer

choice. In some sense, choice (of quantity) enforces the idea that classical-logic

formulae denote truth values. After all, the fact that a formula is true does not

become invalid once someone chooses to rely upon that fact. However, providing

choice (of quantity) on an arbitrary resource would allow processes to reproduce

and exhaust that resource without limit.

A category is more than a collection of objects and morphisms. In order to

form a proper category, we need a logical notion of identity, which is provided by

Axiom, and of composition, which is provided by Cut. The Axiom rule says

that every hypothesis implies itself, or that every resource produces itself. The

Cut rule says that a ϕ provided by one proof can be supplied to another proof.

22

Axiom Cut

ϕ ` ϕ

Γ ` ϕ,∆ Γ′, ϕ ` ∆′

Γ,Γ′ ` ∆,∆′

In order to be a category, these two rules must further satisfy the identity and

associativity laws, and to achieve this one must use a more permissive notion of

proof equality. We will not go into the details, but consider cutting a proof with

Axiom: this produces a new proof, even though it is conceptually the same as the

original proof. Both logics have a procedure called cut elimination, which takes

a proof that uses the Cut rule and finds a proof of the same sequent that does

not use the Cut rule. This process is non-deterministic, but for linear logic it

turns out to still be confluent. Using techniques like cut elimination, albeit after

fixing a particular cut-elimination (i.e. reduction) strategy for classical logic, one

can develop appropriate notions of proof equality for both logics.

With the principles of classical logic and linear logic in hand, we can proceed

to show how linear logic captures consumer choice and producer choice in classical

logic. We start with classical logic and show how it exhibits both consumer choice

and producer choice. Then we continue with linear logic and show how it defines a

comonad and a monad that intuitively allow the same kinds of proofs that classical

logic admits using consumer choice and producer choice. We finally briefly discuss

how to give semantics to effectful proofs from classical logic using linear logic.

Classical logic enables consumer choice and producer choice via the so-called

structural rules. There are four structural rules in classical logic arising from two

binary choices: left vs. right, and weakening vs. contraction. The Left Weak-

ening rule says that a proof does not need to use all of its assumptions. The

Left Contraction rule says that a proof can use its assumptions multiple

23

times. The Right Weakening rule says that we can prove either ψ or ϕ if

we can prove ψ. The Right Contraction rule says that we can prove ϕ true

if we can prove ϕ or ϕ true. A formula can be consumed or produced more than

once by using contraction, and can be consumed or produced zero times by using

weakening.

C
la

ss
ic

a
l

L
o
g
ic

Left

Weakening

Γ ` ∆

Γ, ϕ ` ∆

Left

Contraction

Γ, ϕ, ϕ ` ∆

Γ, ϕ ` ∆

Right

Weakening

Γ ` ∆

Γ ` ϕ,∆

Right

Contraction

Γ ` ϕ, ϕ,∆

Γ ` ϕ,∆

It would not make sense to have a logic of resources where the structural rules

held. For instance, the Right Weakening rule would allow a process to create

a resource out of nothing, and Left Contraction would allow a process to use

twice as many resources as it was given. However, it might seem strange that

Left Weakening and Right Contraction are not allowed. To see why they

are not allowed, note that linear logic views debt as a form of resource. This allows

it to encode “A implies B” as a debt of an A that, when paid, provides a B. This

also means the Left Weakening rule would allow the receiver of some debt to

choose not to pay it. Similarly, the Right Contraction rule would allow a

process to halve the amount of debt it produces.

However, linear logic does allow controlled use of the structural rules through

the exponentials ! (“bang”) and ? (“query”). The “bang” exponential provides the

consumer of a resource access to the left structural rules. That is, a formula !ϕ

can be duplicated or ignored on the left. The “query” exponential provides the

producer of a resource access to the right structural rules. That is, a formula ?ϕ

24

can be duplicated or ignored on the right. This is formalized by the following rules:

C
la

ss
ic

a
l

L
in

e
a
r

L
o
g
ic Left

Weakening

Γ ` ∆

Γ, !ϕ ` ∆

Left

Contraction

Γ, !ϕ, !ϕ ` ∆

Γ, !ϕ ` ∆

Right

Weakening

Γ ` ∆

Γ ` ?ϕ,∆

Right

Contraction

Γ ` ?ϕ, ?ϕ,∆

Γ ` ?ϕ,∆

One also eventually wants to actually produce a !ϕ or consume a ?ϕ. Linear

logic includes the rules Right Promotion, which produces a !ϕ, and Left Pro-

motion, which consumes a ?ϕ.2

Right Promotion Left Promotion

!Γ ` ϕ, ?∆

!Γ ` !ϕ, ?∆

!Γ, ϕ ` ?∆

!Γ, ?ϕ ` ?∆

Note that the promotion rules restrict their contexts. To see why, imagine that

p is a sequent of the form Γ ` ϕ,∆. That is, p is a process that uses Γ to produce

ϕ and ∆. Imagine also that q is a sequent of the form Γ′, !ϕ ` ∆′. One might

näıvely promote p and compose it with q along !ϕ to get a judgment of the form

Γ,Γ′ ` ∆,∆′. Suppose q chooses to use Left Weakening to indicate that it does

not want the !ϕ resource, so the promotion of p must not provide that resource.

In linear logic, the only way to do this is simply to not execute p. However, this

means that Γ is never consumed and ∆ is never produced. Thus, all resources in

Γ need to be ! resources and all resources in ∆ need to be ? resources so that we

can choose not to consume or produce them.

Contrast this with the final rules involving the exponentials, called the derelic-

tion rules.

2We use the notation !Γ = {!ψ | ψ ∈ Γ} and ?∆ = {?ψ | ψ ∈ ∆}.

25

Left Dereliction Right Dereliction

Γ, ϕ ` ∆

Γ, !ϕ ` ∆

Γ ` ϕ,∆

Γ ` ?ϕ,∆

Left Dereliction allows a proof to use a !ϕ by using a single copy of ϕ. Sim-

ilarly, Right Dereliction allows a proof of ?ϕ to produce a single copy of ϕ.

Here, there are no restricted contexts. Instead of needing to respond to the choices

of other proofs, these rules represent making a choice.

Note that the dereliction and promotion rules are exactly the rules that we

need to make ! a comonad and ? a monad. We can construct the counit for ! and

the unit for ? using dereliction. Similarly, we can construct the cobind for ! and

the bind for ? using promotion.

Counit Unit Cobind Bind

ϕ ` ϕ

!ϕ ` ϕ

ϕ ` ϕ

ϕ ` ?ϕ

!ϕ ` ψ

!ϕ ` !ψ

ϕ ` ?ψ

?ϕ ` ?ψ

Using cut elimination, one can prove that these constructions satisfy the comonad

and monad laws.

At this point, we have a comonad ! and a monad ? that seem to capture the

ideas of consumer choice and producer choice, respectively. However, we only

have an informal computational interpretation, whereas we need to have a formal

computational interpretation to apply them to Comp. Moreover, we previously

discussed giving semantics to effectful programs by giving semantics to pure pro-

grams in some category, and then interpreting effectful programs using either a

monad or a comonad. So in order to give semantics to classical-logic proofs as

26

effectful programs, we must be able to give pure proofs—that is, proofs that do

not use weakening or contraction—semantics in some category. That category is

the category of linear-logic proofs.

It is not difficult to show how to embed pure classical-logic proofs into linear

logic. However, we must then be able to use the comonad ! and the monad ? to

embed classical-logic proofs that do use weakening or contraction into linear logic.

As we discussed in the introduction, there are at least three ways to give semantics

to a program with two effects, where one of the effects is given semantics via a

comonad and the other is given semantics via a monad. The first uses a distributive

law to describe the interactions of effects when programs are composed. The other

two are the layerings, which do not use a distributive law.

Girard [1987], who invented linear logic, tried to embed classical-logic proofs

into linear logic. However, he was only able to succeed with cut-free proofs. This is

quite unsatisfying since, in programming-language terms, this is the equivalent of

only being able to translate values. He was unable to embed proofs containing Cut

because his method of embedding classical logic into linear logic corresponds to

the technique for giving semantics with both kinds of effects that uses distributive

laws. However, there is no distributive law between ! and ?, as we will see shortly,

and so he had no way to compose, i.e. cut-eliminate, his translations.

Eventually, Girard was able to give a denotational semantics of classical logic

using the semantics of classical linear logic using a technique known as polariza-

tion [Girard, 1991]. However, syntactic embeddings of classical logic into classical

linear logic were not provided until Schellinx [1994] was able to give two embed-

dings of classical logic into classical linear logic including proofs containing Cut.

His methods correspond to the layerings. He was able to embed proofs that con-

27

tained Cut because the layerings do not rely on a distributive law for composition.

Consequently, one can amusingly view classical logic as effectful linear logic.

2.4 Effectful Languages and Their Semantics

In this section, we develop a linguistic metatheory for languages with two effects,

where one effect can be given semantics using a monad and the other effect can be

given semantics using a comonad. In order to develop such a metatheory, we focus

on languages that can express the monad and comonad that give semantics to their

effects. However, the categorical constructions are the same when the language,

like Comp, cannot internally express the monad and the comonad.

We start our discussion of effectful languages by looking at languages with just

one effect. The semantics we will be interested in here are standard, having been

studied at length [Brunel et al., 2014; Filinski, 2010; Marino and Milstein, 2009;

Moggi, 1989; Petricek et al., 2012, 2014; Tate, 2013; Wadler and Thiemann, 1998].

However, it is not common to see the linguistic assumptions made explicit, so this

should be of some interest even to seasoned experts.

We then move on to discuss languages with two effects. The semantics here are

less-commonly discussed, although they have been discovered before [Brookes and

van Stone, 1993; Gaboardi et al., 2016; Power and Watanabe, 2002]. Furthermore,

we discuss the novel linguistic metatheory of languages with two effects.

Note that in the metatheory we present here, effects ε are not necessarily part

of the types τ ; instead, they are in a sense an orthogonal classification of programs.

In particular, whereas types describe the kind of data that comes in and out of a

28

idτ : τ → τ

p : τ1 → τ2 q : τ2 → τ3

p; q : τ1 → τ3

p : τ1 → τ2

p : τ1
ε−→ τ2

p : τ1
ε−→ τ2 q : τ2

ε−→ τ3

p; q : τ1
ε−→ τ3

p : τ1
ε−→ τ2

idτ1 ; p = p

p : τ1
ε−→ τ2

p; idτ2 = p

p : τ1
ε−→ τ2 q : τ2

ε−→ τ3 r : τ3
ε−→ τ4

p; (q; r) = (p; q); r

Figure 2.5: Rules of Effectful Languages

program, effects describe the internal process of the program. Of course, there is

sometimes an interplay between types and effects and, as we will demonstrate, the

precise form of this interplay often dictates whether the effect is a producer effect

(i.e. a monadic effect) or a consumer effect (i.e. a comonadic effect).

2.4.1 Singly-Effectful Languages

We refer to languages with only one effect as singly-effectful. These include lan-

guages where effects can be captured by either a monad or a comonad. However,

capturing effects in either way requires linguistic assumptions beyond having ef-

fectful programs. The core linguistic assumption of singly-effectful programs is

that some programs are effectful, while others are pure. To denote this, we write

p : τ1 → τ2 when p is a pure program with input type τ1 and output type τ2, and

we write p : τ1
ε−→ τ2 when p is effectful. The pure programs form a sublanguage of

the effectful language, meaning we can always consider a pure program p : τ1 → τ2

as an effectful program p : τ1
ε−→ τ2. The fact that pure programs form a sub-

language, rather than just a subset of programs, means that pure programs are

29

closed under composition and that the identity programs are pure. Similarly, the

effectful programs are also closed under composition, and the effectful identity is

the same as the pure identity. We call any language that admits at least the rules

in Figure 2.5 “effectful.”

Note that Comp could intuitively be considered singly-effectful. We might

consider any Comp programs that never need the Error rule pure, while those

that do are effectful. Alternatively, we might consider any Comp programs that

never need the Weakening rule pure, while those that do are effectful. We could

even consider a Comp program pure only if it is pure under both definitions, and

effectful if it is effectful under either. In order to formalize this intuition, we would

have to consider languages where types are actually typing contexts, such as those

used in Comp. This requires the extra structure of monoidal categories [Bénabou,

1963; Mac Lane, 1963] or multicategories [Lambek, 1969; Leinster, 1998]. This

generalization is straightforward, but requires much technical detail, so we do not

present it here.

However, considering Comp merely as an effectful language does not give us

much of a semantic “handle” on the language. The only semantic outcome of a

singly-effectful language is a category of pure programs, and a category of effectful

programs, with an embedding of the pure programs into the effectful programs. In

order to get monads and comonads, we have to delve deeper.

Producer Effects

A language with a producer effect is one that, in addition to admitting the rules in

Figure 2.5, is able to have effectful programs be “thunked,” turning them into pure

programs. Specifically, if p is an effectful program with type τ1
ε−→ τ2, then there

30

p : τ1
ε−→ τ2

bpc : τ1 →Mτ2 execτ : Mτ
ε−→ τ

p : τ1
ε−→ τ2

bpc ; execτ2 = p

p : τ1 →Mτ2

bp; execτ2c = p

Figure 2.6: Rules of Producer Effectful Languages

is some pure program bpc : τ1 →Mτ2, where M is some function on types. For

instance, if ε is the effect “might throw an error,” then M is Maybe. If p throws an

error, then bpc returns Nothing. Otherwise if p returns v, then bpc returns Some v.

Intuitively, if bpc returns a value of type Mτ , then that value captures all of

the effects that would happen if we were to run p. Consequently, producer-effectful

languages have an effectful program execτ : Mτ
ε−→ τ that runs the effects captured

in Mτ . Thus, if ε is the effect “might throw an error,” execτ will throw an error

if its input is Nothing, and will return v if its input is Some v.

We formalize the rules for producer effects in Figure 2.6. Any language that

admits these rules in addition to the rules in Figure 2.5 is producer-effectful, and ε

is a producer effect. This “thunk-and-exec” view of effects comes from Tate [2013]

and is analogous to the “reify-and-reflect” view of Filinski [1999, 2010].

M must be a Monad It is possible to formally show that M must be a monad

in any producer-effectful language. We need to build η and bind, and to show that

the equations of a monad hold. To build η, we use bidτc. Recall that idτ : τ → τ

and that pure programs can be turned into effectful programs, so idτ : τ
ε−→ τ .

Thus, bidτc has signature τ →Mτ , as desired. For bind, we have to do something

more complicated: bind(f) = bexecτ1 ; f ; execτ2c, where f : τ1 → Mτ2. This

executes its input effects, runs f , and then executes the output of f , essentially

combining the effects before capturing them all in one large thunk. The equations

31

for monads follow from the equations for thunks and exec.

Structure for Producer-Effectful Programs Every producer-effectful pro-

gram f : τ1
ε−→ τ2 corresponds to a morphism bfc : τ1 → Mτ2 in the category of

pure programs. It is also a small exercise to show that bp; qc = bpc ; bind(bqc) for

any producer-effectful programs p and q. This shows that the category of producer-

effectful programs is the Kleisli category for M , denoted KM . We formally define

KM for a monad M on a category D as follows:

• The objects of KM are the same as the objects of D.

• The morphisms from a to b in KM are the morphisms from a to Mb in D.

• The identity morphisms ida : a → a in KM are the unit of the monad

ηa : a→Ma in D.

• For any f : a → b and g : b → c in KM , the composition f ; g in KM is

f ; bind (g) in D.

Theorem 1. Let L be a producer-effectful language, and let D be a category that

gives semantics to the pure programs in L. Let M be a monad on D correspond-

ing to the function on types M with appropriate unit and bind. Then KM gives

semantics to the producer-effectful programs in L.

Furthermore, the pure programs in L form a category D, and the function on

types M forms a monad on that category. The Kleisli category KM corresponding to

this choice of D and M is isomorphic to the category of producer-effectful programs

in L.

32

In fact, the requirements of the first half of Theorem 1 are stronger than neces-

sary. The monad M does not need to be expressible within the language L itself,

it just needs to have appropriate corresponding structure on D. Such a situation

is more in line with how Moggi [1989] and Wadler and Thiemann [1998] use Kleisli

categories to give semantics to effectful languages. The second half of the theorem,

which states that producer effects are necessarily monadic, comes from Tate [2013]

and does require that the function on types M can be expressed within L.

This distinction is important, particularly for giving semantics to Comp. The

type system of Comp is too weak to express the necessary function on types,

since it has only one type N. Thus, later in the paper, we will develop another

language, Proc, that is pure but has a more-expressive type system that is capable

of expressing the functions on types that capture the effects in Comp.

Consumer Effects

While producer effects have thunking that changes only the output types, consumer

effects have thunking that changes only the input types. That is, given a consumer-

effectful program p : τ1
ε−→ τ2 there is some pure program dpe : Cτ1 → τ2 for

some function on types C. For instance, if p can use some extra information of

type S, then dpe has signature τ1 × S → τ2. This program simply looks at the

second component of its input whenever p uses that information. We can think

of consumer effects as “needing something extra,” while producer effects “make

something extra.” When ε is “may use extra information,”, i.e. may read some

immutable state, this is very direct: the environment provides an extra input of

type S that p can use.

When we introduced producer effects, we had an intuition that M captured all

33

p : τ1
ε−→ τ2

dpe : Cτ1 → τ2 coexecτ : τ
ε−→ Cτ

p : τ1
ε−→ τ2

coexecτ1 ; dpe = p

p : Cτ1 → τ2

dcoexecτ1 ; pe = p

Figure 2.7: Rules of Consumer Effectful Languages

of the effects in an effectful program, and that we could therefore execute M to get

those effects back. A similar intuition holds here: C captures all of the information

that p needs to run. Co-execution, which we denote via a program coexecτ : τ
ε−→

Cτ , performs effectful operations in order to capture the information necessary for

C. In the case of using extra information, co-execution takes a value v, reads the

state to get s, and then returns (v, s) : τ × S.

We formalize what it means to be a consumer effect in Figure 2.7. Any language

that admits these rules in addition to the rules in Figure 2.5 is consumer-effectful,

and ε is a consumer effect.

C must be a Comonad To formally show that C must be a comonad in any

consumer-effectful language, we construct ετ as didτe, and cobind(f) as

dcoexecτ1 ; f ; coexecτ2e : Cτ1 → Cτ2 for any pure program f : Cτ1 → τ2. In the

case of using extra information, ετ : τ ×S → τ takes a value of the form (v, s) and

returns v. In the same setting, cobind(p) takes a value of the form (v, s) and runs

p(v, s) to get v′, and then returns (v′, s).

Structure for Consumer-Effectful Programs We can also show that the

category of consumer-effectful programs is structured as the Kleisli category for C,

written KC . We formally define KC for a comonad C on a category D as follows:

34

• The objects of KC are the same as the objects of D.

• The morphisms from a to b in KC are the morphisms from Ca to b in D.

• The identity morphisms id : a → a in KC are the counit of the comonad

εa : Ca→ a in D.

• For any f : a → b and g : b → c in KC , the composition f ; g in KC is

cobind(f); g in D.

Theorem 2. Let L be a consumer-effectful language, and let D be a category that

gives semantics to the pure programs in L. Let C be a comonad on D corresponding

to the function on types C with appropriate counit and cobind. Then KC gives

semantics to the consumer-effectful programs in L.

Furthermore, the pure programs in L form a category D, and the function on

types C forms a comonad on that category. The Kleisli category KC corresponding

to this choice of D and C is isomorphic to the category of consumer-effectful

programs in L.

Again, the requirements in the first half of Theorem 2 are stronger than nec-

essary. The comonad C does not need to be expressible within the language L

itself; it just needs to have appropriate corresponding structure on D. This

situation corresponds more closely to how Uustalu and Vene [2005, 2008] and

Petricek, Orchard, and Mycroft [2012, 2014] give meaning to effectful programs.

The second half of Theorem 2 does require C to be expressible in L, and follows

from dualizing an argument of Tate [2013].

35

idτ : τ → τ

p : τ1
~ε−→ τ2 q : τ2

~ε−→ τ3

p; q : τ1
~ε−→ τ3

p : τ1
~ε−→ τ2

idτ1 ; p = p

p : τ1
~ε−→ τ2

p; idτ2 = p

p : τ1
~ε−→ τ2 εp ∈ ~ε

bpc : τ1
~ε\{εp}−−−→Mτ2

execτ : Mτ
εp−→ τ

p : τ1
~ε−→ τ2

bpc ; execτ2 = p

p : τ1
~ε−→Mτ2 εp 6∈ ~ε
bp; execτ2c = p

p : τ1
~ε−→ τ2 εc ∈ ~ε

dpe : Cτ1
~ε\{εc}−−−→ τ2

coexecτ : τ
εc−→ Cτ

p : τ1
~ε−→ τ2

coexecτ1 ; dpe = p

p : Cτ1
~ε−→ τ2 εc 6∈ ~ε

dcoexecτ1 ; pe = p

p : τ1 → τ2

p : τ1
~ε−→ τ2

Figure 2.8: Formalization of Doubly-Effectful Languages

2.4.2 Doubly-Effectful Languages

While we have discussed producer effects and consumer effects in isolation, Comp

has one of each kind of effect. To discuss this, we move from singly-effectful

languages to doubly-effectful languages. A doubly-effectful language has both a

producer effect εp and a consumer effect εc.

We give the linguistic assumptions of doubly-effectful languages in Figure 2.8.

In our formalization, every function arrow is labeled with a set of effects, ~ε. For

concision, we omit the usual braces delimiting sets. Depending on the effect set

of a program, we refer to the program as “pure,” “producer-effectful,” “consumer-

effectful,” “singly-effectful,” or “doubly-effectful.”

36

Doubly-effectful languages have all of the features of both producer-effectful

languages and consumer-effectful languages. Furthermore, thunking has been ex-

tended to handle programs with multiple effects. If p has type τ1
εc,εp−−→ τ2, then

bpc has type τ1
εc−→Mτ2 and dpe has type Cτ1

εp−→ τ2.

The subsumption rule in Figure 2.8 applies only to pure programs. Notably,

subsumption rules for singly-effectful programs are missing. This is because the

three methods of giving semantics to doubly-effectful programs differ by which

such subsumption rules are admissible.

It is worth noting that the description of the linguistic assumptions of doubly-

effectful languages here is novel, as is the discovery that different subsumption

rules correspond to different semantics.

Distributive Laws for Doubly-Effectful Languages

A common assumption is that all singly-effectful programs can be considered

doubly-effectful. We formalize this assumption with the two subsumption rules

in Figure 2.9. These rules can be used to build a distributive law. Let D be a

category, with M a monad on D and C a comonad on D. A distributive law of M

over C specifies a morphism σa : CMa → MCa for each object a ∈ |D|. These

must satisfy the following equations:

• cobind(f ; ηb);σb = cobind(f); ηCb for all f : Ca→ b

• σa; bind(εa; f) = εMa; bind(f) for all f : a→Mb

• cobind(σa; bind(f));σb = σa; bind(cobind(f);σb) for all f : Ca→Mb

In fact, there are two candidates for building στ : we could use either of the

37

programs bdexecτ ; coexecτec or dbexecτ ; coexecτce. These come from the intu-

ition that a distributive law is a doubly-effectful program that converts M and C

into their respective effects, made pure. Both of these candidates turn out to be

the same, thanks to the following:

Lemma 1. Let p be any program in a distributive doubly-effectful language. Then

bdpec = dbpce.

Proof. Both bdpec and dbpce contain the same information. In particular, the

following holds (where the well-typedness of the terms requires the subsumption

rules in Figure 2.9):

coexecτ1 ; bdpec ; execτ2 = coexecτ1 ; dbpce ; execτ2 = p

This equality implies bdpec equals dbpce by applying the following implications:

∀q, q′ : τ ~ε−→Mτ ′. εp /∈ ~ε =⇒ q; execτ ′ = q′; execτ ′ =⇒ q = q′

∀q, q′ : Cτ ~ε−→ τ ′. εc /∈ ~ε =⇒ coexecτ ; q = coexecτ ; q
′ =⇒ q = q′

which are provable from the rules in Figure 2.8:

q; execτ ′ = q′; execτ ′ =⇒ q = bq; execτ ′c = bq′; execτ ′c = q′

coexecτ ; q = coexecτ ; q
′ =⇒ q = dcoexecτ ; qe = dcoexecτ ; q′e = q′

Lemma 1 lets us write [p] = bdpec = dbpce without ambiguity. Moreover, it

means that we have only one candidate for στ , which is [execτ ; coexecτ]. The laws

of thunking, executing, and co-executing make this a distributive law.

Semantics Based on Distributive Laws

In order to build a distributive law this way, the doubly-effectful language must

admit the rules in Figure 2.9. To see why, consider the composition execτ ; coexecτ .

38

p : τ1
εp−→ τ2

p : τ1
εc,εp−−→ τ2

p : τ1
εc−→ τ2

p : τ1
εc,εp−−→ τ2

Figure 2.9: Subsumption for Distributive Doubly-Effectful Languages

By the rules of Figure 2.8, two programs can be composed only when their effect

sets are the same. In order to compose execτ with coexecτ , we must lift execτ

from a producer-effectful program to a doubly-effectful program, and similarly with

coexecτ . The subsumption laws of Figure 2.9 are required to do this.

Because our description of doubly-effectful languages is novel, so is this argu-

ment that admitting the “obvious” subsumption rules in Figure 2.9 allows us to

build a distributive law. This gives a description of language features that allow

the standard distributive-law-based semantics to work.

Just as the monad and comonad laws enable us to describe and compose

producer-effectful programs and consumer-effectful programs solely using pure pro-

grams, a distributive law enables us to describe and compose doubly-effectful pro-

grams solely using pure programs. Given a category D, with a monad M , a

comonad C, and a distributive law σ of M over C, we develop a category Kσ
C,M

such that Kσ
C,M(a, b) = D(Ca,Mb). The distributive law σ is necessary to build

the composition operator for Kσ
C,M . To see why, consider f : a→ b and g : b→ c

in Kσ
C,M . Let us write [f] : Ca → Mb and [g] : Cb → Mc for f and g consid-

ered as morphisms of D. Then, what should f ; g be? We can try to do what we

did for the Kleisli and Kleisli categories, and get cobind([f]) : Ca → CMb and

bind([g]) : MCb→Mc, but there is still a type mismatch. However, if we have a

distributive law σ, we can use it to fix this type mismatch, so that f ; g corresponds

to cobind([f]);σb; bind([g]). This leads to the following definition of Kσ
C,M :

39

• The objects of Kσ
C,M are the same as the objects of D.

• The morphisms from a to b in Kσ
C,M are the morphisms from Ca to Mb in

D.

• The identity morphisms ida : a→ a in Kσ
C,M are defined as εa; ηa : Ca→Ma

in D.

• For f : a→ b and g : b→ c in Kσ
C,M , their composition is

cobind(f);σb; bind(g) in D.

Theorem 3. Let L be a doubly-effectful language admitting the subsumption rules

in Figure 2.9, and let D be a category that gives semantics to the pure programs in

L. Let M be a monad on D corresponding to the function on types M with appro-

priate unit and bind, and let C be a comonad on D corresponding to the function

on types C with appropriate counit and cobind. Finally, let σ be a distributive law

of M over C. Then Kσ
C,M gives semantics to the doubly-effectful programs in L.

Furthermore, the pure programs in L form a category D, the function on

types M forms a monad on that category, the function on types C forms a comonad

on that category, and the collection of programs [execτ ; coexecτ] forms a distribu-

tive law σ of M over C. The category Kσ
C,M corresponding to this choice of D,

M , C, and σ is isomorphic to the category of doubly-effectful programs in L.

Yet again, the requirements of the first half of Theorem 3 are stronger than

necessary. Weakening them gives a situation similar to that studied by Power

and Watanabe [2002], Brookes and van Stone [1993], and Gaboardi, Katsumata,

Orchard, Breuvart, and Uustalu [2016]. The second half of Theorem 3 is novel,

and it requires L to admit the subsumption laws in Figure 2.9.

40

Linear Logic Lacks a Distributive Law

Girard’s attempt to embed classical-logic proofs into linear logic embeds classical-

logic sequents of the form Γ ` ∆ as classical-linear-logic sequents of the form

!Γ ` ?∆. This looks a lot like the development of Kσ
C,M . However, Girard was

only able to translate cut-free proofs of classical logic into linear logic using this

method.

Recall that cut is how sequential composition is implemented in logic. Because

Kσ
C,M relies on σ to build composition, we might expect that there is a problem

with building a distributive law in linear logic. Indeed, there is no distributive law

of ? over !.

Such a law would be a proof of the sequent !?ϕ ` ?!ϕ for any ϕ. One might

expect this to be provable, given that one has free choice over how many inputs

they request and how many outputs they provide. In particular, one could opt to

request no inputs and provide no outputs. However, this would fail to satisfy the re-

quirements of a distributive law. Unfortunately, the requirements of a distributive

law dynamically constrain just how many inputs and outputs need to be provided,

and one is inevitably forced to pick how many inputs they request before they

know how many outputs they need to provide or vice versa. More formally, the

fact that a distributive law cannot exist follows from Schellinx’s work [Schellinx,

1994] and the upcoming Theorem 6.

Brookes and van Stone [1993] argue that it is appropriate to use distributive

laws in the semantics of effects because, in their exploration of effects, every appli-

cation had a distributive law.3 Since then, distributive laws have been the focus of

3Brookes and van Stone do find monad-comonad pairs that do not have distributive laws.
However, these pairs do not correspond to known computational effects; rather, they are used in

41

research in giving semantics to doubly-effectful languages [Gaboardi et al., 2016;

Power and Watanabe, 2002]. However, the fact that strictness and laziness arise

from a pair of effects where the relevant monad and comonad do not have a dis-

tributive law suggests that exploring other semantics is sometimes necessary.

The Monad-Prioritizing Layering

Consider a strict interpretation of a language where programs have consumer

choice, and where producer choice is implemented by throwing errors. In this

language, we cannot embed arbitrary producer-effectful programs into the doubly-

effectful language. To see why, recall that execτ for throwing errors examines

a value v of type Maybe τ and, if it is Some v, it returns v. Otherwise, v is

Nothing, and execτ throws an exception. Since it may throw an exception, execτ

is producer-effectful.

Suppose we have a program p that may or may not throw an exception, and

a program q that may or may not use its input. If we assume subsumption as

in Figure 2.9, then we can treat both p and q as doubly-effectful programs and

compose them into p; q. This program must then be semantically equivalent to

bpc ; exec; q, and therefore to bpc ; coexec; dexec; qe. Now consider the program

dexec; qe. It takes as input a CMτ . Furthermore, if p is actually error so that

the M in CMτ captures an error, then p; q throws an error by strictness, and so

dexec; qe must throw an error due to the established semantic equivalences, and

it must only throw an error if p does. So no matter what q does, dexec; qe must

extract the Mτ from the CMτ , i.e. apply left dereliction. To see why this is a

problem, suppose that p does not throw an exception, so that the Mτ is actually

the study of domain theory.

42

p : τ1
εp−→ Cτ2

p : τ1
εc,εp−−→ Cτ2

p : τ1
εc−→ τ2

p : τ1
εc,εp−−→ τ2

Figure 2.10: Subsumption for Strict Doubly-Effectful Languages

a τ , and furthermore suppose that τ is actually some debt, and that q, rather

than addressing this debt, has the consumer effect because it explicitly ignores the

debt. Then because dexec; qe had to examine the input to determine whether or

not to throw an exception, it also forced us to have this debt that is unsoundly

left unpaid. Thus it is unsound to allow p and q to be composed together in this

strict language, which means we cannot assume subsumption as in Figure 2.9.

Instead, strict languages can only use the weaker subsumption rules in Fig-

ure 2.10. The restriction is that producer-effectful programs can only be given the

additional consumer effect if they are returning a C value. This C value ensures

that subsequent consumer-effectful programs still have a way to discard their input

even if the producer-effectful program needs to examine its own. Note that there

is no restriction on when consumer-effectful programs can be given the additional

producer effect. This might be surprising, but we can use layering to prove that

this is sound.

When we gave semantics to doubly-effectful programs via distributive laws, we

thunked doubly-effectful programs to pure programs by thunking the effects in

either order. That is, p : τ1
εc,εp−−→ τ2 was thunked as [p] : Cτ1 →Mτ2. However, for

strict languages, we thunk in a special way: if p : τ1
εc,εp−−→ τ2 is a doubly-effectful

program, TpU : Cτ1 → MCτ2 is the thunked program where the inner C in the

output type enables subsequent programs to drop their inputs even after examining

the effects captured in the M . We define TpU as [p; coexecτ2]
4.

4This notation is unambiguous here because the proof of Lemma 1 can be adapted to programs

43

We would like to give structure to the category of doubly-effectful languages

in this setting. We can do so with a similar trick as before: given a category

D with a monad M and a comonad C, we develop a category KM
C,M such that

KM
C,M(a, b) = D(Ca,MCb). Moreover, composition is simple: we just use bind,

just as in the Kleisli category for a monad. This leads to the following definition

of KM
C,M :

• The objects of KM
C,M are the same as the objects of D.

• The morphisms from a to b in KM
C,M are the morphisms from Ca to MCb in

D.

• The identity morphisms ida : a→ a in KM
C,M are defined as ηCa in D.

• For any f : a → b and g : b → c in KM
C,M , their composition is f ; bind(g)

in D.

Note that bind and not cobind is used in the definition of composition, so

the producer effect will always be in control of the composition. For instance, if

M is Maybe, and p throws an error, then the entirety of p; q will throw an error

because Tp; qU = TpU; bind(TqU), making the latter half of the program propagate

the error. For that reason, we refer to this as the monad-prioritizing or strict

semantics for the effects.

Theorem 4. Let L be a doubly-effectful language admitting the subsumption rules

in Figure 2.10, and let D be a category that gives semantics to the pure programs in

L. Let M be a monad on D corresponding to the function on types M with appro-

priate unit and bind, and let C be a comonad on D corresponding to the function

on types C with appropriate counit and cobind. Then KM
C,M gives semantics to the

doubly-effectful programs in L.

in strict doubly-effectful languages with output types of the form Cτ .

44

Furthermore, the pure programs in L form a category D, the function on types

M forms a monad on that category, and the function on types C forms a comonad

on that category. The category of doubly-effectful programs in L is a subcategory

of the category KM
C,M corresponding to this choice of D, M , and C.

Weakening Theorem 4 gives a situation similar to that studied by Brookes and

van Stone [1993]. However, they did not apply this to effectful languages, and so

did not discover the distributive laws in Figure 2.10. Power and Watanabe [2002]

also studied KM
C,M from a purely category-theoretic perspective, but they did not

connect to languages at all.

We need to be careful here: the category of doubly-effectful programs is not

KM
C,M . Instead, it is a subcategory of KM

C,M . To see why, consider the case where εc

is reading state, and εp is throwing errors. Then a program like λ(x, s).Some (x, s+

1) might exist, and is of type τ ×S → Maybe (τ ×S) (where +1 is well-defined for

S). However, this program does not denote any doubly-effectful program in the

language, since it changes the state rather than just reading the state.

The Comonad-Prioritizing Layering

By similar reasoning as in the previous subsection, we cannot treat arbitrary

consumer-effectful programs as doubly-effectful when using lazy semantics. How-

ever, we can do so when said consumer-effectful programs consume an M . We

consequently weaken the subsumption rules of Figure 2.9 to those of Figure 2.11

(as opposed to those of Figure 2.10) for lazy doubly-effectful languages.

We can now thunk doubly-effectful programs of the form p : τ1
εc,εp−−→ τ2

45

p : τ1
εp−→ τ2

p : τ1
εc,εp−−→ τ2

p : Mτ1
εc−→ τ2

p : Mτ1
εc,εp−−→ τ2

Figure 2.11: Subsumption for Lazy Doubly-Effectful Languages

as VpW : CMτ1 →Mτ2 using the construction [execτ1 ; p]
5, where the M in the

input type enables previous programs to not provide their outputs before provid-

ing the effects captured in the C. This leads to the following definition of the

category KC
C,M for a category D, a monad M on D, and a comonad C on D:

• The objects of KC
C,M are the same as the objects of D.

• The morphisms from a to b in KC
C,M are the morphisms from CMa to Mb

in D.

• The identity morphisms ida : a→ a in KC
C,M are defined as εMa in D.

• For any f : a → b and g : b → c in KC
C,M , their composition is cobind(f); g

in D.

Note that cobind and not bind is used in the definition of composition, so

the consumer effect will always be in control of the composition. For instance, if

C is ! and q drops its input, then the entirety of p; q will drop its input because

Vp; qW = cobind(VpW); VqW, making the former half of the program also drop its in-

put. For that reason, we refer to this as the comonad-prioritizing or lazy semantics

for the effects.

Theorem 5. Let L be a doubly-effectful language admitting the subsumption rules

in Figure 2.11, and let D be a category that gives semantics to the pure programs in

5This notation is unambiguous here because the proof of Lemma 1 can be adapted to programs
in lazy doubly-effectful languages with input types of the form Mτ .

46

L. Let M be a monad on D corresponding to the function on types M with appro-

priate unit and bind, and let C be a comonad on D corresponding to the function

on types C with appropriate counit and cobind. Then KC
C,M gives semantics to the

doubly-effectful programs in L.

Furthermore, the pure programs in L form a category D, the function on types

M forms a monad on that category, and the function on types C forms a comonad

on that category. The category of doubly-effectful programs in L is a subcategory

of the category KC
C,M corresponding to this choice of D, M , and C.

Again, weakening this theorem gives a situation similar to that studied by

Brookes and van Stone [1993], although they did not study effectful languages.

Power and Watanabe [2002] studied KC
C,M purely categorically, but they did not

connect to languages at all.

We need to be careful here: the category of doubly-effectful programs is not

KC
C,M . Instead, it is a subcategory of KC

C,M . To see why, consider the case where εc

is reading state, and εp is throwing errors. Then a program of type (Maybe N)×S →

Maybe N could (regardless of the state) return Nothing if the input is Some v and

otherwise return Some 5 if the input is Nothing. However, this program does not

denote any doubly-effectful program in the language, since it turns errors thrown

earlier in the program into successes and successes into errors.

The Layerings in Linear Logic

Schellinx [1994] eventually found two translations of classical logic into linear logic

that can handle cuts. These correspond to the layerings. The first translates

a classical-logic sequent Γ ` ∆ into the linear-logic sequent !Γ ` ?!∆, and the

47

second translates the same classical sequent into the linear sequent !?Γ ` ?∆. In

particular, the first translation uses ?-promotion to translate cuts, and the second

translation uses !-promotion. This is directly analogous to the use of bind versus

cobind in the two layerings, so the first translation is conceptually the “strict”

translation, while the second is the “lazy” translation.

Note, however, that this requires generalizing the assumptions we have made so

far. In particular, linear logic is a multiple-input, multiple-output setting whereas

the category theory we have presented is a single-input, single-output setting. The

categorical properties of ! and ? that allow them to handle this change in setting

can be found in Section 2.5.

The Relationship between Distributive Laws and Layering

Using layering, we can prioritize either the producer effect or the consumer effect.

However, the definition of Kσ
C,M prioritizes neither, since it uses a distributive law.

We would like to compare these semantics, but they have different types. Luckily,

it is relatively easy to use η and ε to transform TpU and VpW to have the same

type as [p]. Theorem 6 states that the three semantics are equivalent provided a

distributive law exists.

Theorem 6. For any effectful program p : τ1
εc,εp−−→ τ2 in a distributive doubly-

effectful language, the following are all equal:

TpU; bexecCτ ; didτec = [p] = Cητ1 ; dbidτc ; coexecMτe

Analogously, for any monad M on a category D and comonad C on the same

category D along with a distributive law σ of M over C (so that Kσ
C,M is a well-

defined category), KM
C,M , Kσ

C,M , and KC
C,M are all isomorphic.

48

The latter half of Theorem 6 is given by Power and Watanabe [2002], and

with the former half we directly connect this to doubly-effectful languages. Theo-

rem 6 implies that the layerings are strictly more expressive than distributive laws.

In particular, any monad and comonad whose monad-prioritizing and comonad-

prioritizing layerings differ semantically cannot have a distributive law, including

the monad and comonad we define in the next section to formalize our insight about

strictness and laziness. Furthermore, the layerings apply to any situation where a

distributive law applies and arrive at the same result. Thus, it is never necessary to

identify a distributive law to give semantics to a doubly-effectful language, though

it still can be useful.

This also provides the proof that linear logic has no distributive laws. If there

were, then there would not be a meaningful difference between Schellinx’s [1994]

two translations of classical logic.

2.5 Languages with Multiple Inputs and Multiple Outputs

Experts may be interested in the categorical properties that ! and ? exhibit that

enable the layerings in Sections 2.4.2 and 2.4.2 to generalize to languages with

multiple inputs and multiple outputs. As is already known, the properties of being

a monad and a comonad are not sufficient [Jones and Hudak, 1993; Moggi, 1989;

Uustalu and Vene, 2008]. The rest of this section addresses these experts. As such,

we will not define all of the terms in this section, instead relying on the expertise

of the reader.

First, for multiple inputs, consider the well-established notion of strength for

monads. Strength enables a monad M to generalize to multiple inputs via the

49

following rule:

Γ, τ1 `Mτ2

Γ,Mτ1 `Mτ2

However, to generalize the layerings of M with a comonad C we only need the

monad to admit that rule restricted to C:

CΓ, τ1 `Mτ2

CΓ,Mτ1 `Mτ2

This can be achieved with by requiring M to be strong relative to C [Blute et al.,

1996]. This weakening of strength is important because ? is not strong, but it is

strong relative to !. In traditional categorical terms, strength relative to C is a

natural transformation of type Mτ1 ⊗ Cτ2 → M(τ1 ⊗ Cτ2) satisfying adaptations

of the traditional strength laws, as detailed by Blute et al. [1996]. Note that

traditional strength from a non-linear setting translates to strength relative to !

in a linear setting. Thus, any traditional strong monad can be layered with !,

even in multi-input languages, to develop a strict and lazy semantics for the effect

represented by that monad.

As for the comonad C, being comonadic only allows cobind to apply when

there is a single input. In order to admit the multiple-input rule

CΓ ` τ

CΓ ` Cτ

C must furthermore be lax monoidal with respect to ⊗, and it must satisfy the

laws for a (symmetric) lax monoidal comonad Uustalu and Vene [2008]. These two

properties are sufficient for generalizing our layerings to languages with multiple

inputs and a single output.

Second, for multiple outputs, M and C must satisfy properties dual to those

50

above. In other words, C must admit the rule

Cτ1 ` τ2,M∆

Cτ1 ` Cτ2,M∆

This can be achieved by requiring C to be strong relative to M [Blute et al., 1996].

In traditional categorical terms, strength relative to M is a natural transforma-

tion of type C(τ1 `Mτ2)→ Cτ1 `Mτ2 satisfying adaptations of the traditional

strength laws, as detailed by Blute et al.. Furthermore, in order for the monad M

to admit the multiple-output rule

τ `M∆

Mτ `M∆

M must be colax monoidal with respect to `, and it must satisfy the laws for a

(symmetric) colax monoidal monad. These properties are sufficient for generalizing

our layerings to languages with multiple inputs and/or multiple outputs.

2.6 Giving Semantics to Choice in Comp

In Section 2.4, we considered effectful languages in which the effects could be thun-

ked into a monad and/or comonad. This allowed us to develop metatheories about

when effects are necessarily monadic or comonadic, and about when distributive

laws can or cannot exist. However, not all effectful languages are expressive enough

to express their effects internally. Comp is an example. Comp has consumer choice

and producer choice, but only one type N, so it is not able to represent those effects

as comonads and monads within its own type system.

This problem is addressed by formalizing an effectful language L in terms of

another language P . This other language is typically pure in the sense that it may

51

exhibit more desirable properties like confluence or termination. Furthermore,

this other language is typically more expressive, especially with respect to its type

system. In particular, the language’s type system is capable of encoding various

comonads and monads which can be used to formalize the semantics of various

effects.

So to give a categorical semantics for a doubly-effectful language L, one picks

a “pure” language P along with a comonad C and a monad M on P . Then one

decides upon a Kleisli-like category that captures the desired interaction of effects.

In particular, KM
C,M from Section 2.4 captures the monad-prioritizing (strict) se-

mantics, whereas KC
C,M captures the comonad-prioritizing (lazy) semantics. The

choice of category provides the semantics for sequentially composing programs in

the effectful language. Thus, after making this choice, one simply has to pro-

vide translations of the primitive operations from the effectful language into this

category, and the remainder of the semantics will be derived from the categori-

cal structure. Furthermore, because KM
C,M and KC

C,M have already been proven

to be well-formed categories, the derived semantics is guaranteed to sequentially

compose effectful programs in a manner that is associative and respects identities.

Technically these constructions only apply to single-input, single-output languages,

but they are easy to extend to multiple inputs and/or multiple outputs, the for-

malization of which is in Section 2.5.

In the following sections we explicitly construct translations for Comp—one

for strict semantics and one for lazy semantics. But to do so, we first need a pure

language with a comonad and monad capable of representing consumer choice and

producer choice. We develop such a language next.

52

Channels x, y, z, . . .
Constants c ::= 0 | 1 | . . .
Processes ρ, ν ::= ∅

| ρ1 ‖ ρ2

| y.init(c)
| x
 y
| y.send()
| y.send(x)
| handle?x{ρ}
| x.req()
| x.req(y)
| x.req(!y1, !y2)
| supply!y{ρ}

Types τ ::= N | !τ | ?τ
Contexts Γ,∆,Ξ ::= x : τ, . . .

(no repeats)
(unordered)

with the following syntactic identifications

ρ1 ‖ (ρ2 ‖ ρ3) ≡ (ρ1 ‖ ρ2) ‖ ρ3

ρ1 ‖ ρ2 ≡ ρ2 ‖ ρ1

∅ ‖ ρ ≡ ρ

Figure 2.12: Proc Syntax

` ∅ a

Γ ` ρ1 a ∆,Ξ Γ′,Ξ ` ρ2 a ∆′

Γ,Γ′ ` ρ1 ‖ ρ2 a ∆,∆′

` y.init(c) a y : N

x : τ ` x
 y a y : τ

` y.send() a y : ?τ

x : τ ` y.send(x) a y : ?τ

!Γ, x : τ1 ` ρ a y : ?τ2

!Γ, x : ?τ1 ` handle?x{ρ} a y : ?τ2

x : !τ ` x.req() a

x : !τ ` x.req(y) a y : τ

x : !τ ` x.req(!y1, !y2) a y1 : !τ, y2 : !τ

!Γ ` ρ a y : τ

!Γ ` supply!y{ρ} a y : !τ

Figure 2.13: Proc Typing Rules

2.6.1 A Language without Consumer or Producer Choice

Here we develop a language with neither consumer choice nor producer choice,

instead using a comonad ! and a monad ? to capture those effects. By translating

Comp into this language we force ourselves to explicitly commit to a particular

interaction between these effects.

As suggested in Section 2.3, we use a computational model of linear logic that

makes the effects of Comp explicit. There are several such models to choose from.

Perhaps the most common is linear λ-calculus [Wadler, 1990]. However, linear

λ-calculus is based on intuitionistic linear logic, so it does not model the ? ex-

53

ponential. The other obvious choice is π-calculus, which has been shown to be

a computational model for full classical linear logic [Abramsky, 1994; Beffara,

2005; Bellin and Scott, 1994; DeYoung et al., 2012; Milner et al., 1992; Wadler,

2012]. However, π-calculus was originally designed to study mobile processes [Mil-

ner et al., 1992], and the constructions used to model terms of linear logic are

complicated. We thus choose to build our own calculus, Proc, based directly on

classical linear logic, and specialized to our application.6 Proc is essentially a spe-

cialized fragment of π-calculus, and so our translations of Comp into Proc also

translate Comp into π-calculus. However, Proc, being more suited to our setting,

has a pedagogical advantage.

Syntax and Typing Rules

Proc is a multiple-input, multiple-output language based on parallel processes

communicating through named channels, like π-calculus. Its syntax is presented

in Figure 2.12. In this figure, we consistently use x to refer to “input” channels,

and use y to refer to “output” channels, as an aid to the reader. For example,

y.send(x) sends the input channel x onto the output channel y. Note that, in order

to simplify our presentations throughout the paper, we treat ‖ as operating on

multisets. Thus we treat ρ1 ‖ ρ2 as being syntactically identical to ρ2 ‖ ρ1, as

formalized among other syntactic identities by ≡ in Figure 2.12.

The typing rules for Proc are presented in Figure 2.13, once again using x

for inputs and y for outputs. We write Γ ` ρ a ∆, where Γ and ∆ are disjoint

contexts, to mean that ρ consumes the channels in Γ and produces the channels

6In particular, we take advantage of the lack of contraction for ? to simplify our syntax and
reduce the number of Distribute rules in our semantics. As a result, a judgment Γ ` ρ a ∆
corresponds to

⊗
Γ `

⊗
∆ rather than

⊗
Γ `

˙
∆.

54

in ∆. Intuitively, we can think of this as saying that ρ will receive messages

from the channels in Γ and send messages on the channels in ∆. Note, though,

that this is just an intuition. As with many process calculi, channels in Proc are

bidirectional, so a consumer of a channel can just as well send messages on that

channel, and likewise a producer can receive messages.

The three simplest processes are y.init(c), x
 y, and ∅. The process y.init(c)

simply produces the channel y by providing the constant c, representing variable

initialization in Comp. The process x
 y is viewed as consuming x and pro-

ducing y, but it simply forwards messages received on either channel to the other,

essentially unifying the two channels. The process ∅ does nothing and has no

inputs or outputs.

Parallel composition ‖ is the fundamental way to compose processes in Proc.

Any channels that two parallel processes have in common are implicitly connected

together. Recall also that ‖ is commutative, so the typing rule does not force a

left-to-right order. To prevent potential resulting ambiguities, we make a whole-

process assumption that every channel occurs at most once across all Ξ contexts

in the typing proof for a Proc process. This is analogous to the whole-program

assumption that every variable is assigned to at most once in Comp.

There are two ways to produce a ?τ channel y, both of which model possible

producer choices in Comp. We model choosing to produce no output with the

syntax y.send(), which sends an empty message on y. To model choosing to produce

one output, we use the syntax y.send(x), which sends the channel x on y. The

process that listens to y can then use x to get the input it needs to run.

To consume a ?τ channel x, one uses the process handle?x{ρ}. This process

55

uses ρ to handle the messages sent on x, unpacking their content before forwarding

the messages on x to ρ. Note that the producer of x will send either one or zero

messages on x, so ρ will be run either once or not at all, explicitly representing

Comp’s producer choice of quantity.

Channels of type !τ are conceptually dual to ?τ channels. Whereas producers

of ?τ send channels to be received by handlers, consumers of !τ request channels

from suppliers. The process x.req() requests nothing from x, which models a Comp

program choosing not to use its input. The process x.req(y) requests a channel y

from x, which models a Comp program choosing to use its input. But there is a

slight asymmetry: a Comp program can only choose to produce zero or one outputs,

but can choose to consume an input zero, one, or multiple times. Consequently,

x.req(!y1, !y2) requests two channels from x, and furthermore these channels must

be able to process additional requests so that a consumer can use an input as many

times as it wants.

To produce a !τ channel y, one uses the process supply!y{ρ}. This process

repeatedly uses ρ to supply for the requests made by the consumer of y. Such re-

quests can effectively be made an arbitrary number of times, explicitly representing

Comp’s consumer choice of quantity.

Semantics

We formalize the behavior of Proc using the reduction rules in Figure 2.14. These

reduction rules were developed from cut elimination in classical linear logic. In fact,

it is relatively simple to show that this is equivalent to a fragment of the π-calculus

model of linear logic developed by Beffara [2005]. As a consequence, they enjoy

the properties of progress, preservation, confluence, and termination; we prove as

56

Parallel
ρ1 → ρ′1

ρ1 ‖ ρ2 → ρ′1 ‖ ρ2

Context
ρ→ ρ′

handle?x{ρ} → handle?x{ρ′}
ρ→ ρ′

supply!z{ρ} → supply!z{ρ′}

Identity
y ∈ consumed(ρ)

x
 y ‖ ρ→ ρ[y 7→ x]

y ∈ produced(ρ)

ρ ‖ y
 z → ρ[y 7→ z]

Fail

ρx = {x.req() | x ∈ consumed(ρ) ∧ x 6= y}
ρz = {z.send() | z ∈ produced(ρ)}
y.send() ‖ handle?y{ρ} → ρx ‖ ρz

Succeed y.send(x) ‖ handle?y{ρ} → ρ[y 7→ x]

Drop supply!y{ρ} ‖ y.req()→ {x.req() | x ∈ consumed(ρ)}

Take supply!y{ρ} ‖ y.req(z)→ ρ[y 7→ z]

Clone

for each x ∈ consumed(ρ), the channels yx1 and yx2 are fresh
ρx = {x.req(!yx1 , !y

x
2) | x ∈ consumed(ρ)}

ρz1 = supply!z1{ρ [y 7→ z1, x 7→ yx1 | x ∈ consumed(ρ)]}
ρz2 = supply!z2{ρ [y 7→ z2, x 7→ yx2 | x ∈ consumed(ρ)]}

supply!y{ρ} ‖ y.req(!z1, !z2)→ ρx ‖ ρz1 ‖ ρz2

D
is
t
r
ib
u
t
e

y ∈ consumed(ρ2)

supply!y{ρ1} ‖ supply!z{ρ2} → supply!z{supply!y{ρ1} ‖ ρ2}

y ∈ consumed(ρ2)

supply!y{ρ1} ‖ handle?x{ρ2} → handle?x{supply!y{ρ1} ‖ ρ2}

y ∈ produced(ρ1)

handle?x{ρ1} ‖ handle?y{ρ2} → handle?x{ρ1 ‖ handle?y{ρ2}}

Figure 2.14: Proc Reduction Rules

57

much in Appendix A. Thus, even though Proc is a highly parallel calculus, every

Proc process will compute to the same value no matter how it is reduced. Proc is

designed so that we can consider two processes semantically equivalent precisely

when they reduce to syntactically identical normal forms, modulo renaming of

intermediate channels.

To assist the reader, our presentation of the reduction rules in Figure 2.14

consistently conform to a few conventions. We continue to use x to refer to input

channels, but now we use z to refer to output channels. As for y, here we use it to

refer to intermediate channels. Most rules have a producer of y occurring in parallel

with a consumer of y, and the reduction often then eliminates y from the process

altogether. Hence, y is the cutpoint of the reduction. Meanwhile, the reduced

term will always have the same input channels x and output channels z as the

original, as is consistent with the linear nature of the calculus. Lastly, although ‖ is

commutative, for convenience we also present producers of intermediate channels

to the left of ‖, and consumers to the right, providing a more familiar left-to-right

reading of the processes.

The Parallel and Context rules together say that reduction can occur

anywhere within the process, provided there is an appropriate opportunity for

reduction. Note that the Parallel rule does not restrict reduction to only the

left-hand side of ‖ because ‖ is syntactically commutative.

The Identity rules say that x
 y is essentially the identity process. These

rules refer to the properties produced(ρ) and consumed(ρ), which are formalized in

Appendix A. Informally, a channel is produced by ρ if it is an input of ρ according

to the type of ρ, and a channel is consumed by ρ if it is an output of ρ according to

the type of ρ. The identity rules check these properties in order to ensure that the

58

channel being substituted is internal to the system rather than an exposed input

or output of the system.

The Fail rule defines what happens when a handler handle?y{ρ} is sent an

empty message. This indicates the handler is not needed. Consequently, ρ is

eliminated from the process. Furthermore, empty messages are dispatched (by ρx

and ρz) on the other channels that ρ would have consumed or produced. This lets

the other users of those channels know that they will not be needed. Note that we

use comprehension notation to define ρx and ρz, taking advantage of the fact that

the parallel composition operator ‖ operates on multisets of processes.

The Succeed rule defines what happens when a handler handle?y{ρ} is sent

a (single) channel x. This indicates that the handler should be executed (once)

using x as its input in place of y. As such, this just reduces to ρ with its y input

substituted with x.

The Drop and Take rules are dual to the Succeed and Fail rules, and

they look very similar. The only differences besides duality are due to the fact

that handlers and suppliers can consume many input channels but produce only

one output channel, a restriction that simplifies our presentation while still being

sufficient for representing Comp.

The Clone rule defines what happens when a supplier is given a request for

two reusable channels. This reduction works by duplicating the supplier. However,

the supplier may be consuming a variety of channels. Consequently, requests must

be dispatched (by ρx) to each of these channels so that they are duplicated as well,

with the two new suppliers (ρz1 and ρz2) being connected to the appropriate dupli-

cates. Thus the Clone rule is the only reduction that introduces new intermediate

59

channels, although the original intermediate channel y is still eliminated.

Finally, the Distribute rules allow suppliers and handlers to be pulled into

other suppliers and handlers when communicating on appropriate channels of the

contained process. This is important because reduction can proceed inside suppli-

ers and handlers. In particular, the Distribute rules are necessary for proving

that ! and ? satisfy the (co)monad laws, enabling them to represent the consumer

and producer effects of Comp. Consequently we can apply the layering techniques

from Section 2.4 to give Comp a categorical semantics using Proc.

2.6.2 Layering Effects

Now that we have constructed Proc and Comp, we want to show that the comonad

and monad of Proc actually capture the effects of Comp. To do that, we translate

the structural rules of Comp into the structural rules of Proc, which are only

available when using ! and ?. Since Comp is analogous to classical logic and Proc

to linear logic, this is similar to the challenge of embedding classical logic into

linear logic. Indeed, as before, we cannot give a distributive law between ! and ?,

so we must instead use the layerings.

This time, however, we also have to consider terms and β reduction. In par-

ticular, we need to show that we translate Comp programs to Proc processes with

the same semantics. We give the translations in Figures 2.15 and 2.16.

The translation in Figure 2.15 is the monad-prioritizing layering !Γ ` ?!∆, de-

rived from using the Kleisli-like category KM
C,M . Note that it composes processes

using handle?x{ρ}. Handle implements bind for the ? monad in Proc. By using

bind, this translation corresponds to the strict semantics of Comp, always prop-

60

` x := c a x : N s ` supply!x′{x′.init(c)} ‖ x.send(x′) a x : ?!N (x′ fresh)

y : t ` x := y a x : t s y : !t ` x.send(y) a x : ?!t

` x := error a x : t s ` x.send() a x : ?!t

Γ ` p1 a x : t1 s !Γ ` ρ1 a x : ?!t1
Γ′, x : t1 ` p2 a y : t2 s !Γ′, x : !t1 ` ρ2 a y : ?!t2

Γ,Γ′ ` p1; p2 a y : t2 s !Γ, !Γ′ ` ρ1 ‖ handle?x{ρ2} a y : ?!t2

Γ ` p a x : t1 s !Γ ` ρ a x : ?!t1

Γ, y : t2 ` p a x : t1 s !Γ, y : !t2 ` y.req() ‖ ρ a x : ?!t1

Γ, x1 : t1, x2 : t1 ` p a y : t2 s !Γ, x1 : !t1, x2 : !t1 ` ρ a y : ?!t2

Γ, x : t1 ` p a y : t2 s !Γ, x : !t1 ` x.req(!x1, !x2) ‖ ρ a y : ?!t2

Figure 2.15: Strict Translation

` x := c a x : N ` ` x′.init(c) ‖ x′.send(x) a x : ?N (x′ fresh)

y : t ` x := y a x : t ` y : !?t ` y.req(x) a x : ?t

` x := error a x : t ` ` x.send() a x : ?t

Γ ` p1 a x : t1 ` !?Γ ` ρ1 a x : ?t1
Γ′, x : t1 ` p2 a y : t2 ` !?Γ′, x : !?t1 ` ρ2 a y : ?t2

Γ,Γ′ ` p1; p2 a y : t2 ` !?Γ, !?Γ′ ` supply!x{ρ1} ‖ ρ2 a y : ?t2

Γ ` p a x : t1 ` !?Γ ` ρ a x : ?t1

Γ, y : t2 ` p a x : t1 ` !?Γ, y : !?t2 ` y.req() ‖ ρ a x : ?t1

Γ, x1 : t1, x2 : t1 ` p a y : t2 ` !?Γ, x1 : !?t1, x2 : !?t1 ` ρ a y : ?t2

Γ, x : t1 ` p a y : t2 ` !?Γ, x : !?t1 ` x.req(!x1, !x2) ‖ ρ a y : ?t2

Figure 2.16: Lazy Translation

61

agating errors forward through the process regardless of whether the values are

needed. For this reason, we also refer to this translation as the strict translation.

To see this strict behavior, consider the strict translation of our example Comp

program x := 3; y := error; z := x:

supply!x′{x′.init(3)} ‖ x.send(x′) ‖ handle?x{y.send() ‖ handle?y{y.req() ‖ z.send(x)}}

This can reduce on either x or y. Since Proc is confluent (as proved in Appendix A),

we can reduce on either channel and get the same result. Choose x. The first

thing this process does is reduce x.send(x′) and handle?x{ρ}, reducing to ρ[x 7→ x′].

We then reduce on y, reducing y.send() and handle?y{ρ} to x′.req() and z.send(),

thereby propagating the error. Then the supplier of x′ receives an empty message,

which reduces to nothing, leaving just z.send(). This is what we would get if we

reduced the Comp program using the strict semantics and then translated the

result to Proc.

The translation in Figure 2.16 corresponds to the comonad-prioritizing layering

!?Γ ` ?∆, derived from using the Kleisli-like category KC
C,M . It composes processes

using supply!x{ρ}. Supply implements cobind for the ! comonad in Proc. For

this reason, this translation corresponds to the lazy semantics of Comp, always

propagating whether values are needed before evaluating them.

With the lazy translation, our example Comp program x := 3; y := error; z :=

x becomes

supply!x{x′.init(3) ‖ x.send(x′)} ‖ supply!y{y.send()} ‖ y.req() ‖ x.req(z)

Since this can reduce on either x or y and either way will arrive at the same result,

assume that y is chosen. Then, the supplier of y receives an empty request, which

reduces to nothing. Note that this removes the only empty send in the process,

62

thereby ignoring the error. Next, reducing on x results in x′.init(3) ‖ z.send(x′),

which is irreducible and is what we would get (modulo renaming x′) if we reduced

the Comp program using the lazy semantics and then translated the result to Proc.

The following theorem shows that choosing strictness versus laziness is always

the same as choosing to prioritize producer choice versus consumer choice. This

generalizes to any strong monad for a non-linear language, as explained in Sec-

tion 2.5. This means our comonad-prioritizing layering defines a lazy semantics

for every strong monad. Furthermore, whenever the strict and lazy semantics for

a strong monad differ, Theorem 6 proves that there cannot be a distributive law

of that monad over !.

Theorem 7 (Semantic Preservation). Suppose that a Comp program p trans-

lates strictly to a Proc process ρ, meaning that Γ ` p a x : t s !Γ ` ρ a x : ?!t,

and a Comp program x := e translates strictly to a Proc process ν, meaning

that Γ ` x := e a x : t s !Γ ` ν a x : ?!t. Then p reduces strictly to x := e, mean-

ing p →∗s x := e, if and only if ρ reduces to ν, meaning ρ →∗ ν. The theorem

statement also holds for laziness, meaning with ` in place of s and →∗` in place

of →∗s.

Proof. First, we prove that if p strictly reduces to x := e, then ρ reduces to ν.

Since Proc is canonicalizing (as proved in Appendix A), we need only show that ρ

can reduce to ν.

We can do this by induction on Γ ` p a x : t. The only interesting case is

Γ1 ` p1 a x : t s ρ1 Γ2, x : t ` p2 a y : t′ s ρ2

Γ1,Γ2 ` p1; p2 a y : t′ s ρ1 ‖ handle?x{ρ2}

By induction, if p1 reduces strictly to x := e1 and p2 reduces strictly to y := e2

63

then ρ1 →∗ ν1 and ρ2 →∗ ν2. We then consider the cases of e1, here ignoring the

drops of unused inputs for brevity.

If e1 is c, then p1; p2 will eventually strictly reduce to p2[x 7→ c]. On the Proc

side, ν1 will be x′.init(c) ‖ x′.send(x), which will match with the handler. This will

cause ρ2 to run normally with the variable x mapped to x′, which is initialized to

the value c. This is the translation of p2[x 7→ c]. A similar argument holds if e1 is

some variable z.

If e1 is error, then p1; p2 will eventually strictly reduce to an error. On the

Proc side, ν1 will be x.send(), which will match with the handler and altogether

reduce to y.send(), because y is necessarily produced by ρ2. This is the translation

of y := error.

A similar proof holds for the lazy semantics except one considers the cases of

e2 instead of e1.

Lastly, we prove the reverse direction of the if and only if: that if ρ reduces to ν,

then p strictly reduces to x := e, and similarly for the lazy semantics. Because strict

Comp is canonicalizing, p must reduce to x := e′ for some e′, and x := e′ translates

to some ν ′. Then, the first half of the theorem implies that ρ reduces to ν ′. By the

definition of translation of assignments, ν and ν ′ are easily shown to be irreducible.

Thus, ρ reduces to two irreducible processes, ν and ν ′, which must then be equal

since Proc is canonicalizing. This means x := e and x := e′ translate to the same

Proc process, which is easily shown to imply that e = e′.

64

CHAPTER 3

BELIEF SEMANTICS OF AUTHORIZATION LOGIC

Authorization logics are used in computer security to reason about whether

principals—computer or human agents—are permitted to take actions in computer

systems. The distinguishing feature of authorization logics is their use of a “says”

connective: intuitively, if principal p believes that formula ϕ holds, then formula

p says ϕ holds. Access control decisions can then be made by reasoning about

(i) the beliefs of principals, (ii) how those beliefs can be combined to derive logical

consequences, and (iii) whether those consequences entail guard formulae, which

must hold for actions to be permitted.

Many systems that employ authorization logics have been proposed (see Abadi

[2003]; Chapin et al. [2008] for surveys; see also Appel and Felten [1999]; Bauer

et al. [2005]; Becker and Sewell [2004]; Becker et al. [2010]; Cederquist et al. [2007];

Cirillo et al. [2007]; DeTreville [2002]; Fournet et al. [2005]; Gurevich and Neeman

[2008]; Jia et al. [2008]; Jim [2001]; Lampson et al. [1991]; Lesniewski-Laas et al.

[2007]; Li et al. [2000, 2002]; Pimlott and Kiselyov [2006]; Polakow and Skalka

[2006]; Sirer et al. [2011]; Wobber et al. [1994]), but few authorization logics have

been given formal models [Abadi et al., 1993; Garg, 2008; Garg and Abadi, 2008;

Genovese et al., 2012; Howell, 2000]. Though models might not be immediately

necessary to deploy authorization logics in real systems, they yield insight into the

meaning of formulae and enable us to prove soundness of a proof system—which

might require proof rules and axioms to be corrected, if there are any lurking

errors in the proof system. Moreover, certain algorithms—e.g., for exploring the

consequences of an authorization policy—use a formal semantics directly [Genovese

et al., 2012].

65

For the sake of security, it is worthwhile to carry out such soundness proofs.

Given only a proof system, we must trust that the proof system is correct. But

given a proof system and a soundness proof, which shows that any provable formula

is semantically valid, we now have evidence that the proof system is correct and

hence trustworthy. The soundness proof thus relocates trust from the proof system

to the proof itself as well as to the model theory which ideally offers more intuition

about formulae than the proof system itself.

Semantics of authorization logics are usually based on possible worlds, as used

by Kripke [1963]. Kripke semantics posit an indexed accessibility relation on pos-

sible worlds. If at world w, principal p considers world w′ to be possible, then

(w,w′) is in p’s accessibility relation. We denote this as w ≤p w′. Authorization

logics sometimes use Kripke semantics to give meaning to the says connective: se-

mantically, p says ϕ holds in a world w if and only if for all worlds w′ such that

w ≤p w′, formula ϕ holds in world w′. Hence a principal says ϕ if and only if

ϕ holds in all worlds the principal considers possible.1

The use of Kripke semantics in authorization logic thus requires installation

of possible worlds and accessibility relations into the semantics, solely to give

meaning to says. That’s useful for studying properties of logics and for building

decision procedures. But, unfortunately, it doesn’t seem to correspond to how

principals reason in real-world systems. Rather than explicitly considering possible

worlds and relations between them, principals typically begin with some set of

base formulae they believe to hold—perhaps because they have received digitally

signed messages encoding those formulae, or perhaps because they invoke system

calls that return information—then proceed to reason from those formulae. So

1The says connective is, therefore, closely related to the modal necessity operator � [Hughes
and Cresswell, 1996] and the epistemic knowledge operator K [Fagin et al., 1995].

66

could we instead stipulate that each principal p have a set of beliefs ω(p), called

the worldview of p, such that p says ϕ holds if and only if ϕ ∈ ω(p)? That is, a

principal says ϕ if and only if ϕ is in the worldview2 of the principal?

This chapter answers that question in the affirmative. We give two classes of

models for an authorization logic: one class (Section 3.2) of Kripke models, the

other (Section 3.1) introduces belief models, which employ worldviews to interpret

says.3 We show (Section 3.3) that belief models subsume Kripke models, in the

sense that every Kripke model can be transformed into a belief model. A formula

is valid in the Kripke model if and only if it is also valid in the belief model. As a

result, our authorization logic can now eliminate the technical machinery of Kripke

semantics and instead use belief semantics. This semantics potentially increases

the trustworthiness of an authorization system because the semantics is closer to

how principals reason in real systems.

The particular logical system we introduce in this paper is FOCAL, First-

Order Constructive Authorization Logic. FOCAL extends a well-known autho-

rization logic, cut-down dependency core calculus (CDD) [Abadi, 2006], from a

propositional language to a language with first-order functions and relations on

system state. Functions and relations are essential for reasoning about autho-

rization in a real operating system—as exemplified in Nexus Authorization Logic

(NAL) [Schneider et al., 2011], of which FOCAL is a fragment. FOCAL also

simplifies NAL by eliminating second-order quantification.

Having given two semantics for FOCAL, we then turn to the problem of proving

soundness. It turns out that the NAL proof system is unsound with respect to the

2Worldviews were first employed by NAL [Schneider et al., 2011], which pioneered an informal
semantics based on them.

3Our belief models are an instance of the syntactic approach to modeling knowledge [Eberle,
1974; Fagin et al., 1995; Moore and Hendrix, 1979].

67

semantics presented here: NAL allows the derivation of a well-known formula (see

Section 3.4.1) that our semantics deems invalid. In particular, our belief semantics

demonstrated that if a logic is to be used in a distributed setting without globally-

agreed upon state, then its proof system should not allow this well-known formula

to be derived. So if NAL is to be used in such settings, its proof system needs to

be corrected.

NAL extends CDD, which is also unsound with respect to our semantics. How-

ever, CDD has been proven sound with respect to a different semantics [Garg

and Abadi, 2008]. This seeming discrepancy—sound vs. unsound—illuminates a

previously unexplored difference between how NAL and CDD interpret says.

To achieve soundness for FOCAL, we develop a revised proof system whose key

technical change is adopting localized hypotheses in the proof rules. In Section 3.4,

we prove the soundness of our proof system with respect to both our belief and

Kripke semantics. This result yields the first soundness proof with respect to belief

semantics for an authorization logic.

Having relocated trust into the soundness proof, we then seek a means to

increase the trustworthiness of that proof. Accordingly, we formalize the syn-

tax, proof system, belief semantics, and Kripke semantics of FOCAL in the Coq

proof assistant [The Coq development team, 2004], and we mechanize the proofs

of soundness for both the belief semantics and the Kripke semantics. That mecha-

nization relocates trust from our soundness proof to the Coq proof system, which

is well-studied and is the basis of many other formalizations. The full Coq formal-

ization contains 3,496 lines of code and required about four person-months for us,

as Coq neophytes, to develop [Hirsch and Clarkson, 2013b].

68

This chapter thus advances the theory of computer security with the following

novel contributions:

• the first formal belief semantics for authorization logic (Section 3.1),

• a proof of equivalence between that belief semantics and a corresponding

Kripke semantics (Sections 3.2 and 3.3),

• a proof system that is sound with respect to belief and Kripke semantics

(Section 3.4), and

• the first machine-checked proof of soundness for an authorization-logic proof

system (Section 3.4).

3.1 Belief Semantics

FOCAL is a constructive, first-order, multimodal logic. The key features that

distinguishes it as an authorization logic are the says and speaksfor connectives,

invented by Lampson et al. [1991]. These are used to reason about authorization—

for example, access control in a distributed system can be modeled in the following

standard way:

Example 1. A guard implements access control for a printer p. To permit printing

to p, the guard must be convinced that guard formula PrintServer says printTo(p)

holds, where PrintServer is the principal representing the server process. That for-

mula means that PrintServer believes printTo(p) holds. To grant printer access to

user u, the print server can issue the statement u speaksfor PrintServer . That for-

mula means anything u says, the PrintServer must also say. So if u says printTo(p),

then PrintServer says printTo(p), which satisfies the guard formula and hence af-

fords the user access to the printer.

69

Terms τ ::= x | f(τ1, . . . , τn)
Formulae ϕ, ψ, . . . ::= true | false | r(τ1, . . . , τn) | τ1 = τ2

| ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ⇒ ϕ2 | ¬ϕ
| (∀x : ϕ) | (∃x : ϕ)
| τ says ϕ | τ1 speaksfor τ2

Figure 3.1: Syntax of FOCAL

Figure 3.1 gives the formal syntax of FOCAL. There are two syntactic classes,

terms τ and formulae ϕ. Metavariable x ranges over first-order variables, f over

first-order functions, and r over first-order relations.

Formulas of FOCAL do not permit monadic second-order universal quantifica-

tion, unlike CDD and NAL. In NAL, that quantifier was used only to define false

and speaksfor as syntactic sugar. FOCAL instead adds these as primitive connec-

tives to the logic. FOCAL also defines ¬ϕ as a primitive connective, but it could

equivalently be defined as syntactic sugar for ϕ⇒ false.

Syntactically, FOCAL is thus CDD without second-order quantification, but

with first-order terms and quantification and a primitive speaksfor connective. Like-

wise, FOCAL is NAL without second-order quantification, subprincipals, group

principals, and restricted delegation, but with a primitive speaksfor connective.

3.1.1 Semantic models

The belief semantics of FOCAL is based on a combination of two standard semantic

models—first-order models and constructive models—with worldviews, which are

used to interpret says and speaksfor. To our knowledge, this semantics is new in

the study of authorization logics. Our presentation mostly follows the semantics

70

of intuitionistic predicate calculus given by Troelstra and van Dalen [1988a].

First-order models A first-order model with equality is a tuple (D,=, R, F).

The purpose of a first-order model is to interpret the first-order fragment of the

logic, specifically first-order quantification, functions, and relations. D is a set,

the domain of individuals. Semantically, quantification in the logic ranges over

these individuals. R is a set {ri | i ∈ I} of relations on D, indexed by set I.

Likewise, F is a set {fj | j ∈ J} of functions on D, indexed by set J . The sets

I and J here stand for sets of relation symbols and function symbols, respectively,

that are used in the logic. That is, this is the set of first-order functions and first

order relations that f and r can range over in Figure 3.1, respectively. There is a

distinguished equality relation =, which is an equivalence relation on D, such that

equal individuals are indistinguishable by relations and functions.

To interpret first-order variables, the semantics employs valuation functions,

which map variables to individuals. We write v(x) to denote the individual that

variable x represents in valuation v.

Constructive models A constructive model is a tuple (W, ≤, s). The purpose

of constructive models is to extend first-order models to interpret the constructive

fragment of the logic, specifically implication and universal quantification. W is a

set of possible worlds. We denote an individual world as w. Intuitively, a world w

represents the state of knowledge of a constructive reasoner. The constructive

accessibility relation ≤ is a partial order on W . If w ≤ w′, then the constructive

reasoner’s state of knowledge could grow from w to w′. But unlike in classical

logic, the reasoner need not commit to a formula ϕ being either true or false at

a world. Suppose that at world w′, where w ≤ w′, the reasoner concludes that ϕ

71

holds. And at world w′′, where w ≤ w′′, the reasoner concludes that ¬ϕ holds.

But at world w, the reasoner has not yet concluded that either ϕ or ¬ϕ holds.

Then Excluded Middle (ϕ ∨ ¬ϕ) doesn’t hold at w.

Function s is the first-order interpretation function. It assigns a first-order

model (Dw,=w, Rw, Fw) to each world w. Let the individual elements of Rw be

denoted {ri,w | i ∈ I}; likewise for Fw, as {fj,w | j ∈ J}. Thus, s enables a poten-

tially different first-order interpretation at each world. But to help ensure that the

constructive reasoner’s state of knowledge only grows—hence never invalidates a

previously admitted construction—we require s to be monotonic with respect to ≤.

That is, if w ≤ w′ then (i) Dw ⊆ Dw′ , (ii) d =w d
′ implies d =w′ d′, (iii) ri,w ⊆ ri,w′ ,

and (iv) for all tuples ~d of individuals in Dw, it holds that fj,w(~d) =w fj,w′(~d).

It’s natural to wonder why we chose to introduce possible worlds into the se-

mantics here after arguing against them at the beginning of this chapter. Note,

though, that the worlds in the constructive model are being used to model only

the constructive reasoner—which we might think of as the guard, who exists out-

side of the logic and attempts to ascertain the truth of formulae—not any of the

principals reasoned about inside the logic. Moreover, we have not introduced any

accessibility relations for principals, but only a single accessibility relation for the

constructive reasoner. So the arguments from the beginning of this chapter don’t

apply. It would be possible to eliminate our usage of possible worlds by employing a

Heyting algebra semantics [Troelstra and van Dalen, 1988b] of constructive logic.

But possible worlds blend better with our eventual introduction of accessibility

relations for principals in Section 3.2.

It’s also natural to wonder why FOCAL is constructive rather than classical.

Schneider et al. [2011] write that constructivism preserves evidence: “Constructive

72

logics are well suited for reasoning about authorization. . . because constructive

proofs include all of the evidence used for reaching a conclusion and, therefore,

information about accountability is not lost. Classical logics allow proofs that

omit evidence.” They argue that Excluded Middle, used as an axiom in a proof,

would omit evidence by failing to indicate whether access was granted on the

basis of ϕ holding or ¬ϕ holding. Garg and Pfenning [2006] also champion the

notion of evidence in authorization logics, writing that “[constructive logics] keep

evidence contained in proofs as direct as possible.” So we chose to make FOCAL

constructive for the sake of evidence. Regardless, we believe that a classical version

of FOCAL could be created without difficulty.

Belief models A belief model is a tuple (W,≤, s, P, ω). The purpose of belief

models is to extend constructive models to interpret says and speaksfor. The first

part of a belief model, (W,≤, s), must be a constructive model. The next part, P ,

is the set of principals. Although individuals can vary from world to world in a

model, the set of principals is fixed across the entire model. Assuming a fixed set

of principals is consistent with other authorization logics [Garg, 2008; Garg and

Abadi, 2008; Genovese et al., 2012], with constructive multimodal logics [Simpson,

1994; Wijesekera, 1990] (which have a fixed set of modalities), and with classi-

cal multimodal epistemic logics [Fagin et al., 1995] (which have an indexed set

of modalities, typically denoted Ki, where the index set is fixed)—even though

constructivist philosophy might deem it more sensible to allow P to grow with ≤.

Because we make no syntactic distinction between individuals and principals,

all principals must also be individuals: P must be a subset of Dw for every w. First-

order quantification can therefore range over individuals as well as principals. For

example, to quantify over all principals, we can write (∀x : IsPrin(x) ⇒ ϕ),

73

where IsPrin is a relation that holds for all x ∈ P . Nonetheless, this does not

constitute truly intuitionistic quantification, because the domain of principals is

constant. Quantification over a non-constant domain of principals is theoretically

of interest, but we know of no authorization logic that has used it.

We define an equality relation
.
= on principals, such that principals are equal

if and only if they are equal at all worlds. Formally, p
.
= p′ if and only if, for all w,

it holds that p =w p
′.

The final part of a belief model, a worldview function ω, yields the beliefs of

a principal p: the set of formulas that p believes to hold in world w under first-

order valuation v is ω(w, p, v). For the sake of simplicity, the beginning of this

chapter used notation ω(p) when first presenting the idea of worldviews. Now

that we’re being precise, we also include w and v as arguments. To ensure that

the constructive reasoner’s knowledge grows monotonically, worldviews must be

monotonic with respect to ≤:

Belief Frame Condition 1 (Worldview Monotonicity). If w ≤ w′ then

ω(w, p, v) ⊆ ω(w′, p, v).

To ensure that whenever principals are equal they have the same worldview, we

require the following:

Belief Frame Condition 2 (Worldview Equality). We say that p and p′ are

worldview equal, and write p
.
= p′, if for all w and v, ω(w, p, v) = ω(w, p′, v).

We also require the following conditions to ensure that valuations cannot cause

worldviews to distinguish alpha-equivalent formulas:

74

B,w, v |= true always
B,w, v |= false never
B,w, v |= ri(τ1, . . . , τn) iff (µ(τ1), . . . , µ(τn)) ∈ ri,w
B,w, v |= τ1 = τ2 iff µ(τ1) =w µ(τ2)
B,w, v |= ϕ1 ∧ ϕ2 iff B,w, v |= ϕ1 and B,w, v |= ϕ2

B,w, v |= ϕ1 ∨ ϕ2 iff B,w, v |= ϕ1 or B,w, v |= ϕ2

B,w, v |= ϕ1 ⇒ ϕ2 iff for all w′ ≥ w : B,w′, v |= ϕ1 implies B,w′, v |= ϕ2

B,w, v |= ¬ϕ iff for all w′ ≥ w : B,w′, v 6|= ϕ
B,w, v |= (∀x : ϕ) iff for all w′ ≥ w, d ∈ Dw′ : B,w′, v[x 7→ d] |= ϕ
B,w, v |= (∃x : ϕ) iff there exists d ∈ Dw : B,w, v[x 7→ d] |= ϕ
B,w, v |= τ says ϕ iff ϕ ∈ ω(w, µ(τ), v)
B,w, v |= τ1 speaksfor τ2 iff for all w′ ≥ w : ω(w′, µ(τ1), v) ⊆ ω(w′, µ(τ2), v)

Figure 3.2: FOCAL validity judgment for belief semantics

Belief Frame Condition 3 (Worldview Valuations).

1. Assume x /∈ FV (ϕ). Then ϕ ∈ ω(w, p, v) if and only if ϕ ∈ ω(w, p, v[x 7→ d])

for all d ∈ Dw.

2. Assume x ∈ FV (ϕ) and y /∈ FV (ϕ). Then, ϕ ∈ ω(w, p, v[x 7→ d]) if and only

if ϕ[x 7→ y] ∈ ω(w, p, v[y 7→ d]) for all d ∈ Dw, where ϕ[x 7→ y] denotes the

capture-avoiding substitution of x with y in formula ϕ.

Condition (1) ensures that if x is irrelevant to ϕ, then the value of x is also irrelevant

to whether p believes ϕ. Condition (2) ensures that if x is relevant to ϕ, then only

its value—not its name—is relevant to whether p believes ϕ.

These three frame conditions are almost enough to define well-formed belief

models. We need just one more condition. However, we must define semantic

validity in order to express that condition.

75

3.1.2 Semantic validity

Figure 3.2 gives a belief semantics of FOCAL. The validity judgment is written

B,w, v |= ϕ where B is a belief model and w is a world in that model. As is

standard, B, v |= ϕ holds if and only if, for all w, it holds that B,w, v |= ϕ;

whenever B, v |= ϕ, then ϕ is a valuation-necessary formula. Likewise, B |= ϕ

holds if and only if, for all w and v, it holds that B,w, v |= ϕ; whenever B |= ϕ,

then ϕ is a necessary formula in model B. |= ϕ holds if and only if, for all B, it

holds that B |= ϕ; and whenever |= ϕ, then ϕ is a validity. We use B,w, v |= Γ,

where Γ is a set of formulas, to denote that for all ψ ∈ Γ, it holds that B,w, v |= ψ.

Finally, Γ |= ϕ holds if and only if, for all B, w, and v, it holds that B,w, v |= Γ

implies B,w, v |= ϕ; whenever Γ |= ϕ, then ϕ is a logical consequence of Γ.

The semantics relies on an auxiliary interpretation function µ that maps syn-

tactic terms τ to semantic individuals:

µ(x) = v(x)

µ(fj(τ1, . . . , τn)) = fj,w(µ(τ1), . . . , µ(τn))

Implicitly, µ is parameterized on belief model B, world w, and valuation v, but for

notational simplicity we omit writing these as arguments to µ unless necessary for

disambiguation. Variables x are interpreted by looking up their value in v; func-

tions fj are interpreted by applying their first-order interpretation fj,w at world w

to the interpretation of their arguments.

The first-order, constructive fragment of the semantics is routine. The se-

mantics of says is the intuitive semantics we wished for at the beginning of this

chapter. A principal µ(τ) says ϕ exactly when ϕ is in that principal’s world-

view ω(w, µ(τ), v). And a principal µ(τ1) speaks for another principal µ(τ2) exactly

76

when, in all constructively accessible worlds, everything µ(τ1) says µ(τ2) also says.

Note that some syntactic terms may represent individuals that are not prin-

cipals. For example, the integer 42 is presumably not a principal in P , but it

could be an individual in some domain Dw. An alternative would be to make

FOCAL a two-sorted logic, with one sort for individuals and another sort for prin-

cipals. Instead, we allow individuals who aren’t principals to have beliefs, because

it simplifies the definition of the logic. The worldviews of non-principal individuals

contain all formulas. Formally, for any individual d such that d 6∈ P , and for any

world w, valuation v, and formula ϕ, it holds that ϕ ∈ ω(w, d, v).

We impose a few well-formedness conditions on worldviews in this semantics, in

addition to Worldview Monotonicity and Worldview Equality. Worldviews must be

closed under logical consequence—that is, principals must believe all the formulas

that are a consequence of their beliefs.

Belief Frame Condition 4 (Worldview Closure). If Γ ⊆ ω(w, p, v) and Γ |= ϕ,

then ϕ ∈ ω(w, p, v).

Worldview Closure means that principals are fully logically omniscient [Fagin

et al., 1995]. With its known benefits and flaws [Parikh, 1987; Stalnaker, 1991],

this has been a standard assumption in authorization logics since their incep-

tion [Lampson et al., 1991].

The remaining well-formedness conditions are optional, in the sense that they

are necessary only to achieve soundness of particular proof rules in Section 3.4.

Eliminate those rules, and the following conditions would be eliminated.

Worldviews must ensure that says is a transparent modality. That is, for any

principal p, it holds that p says ϕ exactly when p says (p says ϕ):

77

Belief Frame Condition 5 (Says Transparency). ϕ ∈ ω(w, µ(τ), v) if and only

if τ says ϕ ∈ ω(w, µ(τ), v).

So says supports positive introspection: if p believes that ϕ holds, then p is

aware of that belief, therefore p believes that p believes that ϕ holds. The converse

of that holds as well. Recent authorization logics include transparency [Abadi,

2008; Schneider et al., 2011], and it is well known (though sometimes vigorously

debated) in epistemic logic [Hintikka, 1962; Hughes and Cresswell, 1996]. Says

Transparency corresponds to rules says-li and says-ri in Figure 3.5.

Worldviews must enable principals to delegate, or hand-off, to other principals:

if a principal q believes that q speaksfor p, it should hold that p does speak for q.

Hand-off, as the following axiom, existed in the earliest authorization logic [Lamp-

son et al., 1991]:

(τ ′ says (τ speaksfor τ ′))⇒ (τ speaksfor τ ′) (3.1)

To support it, we adopt a condition that ensures whenever q believes p speaks

for q, then it really does:

Belief Frame Condition 6 (Belief Hand-off). If (p speaksfor q) ∈ ω(w, q, v) then

ω(w, p, v) ⊆ ω(w, q, v).

Belief Hand-off corresponds to rule sf-i in Figure 3.5.

3.2 Kripke Semantics

The Kripke semantics of FOCAL combines first-order constructive models with

modal (Kripke) models [Fagin et al., 1995; Hughes and Cresswell, 1996; Simpson,

78

1994]. Similar semantic models have been explored before (see, for example, Wi-

jesekera [1990], Genovese et al. [2012], and Garg [2008]). Indeed, the only non-

standard part of our semantics is the treatment of speaksfor, and that part turns

out to be a generalization of previous classical semantics.

Nonetheless, we are not aware of any authorization logic semantics that is

equivalent to or subsumes our semantics. First-order and constructive models

were already presented in Section 3.1, so we begin here with modal models.

3.2.1 Modal models

A modal model is a tuple (W,≤, s, P,A). The purpose of a modal model is to

extend constructive models to interpret says and speaksfor. The first part of a

modal model, (W,≤, s), must itself be a constructive model. The next part, P ,

is the set of principals. As with belief models, all principals must be individuals,

so P must be a subset of Dw for every w. Principal equality relation
.
= is defined

just as in belief models. The final part of a modal model, A, is a set {≤p | p ∈ P}

of binary relations on W , called the principal accessibility relations.4 If w ≤p w′,

then at world w, principal p considers world w′ possible. To ensure that equal

principals have the same beliefs, we require

Kripke Frame Condition 1 (Accessibility Equality). If p
.
= p′, then ≤p = ≤p′ .

As with the constructive accessibility relation ≤, we require s to be monotonic

with respect to each principal accessibility relation ≤p. This requirement enforces

a kind of constructivity on each principal p, such that from a world in which

4In our notation, an unsubscripted ≤ always denotes the constructive relation, and a sub-
scripted ≤ always denotes a principal relation.

79

K,w, v |= τ says ϕ iff for all w′, w′′ : w ≤ w′ ≤µ(w′,τ) w
′′

implies K,w′′, v |= ϕ

K,w, v |= τ1 speaksfor τ2 iff ≤wµ(τ1) ⊇ ≤wµ(τ2)

K,w, v |= . . . iff same as Figure 3.2, but substituting K for B

Figure 3.3: FOCAL validity judgment for Kripke semantics

individual d is constructed, p cannot consider possible any world in which d has

not been constructed. Unlike ≤, none of the ≤p are required to be partial orders:

they are not required to satisfy reflexivity, anti-symmetry, or transitivity.

In epistemic logics, the properties of what we call the “principal accessibility

relations” determine what kind of knowledge is modeled [Fagin et al., 1995]. If, for

example, these relations must be reflexive, then the logic models veridical knowl-

edge: if p says ϕ, then ϕ indeed holds. But that is not the kind of knowledge

we seek to model with FOCAL, because principals may say things that in fact do

not hold. So what are the right properties, or frame conditions, to require of our

principal accessibility relations? We briefly delay presenting them, so that we can

present the Kripke semantics of FOCAL.

3.2.2 Semantic validity

Figure 3.3 gives a Kripke semantics of FOCAL. The validity judgment is written

K,w, v |= ϕ where K is a modal model and w is a world in that model. Only the

judgments for the says and speaksfor connectives are given in Figure 3.3. For the

remaining connectives, the Kripke semantics is the same as the belief semantics in

Figure 3.2. Interpretation function µ remains unchanged from Section 3.1, except

that it is now implicitly parameterized by K instead of B.

80

To understand the semantics of says, first observe the following. Suppose that,

for all worlds w′, it holds that w ≤ w′ implies w = w′.5 Then the semantics of says

simplifies to

K,w, v |= τ says ϕ if and only if for all w′′ : w ≤µ(τ) w
′′ implies K,w, v |= ϕ,

which is the standard semantics of� in classical modal logic [Hughes and Cresswell,

1996]: a principal believes a formula holds whenever that formula holds in all

accessible worlds. The purpose of the quantification over w′, where w ≤ w′, in

the unsimplified semantics of says is to achieve monotonicity of the constructive

reasoner:

Lemma 2. If K,w, v |= ϕ and w ≤ w′ then K,w′, v |= ϕ.

Proof. By structural induction on ϕ. This proof has been mechanized in Coq

[Hirsch and Clarkson, 2013b].

That is, whenever ϕ holds at a world w, if the constructive reasoner is able to

reach an extended state of knowledge at world w′, then ϕ should continue to hold

at w′. Without the quantification over w′ in the semantics of says, monotonicity is

not guaranteed to hold. Constructive modal logics have, unsurprisingly, also used

this semantics for � Simpson [1994]; Wijesekera [1990], and a similar semantics

has been used in authorization logic Garg [2008].

Note that, if there do not exist any worlds w′ and w′′ such that w ≤ w′ ≤µ(τ) w
′′,

then at w, principal τ will say any formula ϕ, including false. When a principal

says false at world w, we deem that principal compromised at w.

5This condition corresponds to the axiom of excluded middle, hence its imposition creates a
classical variant of FOCAL. So it makes sense that adding the frame condition would result in
the classical semantics of �.

81

As for the semantics of speaksfor, it might be tempting to try defining it as

syntactic sugar:

τ1 speaksfor τ2 ≡ ∀ϕ : τ1 says ϕ⇒ τ2 says ϕ

However, the formula on the right-hand side is not a well-formed formula of FO-

CAL, because it quantifies over formulae.6

Instead, the FOCAL semantics of speaksfor generalizes the classical Kripke

semantics of speaksfor [Abadi et al., 1993; Howell, 2000]. Classically,

K,w, v |= τ1 speaksfor τ2 if and only if ≤µ(τ1) ⊇ ≤µ(τ2). (3.2)

That is, the accessibility relation of τ1 must be a superset of the accessibility rela-

tion of τ2. However, that definition does not account for constructive accessibility,

and it even turns out to interact badly with hand-off (see Section 3.2.4). We

therefore relax the classical semantics of speaksfor:

K,w, v |= τ1 speaksfor τ2 if and only if ≤wµ(τ1) ⊇ ≤wµ(τ2) (3.3)

where ≤wµ(p) is defined to be ≤p |[w]p ,7 and [w]p is defined to be the set of worlds w′

such that w′ is reachable from w, or vice-versa, by relation (≤ ∪ ≤p)∗. Note

that whenever [w]p equals W (as it would in classical logic8), it holds that ≤wµ(p)

equals ≤p.

The validity judgment for FOCAL is therefore quite standard, except for the

semantics of speaksfor, which generalizes classical logic. Although we would pre-

fer to adopt a well-known constructive semantics of speaksfor, neither of the two

6It is possible [Garg and Abadi, 2008; Schneider et al., 2011] to instead use second-order
quantifiers to achieve a direct interpretation. That solution would unnecessarily complicate our
semantics by introducing second-order quantifiers just for the sake of defining speaksfor.

7If R is a binary relation on set A, then R|X is the restriction of R to A, where X ⊆ A. That
is, R|X = {(x, x′) | (x, x′) ∈ R and x ∈ X and x′ ∈ X}.

8When frame condition ≤ = W × W is imposed, constructive logic collapses to classical.
Under that condition, every world w′ would be reachable from w, hence [w]p = W .

82

w1

w

w2 w3
≤p ≤p

≤
≤p

w1

v1

v2

w2
≤p

≤

≤p
≤p

IT ID

w1

w2

v1

v2

≤p

≤

≤p

≤
w1

w2

v1

v2

≤p

≤

≤p

≤

F1 F2

Figure 3.4: Frame conditions for Kripke semantics

such semantics we are aware of seems to work for FOCAL: ICL [Genovese et al.,

2012] would impose an axiom called Unit that we do not want to include (see Sec-

tion 3.4.1), and BLsf does not include hand-off (3.1), which we want to optionally

support (see Sections 3.1.2 and 3.2.3).

3.2.3 Frame conditions

We now begin the discussion of frame conditions referenced in Section 3.2.1 of the

frame conditions for FOCAL. The first two frame conditions we impose help to

ensure Says Transparency.

Kripke Frame Condition 2 (IT). If w1 ≤p w2 ≤p w3, then there exists a w such

that w1 ≤ w ≤p w3.

Kripke Frame Condition 3 (ID). If w1 ≤p w2, then there exists a v1 and v2

such that w ≤ v1 ≤p v2 ≤p w2.

Figure 3.4 depicts these conditions; dotted lines indicate existentially quantified

83

edges. IT helps to guarantee if p says ϕ then p says (p says ϕ); ID does the

converse.9

Note how, if w = w′, the conditions reduce to the classical definitions of tran-

sitivity and density. Those classical conditions are exactly what guarantee trans-

parency in classical modal logic.

IT and ID are not quite sufficient to yield transparency. But by also imposing

the following frame condition, we do achieve transparency:10

Kripke Frame Condition 4 (F2). If w1 ≤p w2 ≤ w3, then there exists a w such

that w1 ≤ w ≤p w3.

F2 is depicted in Figure 3.4. It is difficult to motivate F2 solely in terms of

authorization logic, though it has been proposed in several Kripke semantics for

constructive modal logics [Ewald, 1986; Fischer Servi, 1981; Plotkin and Stirling,

1986; Simpson, 1994]. But there are two reasons why F2 is desirable for FOCAL:

• Assuming F2 holds, IT and ID are not only sufficient but also necessary

conditions for transparency—a result that follows from work by Plotkin and

Stirling [1986]. So in the presence of F2, transparency in FOCAL is precisely

characterized by IT and ID.

• Suppose FOCAL were to be extended with a ♦ modality. It could be written

τ suspects ϕ, with semantics K,w, v |= τ suspects ϕ if and only if there

exists w′ such that w ≤µ(τ) w
′ and K,w′, v |= ϕ. We would want says and

suspects to interact smoothly. For example, it would be reasonable to expect

9IT and ID are abbreviations for intuitionistic transitivity and intuitionistic density. We use
the term “intuitionistic” instead of “constructive” just to avoid confusion: CT might be read as
classical or constructive transitivity.

10F2 is the name given this condition by Simpson [1994].

84

that ¬(τ suspects ϕ) implies τ says ¬ϕ. For if τ does not suspect ϕ holds

anywhere, then τ should believe ¬ϕ holds. Condition F2 guarantees that

implication [Plotkin and Stirling, 1986]. So F2 prepares FOCAL for future

extension with a suspects modality.

Were suspects to be added to FOCAL, it would also be desirable to impose a

fourth frame condition: if w ≤ w′ and w ≤p v, then there exists a v′ such that v ≤ v′

and w′ ≤p v′. This condition, named F1 by Simpson [1994], guarantees [Plotkin

and Stirling, 1986] that τ suspects ϕ implies ¬(τ says ¬ϕ). It also guarantees

monotonicity (see Lemma 2) for suspects. Figure 3.4 depicts F1. Simpson [1994,

p. 51] argues that F1 and F2 could be seen as fundamental, not artificial, frame

conditions for constructive modal logics.

To ensure the validity of hand-off, we impose the following frame condition:

Kripke Frame Condition 5 (H). For all principals p and worlds w, if there do

not exist any worlds w′ and w′′ such that w ≤ w′ ≤p w′′, then, for all p′, it must

hold that ≤wµ(p) ⊆ ≤wµ(p′).

This condition guarantees that if a principal p becomes compromised at world

w, then the reachable component of its accessibility relation will be a subset of

all other principals’. By the FOCAL semantics of speaksfor, all other principals

therefore speak for p at w.

Each frame condition above was imposed, not for ad hoc purposes, but because

of a specific need in the proof of the soundness result of Section 3.4. So with appro-

priate deletion of rules from the proof system, each of the above frame conditions

could be eliminated. IT and ID should be removed if rules says-li and says-ri

85

(from Figure 3.5) are removed; F2 should be removed if rule says-lri is removed;

and H should be removed if rule sf-i is removed.

Finally, we impose one additional condition to achieve the equivalence results

(Theorem 8 and Lemma 9) of Section 3.3:

Kripke Frame Condition 6 (WSF). K,w, v |= τ1 speaksfor τ2 if and only if, for

all ϕ, if K,w, v |= τ1 says ϕ then K,w, v |= τ2 says ϕ.

This condition restricts the class of Kripke models to those where speaksfor is

the weak speaksfor connective Abadi et al. [1993]; Howell [2000]. Note that the

semantics of speaksfor ensures one direction already: if K,w, v |= τ1 speaksfor τ2,

then for all ϕ, if K,w, v |= τ1 says ϕ, then K,w, v |= τ2 says ϕ. Thus, this condition

only restricts the Kripke models to those where, if the beliefs of τ2 subsume those

of τ1, then τ1 trusts τ2. In some sense, this is a strong assumption, since one can

imagine trust being a stronger relationship then “merely” saying the same things.

However, our belief semantics exhibits this property, and so we need to ensure that

the Kripke semantics does as well in order to achieve our equivalence results.

3.2.4 Defining Speaksfor

Abadi [2008] presents several strange consequences of classical authorization logic.

Here is yet another that results when we try to use the classical definition of

speaksfor (3.2) in a constructive setting:

Example 2. Consider a world w. Suppose there do not exist any worlds w′

and w′′ such that w ≤ w′ ≤µ(τ) w
′′. Then at world w, principal τ is compromised:

it says false, and also says any other formula ϕ. Then, for any principal τ ′, it holds

86

that K,w, v |= τ says (τ ′ speaksfor τ). By hand-off, K,w, v |= τ ′ speaksfor τ . By

the classical semantics of speaksfor, we have ≤µ(τ ′) ⊇ ≤µ(τ). So τ ’s accessibility

relation must be a subset of all other principal’s accessibility relations. In the

extreme case, if there is a principal whose accessibility relation is empty, τ ’s relation

must also be empty.

Therefore, if there ever is any world w at which principal τ is compromised,

then τ ’s accessibility relation must be empty. That means if τ is compromised at

one world, τ must be compromised at all worlds.

As a result, the constructive reasoner is immediately forced to recognize that a

principal is compromised, even if the reasoner is in a minimal state of knowledge

(i.e., at a world w at which there do not exist any worlds v such that v ≤ w.) The

reasoner is not allowed to wait until some greater state of knowledge to discover

that a principal is compromised. This seems intuitionistically undesirable.

But with FOCAL’s definition of speaksfor (Section 3.3), only the components of

the accessibility relations that are locally reachable from w need to be considered.

So a principal could be entirely compromised in some set of worlds not reachable

from w, but that principal need not be compromised at w.

3.3 Semantic Transformation

We have now given two classes of models for FOCAL, belief models (Section 3.1)

and Kripke models (Section 3.2). Naturally, the question arises: how are these

models related? It turns out that Kripke models can be soundly transformed into

belief structures, as we now explain.

87

Given a modal model K, there is a natural way to construct a belief model

from it: assign each principal a worldview containing exactly the formulae that

the principal says in K. Call this construction k2b, and let k2b(K) denote the

resulting belief model.

To give a precise definition of k2b, we need to introduce a new notation. Given

semantic principal p ∈ P , formula p says ϕ is not necessarily well-formed, because p

is not necessarily a syntactic term. So let K,w, v |= p̂ says ϕ be defined as follows:

for all w′ and w′′ such that w ≤ w′ ≤p w′′, it holds that K,w′′, v |= ϕ. This

definition simply unrolls the semantics of says to produce something well-formed.11

The precise definition of k2b is as follows: if K = (W,≤, s, P, A), then k2b(K) is

belief model (W,≤, s, P, ω), where ω(w, p, v) is defined to be {ϕ | K,w, v |= p̂ says ϕ}.

Our first concern is whether k2b(K) produces a belief model that is equivalent

to K. In particular, a formula should be valid in K if and only if it is valid

in k2b(K). Construction k2b does produce equivalent models:

Theorem 8. For all K, w, v, and ϕ, K,w, v |= ϕ if and only if k2b(K), w, v |= ϕ.

Proof. K,w, v |= ϕ implies k2b(K), w, v |= ϕ. All of the cases except says and

speaksfor are straightforward, because those are the only two cases where the in-

terpretation of formulae differs in the two semantics.

• Case ϕ = τ says ψ. Suppose K,w, v |= τ says ψ. By the definition of k2b,

formula ψ ∈ ω(w, µ(τ), v). By the belief semantics of says, it must hold that

k2b(K), w, v |= τ says ψ.

11Another solution would be to stipulate that every principal p can be named by a term p̂ in
the syntax.

88

• Case ϕ = τ speaksfor τ ′. Assume K,w, v |= τ speaksfor τ ′. We need to

show that, for all w′ ≥ w, it holds that ω(w′, µ(τ), v) ⊆ ω(w′, µ(τ ′), v). So

let w′ and ψ be arbitrary such that w′ ≥ w and ψ ∈ ω(w′, µ(τ), v), and

we’ll show that ψ ∈ ω(w′, µ(τ ′), v). By the definition of k2b, it holds that

K,w′, v |= τ says ψ. Note that, by Lemma 2 and our original assumption, we

have that K,w′, v |= τ speaksfor τ ′. From those last two facts, and from the

Kripke semantics of says and speaksfor, it follows that K,w′, v |= τ ′ says ψ.

By the definition of k2b, it therefore holds that ψ ∈ ω(w′, µ(τ ′), v).

Second, we show the backward direction: if k2b(K), w, v |= ϕ, thenK,w, v |= ϕ.

Again, all of the cases except says and speaksfor are straightforward, because those

are the only two cases where the interpretation of formulae differs in the two

semantics.

• Case ϕ = τ says ψ. Suppose k2b(K), w, v |= τ says ψ. By the belief semantics

of says, we have that ψ ∈ ω(w, µ(τ), v). By the definition of k2b, it holds

that K,w, v |= τ says ψ.

• Case ϕ = τ speaksfor τ ′. Assume k2b(K), w, v |= τ speaksfor τ ′. By

the belief semantics of speaksfor, we have that, for all w′ ≥ w, it holds

that ω(w′, µ(τ), v) ⊆ ω(w′, µ(τ ′), v). By setting w′ as w, we know that

ω(w, µ(τ), v) ⊆ ω(w, µ(τ ′), v). By the definitions of k2b and subset, it follows

that, for all ϕ, if K,w, v |= τ says ϕ then K,w, v |= τ ′ says ϕ. By WSF, we

therefore have that K,w, v |= τ speaksfor τ ′.

Our second concern is whether k2b(K) satisfies all the conditions required by

Section 3.1: Worldview Monotonicity, Worldview Equality, Worldview Closure,

Says Transparency, and Belief Hand-off. If a belief model B does satisfy these

89

conditions, then B is well-formed. And modal model K is well-formed if it satisfies

all the conditions required by Section 3.2: Accessibility Equality, IT, ID, F2, H,

and WSF. Construction k2b does, indeed, produce well-formed belief models from

well-formed Kripke models:

Theorem 9. For any well-formed Kripke model K, k2b(K) is a well-formed Belief

model.

Proof. Let B = k2b(K). For B to be well-formed it must satisfy several conditions,

which were defined in Section 3.1. We now show that these hold for any such B

constructed by k2b.

1. Worldview Monotonicity. Assume w ≤ w′ and ϕ ∈ ω(w, p, v). By the latter

assumption and the definition of k2b, we have that K,w, v |= p̂ says ϕ. From

Lemma 2, it follows that K,w′, v |= p̂ says ϕ. By the definition of k2b, it

then holds that ϕ ∈ ω(w′, p, v). Therefore ω(w, p, v) ⊆ ω(w′, p, v).

2. Worldview Equality. Assume p
.
= p′. Then by Accessibility Equality, ≤p

equals ≤p′ . By the Kripke semantics of says, it follows that K,w, v |= p says

ϕ if and only if K,w, v |= p′ says ϕ. By the definition of k2b, therefore,

ω(w, p, v) = ω(w, p′, v).

3. Worldview Closure. Assume Γ ⊆ ω(w, p, v) and Γ |= ϕ, that is, ϕ is a

logical consequence of Γ in belief structure B. By the definition of k2b, we

have ω(w, p, v) = {ϕ | K,w, v |= p̂ says ϕ}. So for all ψ ∈ Γ, it holds

that K,w, v |= p̂ says ψ. By the Kripke semantics of says, it follows that

for all w′ and w′′ such that w ≤ w′ ≤p w′′, it holds that K,w′′, v |= ψ.

Thus K,w′′, v |= Γ. So k2b(K), w′′, v |= Γ by Theorem 8. By our initial

assumption that Γ |= ϕ, it follows that k2b(K), w′′, v |= ϕ. Again applying

90

Theorem 8, we have that K,w′′, v |= ϕ. By the Kripke semantics of says, it

follows that K,w, v |= p̂ says ϕ. Therefore, by the definition of k2b, we have

ϕ ∈ ω(w, p, v).

4. Says Transparency. We prove the “if and only if” by proving both directions

independently.

(⇒) Assume ϕ ∈ ω(w, p, v). By the definition of k2b, K,w, v |= p̂ says ϕ.

From IT and F2, it follows that K,w, v |= p̂ says (p̂ says ϕ). By the definition

of k2b, therefore, (p̂ says ϕ) ∈ ω(w, p, v).

(⇐) Assume (p̂ says ϕ) ∈ ω(w, p, v). By the definition of k2b, it holds that

K,w, v |= p̂ says (p̂ says ϕ). From ID, it follows that K,w, v |= p̂ says ϕ. By

the definition of k2b, therefore, ϕ ∈ ω(w, p, v).

5. Belief Hand-off. We actually prove a stronger result—an “if and only if”

rather than just an “if”. By the definitions of subset and k2b, we have that

ω(w, p, v) ⊆ ω(w, q, v) holds if and only if for all ϕ, if K,w, v |= p̂ says ϕ

then K,w, v |= q̂ says ϕ. By WSF, K,w, v |= p̂ speaksfor q̂. By Lemma 3

(proven below), that is equivalent to K,w, v |= q̂ says (p̂ speaksfor q̂). By the

definition of k2b, that holds if and only if q̂ speaksfor p̂ ∈ ω(w, q, v).

Lemma 3. In the Kripke semantics, |= q̂ says (p̂ speaksfor q̂) ⇐⇒ p̂ speaksfor q̂.

Proof. The proof of this fact has been mechanized in Coq [Hirsch and Clarkson,

2013b].

We might wonder whether there is a construction that can soundly transform

belief models into Kripke models. Consider trying to transform the following belief

91

model B into a Kripke model:

B has a single world w and a proposition (i.e., a nullary relation) X,

such that, for all v, it holds that B,w, v 6|= X. Suppose that principal

p’s worldview contains X—i.e., for all v, it holds that X ∈ ω(w, p, v)—

and that p’s worldview does not contain false. By the semantics of says,

it holds that B,w, v |= p says X.

When transforming B to a Kripke model K, what edges could we put in ≤p?

There are only two choices: ≤p could be empty, or ≤p could contain the single

edge (w,w). If ≤p is empty, then p is compromised, hence p says false. That

contradicts our assumption that false is not in p’s worldview. If w ≤p w, then for

w′ and w′′ such that w ≤ w′ ≤p w′′, it does not hold that K,w′′, v |= X, because w

and w′′ can only be instantiated as w, and because B,w, v 6|= X. Hence p does not

say X. That contradicts our assumption that X is in p’s worldview. So we cannot

construct an accessibility relation ≤p that causes the resulting Kripke semantics

to preserve validity of formulae from the belief semantics.

There is, therefore, no construction that can soundly transform belief models

into Kripke models—unless, perhaps, the set of worlds is permitted to change.

We conjecture that it is possible to synthesize a new set of possible worlds, and

equivalence relations on them, yielding a Kripke model that preserves validity of

formulas from the belief model.

92

3.4 Proof System

FOCAL’s derivability judgment is written Γ ` ϕ where Γ is a set of formulae called

the context.12 As is standard, we write ` ϕ when Γ is the empty set. In that case,

ϕ is a theorem. We write Γ, ϕ to denote Γ ∪ {ϕ}.

Figure 3.5 presents the proof system. In it, ϕ[x 7→ τ] denotes capture-avoiding

substitution of τ for x in ϕ. The first-order fragment of the proof system is routine

(e.g., Sørensen and Urzyczyn [2006], van Dalen [2004], and Negri and von Plato

[2001]).13 says-lri, says-li, and says-ri use notation τ says Γ, which means

that τ says all the formulae in set Γ. Formally, τ says Γ is defined as {τ says

ϕ | ϕ ∈ Γ}.

The usual sequent calculus structural rules of contraction and exchange are

admissible. But weakening (our rule weak) is not admissible: it must be directly

included in the proof system, because the conclusions of says-{lri,li,ri} capture

their entire context Γ inside says.

says-lri corresponds Hughes and Cresswell [1996] to standard axiom K along

with rule N from epistemic logic; says-ri, to standard axiom 4; and says-li, to

12These formulas are localized hypotheses, which the proof system uses instead of the hypo-
thetical judgments found in natural deduction systems. Similar to the left-hand side Γ of a
sequent Γ =⇒ ∆, the localized hypotheses are assumptions being used to derive right-hand side
∆. However, we present our proof system in a natural-deduction style, with introduction and
elimination rules. This hybrid system should be familiar, since it is the standard presentation of
a type system.

13Under the usual constructive definition of ¬ϕ as ϕ ⇒ false, rules not-i and not-e are
admissible and could be eliminated from the proof system.

93

hyp
Γ, ϕ ` ϕ

weak
Γ ` ϕ

Γ, ψ ` ϕ

true-i
Γ ` true

false-e
Γ ` false

Γ ` ϕ

and-i
Γ ` ϕ Γ ` ψ

Γ ` ϕ ∧ ψ
and-le

Γ ` ϕ ∧ ψ
Γ ` ϕ

and-re
Γ ` ϕ ∧ ψ

Γ ` ψ

or-li
Γ ` ϕ1

Γ ` ϕ1 ∨ ϕ2
or-ri

Γ ` ϕ2

Γ ` ϕ1 ∨ ϕ2

or-e
Γ, ϕ1 ` ψ Γ, ϕ2 ` ψ Γ ` ϕ1 ∨ ϕ2

Γ ` ψ

imp-i
Γ, ϕ ` ψ

Γ ` ϕ⇒ ψ
imp-e

Γ ` ϕ Γ ` ϕ⇒ ψ

Γ ` ψ

not-i
Γ, ϕ ` false

Γ ` ¬ϕ
not-e

Γ ` ϕ Γ ` ¬ϕ
Γ ` false

forall-i
Γ ` ϕ x /∈ FV (Γ)

Γ ` (∀x : ϕ)
forall-e

Γ ` (∀x : ϕ)

Γ ` ϕ[x 7→ τ]

exists-i
Γ ` ϕ[x 7→ τ]

Γ ` (∃x : ϕ)
exists-e

Γ ` (∃x : ϕ) Γ, ϕ ` ψ x /∈ FV (Γ, ψ)

Γ ` ψ

eq-r
Γ ` τ = τ

eq-s
Γ ` τ1 = τ2

Γ ` τ2 = τ1
eq-t

Γ ` τ1 = τ2 Γ ` τ2 = τ3

Γ ` τ1 = τ3

eq-fun
Γ ` τi = τ ′i i = 1, . . . , n

Γ ` f(τ1, . . . , τn) = f(τ ′1, . . . , τ
′
n)

eq-rel
Γ ` r(τ1, . . . , τn) Γ ` τi = τ ′i i = 1, . . . , n

Γ ` r(τ ′1, . . . , τ ′n)

says-lri
Γ ` ϕ

τ says Γ ` τ says ϕ
says-li

Γ ` τ says ϕ

τ says Γ ` τ says ϕ

says-ri
τ says Γ ` ϕ

τ says Γ ` τ says ϕ

sf-i
Γ ` τ2 says (τ1 speaksfor τ2)

Γ ` τ1 speaksfor τ2
sf-e

Γ ` τ1 speaksfor τ2 Γ ` τ1 says ϕ

Γ ` τ2 says ϕ

sf-r
Γ ` τ speaksfor τ

sf-t
Γ ` τ1 speaksfor τ2 Γ ` τ2 speaksfor τ3

Γ ` τ1 speaksfor τ3

Figure 3.5: FOCAL derivability judgment

94

the converse C4 Abadi [2008] of 4:

K : (p says (ϕ⇒ ψ))⇒ (p says ϕ)⇒ (p says ψ)

N : From ϕ infer p says ϕ

4 : (p says ϕ)⇒ (p says (p says ϕ))

C4 : (p says (p says ϕ))⇒ (p says ϕ)

K and says-lri mean that modus ponens applies inside says. They correspond

to Worldview Closure. C4 and 4, along with says-li and says-ri, mean that

p says (p says ϕ) is equivalent to p says ϕ; they correspond to Says Transparency

in the belief semantics. In the Kripke semantics, says-ri corresponds to IT; and

says-li, to ID. (Note, we do not argue that 4 and C4 are necessary in authorization

logics; we simply show how to support them.)

sf-i corresponds to hand-off (see Section 3.1). sf-e uses speaksfor to deduce

beliefs. sf-r and sf-t state that speaksfor is reflexive and transitive.

3.4.1 Unit and Necessitation

There are two standard ways of “importing” beliefs into a principal’s worldview.

The first is rule N from Section 3.4, also known as the rule of Necessitation:

` ϕ

` p says ϕ

The second is an axiom known as Unit:

` ϕ⇒ (p says ϕ)

Though superficially similar, it is well-known that Necessitation and Unit lead to

different theories. Abadi [2008] explores some of the proof-theoretic differences,

95

particularly some of the surprising consequences of Unit in classical authorization

logic. In the example below, we focus on one difference that does not seem to have

been explored in constructive authorization logic:

Example 3. Machines M1 and M2 execute processes P1 and P2, respectively. M1

has a register R. Let Z be a proposition representing “register R is currently set

to zero.” According to Unit, ` Z ⇒ (P1 says Z) and ` Z ⇒ (P2 says Z). The

former means that a process on a machine knows the current contents of a register

on that machine; the latter means that a process on a different machine must also

know the current contents of the register. But according to Necessitation, if ` Z

then ` P1 says Z and ` P2 says Z. Only if R is guaranteed to be constant—i.e.,

it can never at any time be anything other than zero—must both processes say

that R is zero.

Unit, therefore, is appropriate when propositions (or relations or functions) rep-

resent global state upon which all principals are guaranteed to agree. But when

propositions represent local state that could be unknown to some principals, Unit

would arguably be an invalid axiom. A countermodel demonstrating Unit’s inva-

lidity is easy to construct—for example, stipulate a world w at which Z holds, and

let P1’s worldview contain Z but P2’s worldview not contain Z. That counter-

model doesn’t apply to Necessitation, because Z is not a theorem in it, therefore

the principals may disagree on Z’s validity.

Prior work has objected to Unit for other reasons, but not for this difference

between local and global state. We are unaware of any authorization logic that

rejects Necessitation, which is widely accepted along with axiom K (cf. Section 3.4)

in normal modal logic [Hughes and Cresswell, 1996].

FOCAL was designed to reason about state in distributed systems, where prin-

96

cipals (such as machines) may have local state, and where global state does not

necessarily exist—the reading at a clock, for example, is not agreed upon by all

principals. So Unit would be invalid for FOCAL principals; Necessitation is the

appropriate choice. We therefore included Necessitation in FOCAL in the form of

rule says-lri, which is equivalent to Necessitation plus K [Hughes and Cresswell,

1996, p. 214, where says-lri is called lr].

Similarly, NAL principals do not necessarily agree upon global state. NAL does

include Necessitation as an inference rule and does not include Unit as an axiom.

However, NAL permits Unit to be derived as a theorem by the following proof:14

NAL-Imp-I1

NAL-Says-I
[ϕ]1

p says ϕ

ϕ⇒ p says ϕ

NAL’s proof system is, therefore, arguably unsound with respect to the belief

semantics presented here: there is a formula (Unit) that is a theorem of the system

but that is not semantically valid.

One way to remedy NAL’s unsoundness with respect to our semantics would

be to adjust our semantics, such that Unit becomes valid:

Definition 1 (U1). In our belief semantics, we require that whenever w |= ϕ, it

must hold that ϕ ∈ ω(w, p, v).15

(An equivalent condition could be imposed on the Kripke semantics.) But we

chose not to do this because we want to model principals who may be ignorant

14Rules nal-imp-i and nal-says-i can be found in Schneider et al. [2011]. The brackets around
ϕ at the top of the proof tree indicate that it is used as a hypothesis [van Dalen, 2004]. The
appearance of “1” as a super- and subscript indicate where the hypothesis is introduced and
cancelled.

15U1 was omitted from NAL [Schneider et al., 2011]. But for the NAL proof system to be sound
with respect to the informal NAL belief semantics, the condition should have been imposed.

97

of whether certain facts hold at a world. Indeed, in our semantics, if ϕ holds at

a world, some principals might believe ϕ at that world and some might not. The

adjustments above would instead cause all principals to believe ϕ at the world,

and we find this to be an unacceptable loss in expressivity.

Another way to remedy NAL’s unsoundness with respect to our semantics

would be to adjust NAL’s proof system, such that Unit is no longer derivable. For

example, a side-condition could be added to nal-says-i, such that ϕ must be a

validity [Schneider, 2013]. One way of accomplishing that might be to forbid uncan-

celled hypotheses in the derivation of ϕ. That would prevent the above derivation

of Unit, although we don’t know what effect it would have on the completeness of

the proof system.

FOCAL’s proof system (specifically, rule says-lri) instead prohibits derivation

of Unit: Unit is invalid in our semantics, and our proof system is sound with respect

to our semantics, so it’s impossible for our proof system to derive Unit. FOCAL

therefore seems appropriate for reasoning about distributed state.

3.4.2 Soundness

Our first soundness theorem for FOCAL states that if ϕ is provable from assump-

tions Γ, and that if a belief model validates all the formulae in Γ, then that model

must also validate ϕ. Therefore, any provable formula is valid in the belief seman-

tics:

Theorem 10. If Γ ` ϕ and B,w, v |= Γ, then B,w, v |= ϕ.

We have mechanized the proof of this theorem in Coq [Hirsch and Clarkson, 2013b].

98

The result is, to our knowledge, the first proof of soundness for an authorization

logic with respect to a belief semantics. The proof of Theorem 10 relies on the

following lemma, which states monotonicity of validity with respect to ≤:

Lemma 4. If B,w, v |= ϕ and w ≤ w′ then B,w′, v |= ϕ.

Proof. By structural induction on ϕ. This proof has been mechanized in Coq

[Hirsch and Clarkson, 2013b].

Our second soundness theorem for FOCAL states that any provable formula is

valid in the Kripke semantics:

Theorem 11. If Γ ` ϕ and K,w, v |= Γ, then K,w, v |= ϕ.

The proof of that theorem relies on Lemma 2 (monotonicity of the Kripke se-

mantics). We also have mechanized the proofs of Theorem 11 and Lemma 2 in

Coq [Hirsch and Clarkson, 2013b].

99

CHAPTER 4

FIRST-ORDER LOGIC FOR FLOW-LIMITED AUTHORIZATION

Distributed systems often make authorization decisions based on private data,

which a public decision might leak. Preventing such leakage requires nontrivial

reasoning about the interaction between information flow and authorization poli-

cies [Arden and Myers, 2016; Arden et al., 2015; Becker, 2010]. In particular, the

justification for an authorization decision can violate information-flow policies. To

understand this concern, consider a social network where Bob can say that only

his friends may view his photos, and that furthermore only his friends may know

the contents of his friend list. Assuming that there is no other way for Bob to

block access to the photo, if Alice is not on Bob’s friend list and she tries to view

one of his photos, telling her that she does not have permission to view the photo

leaks Bob’s private information, specifically that Alice is not on Bob’s friend list.

Reasoning about the interaction between information flow and authorization

policies is challenging for several reasons. First, authorization logics use a different

notion of trust from information-flow systems. Information-flow systems tend to

focus on tracking data dependencies by representing information-security policies

as labels on data. They then represent trust as a flows-to relation between labels,

which determines when one piece of data may safely influence another. In con-

trast, authorization logics tend to directly encode delegations between principals

as a speaks-for relation. Such delegations are often all-or-nothing, where a delegat-

ing principal trusts any statements made by the trusted principal, although some

logics (e.g., [Becker et al., 2010; Howell and Kotz, 2000; Schneider et al., 2011])

support restricting delegations to specific statements. Flows-to relations implicitly

encode delegations while speaks-for relations implicitly encode permitted flows. To

100

understand how, we must understand how these disparate notions of trust interact.

Both forms of trust serve to selectively constrain the communication that sys-

tem components rely on to make secure authorization decisions. For example, in

the social network example above, suppose Bob’s security settings are recorded on

server X, and his photos are stored on server Y . When Alice tries to view Bob’s

photo, server Y communicates with server X to determine if Alice is permitted to

do so. Modeling this communication is important because (1) the servers that Y

communicates with influence its authorization decisions, and (2) communication

can leak private information.

Describing the information security of authorization decisions such as the one

above requires modifying typical authorization policies to include information flow.

Information-flow systems are excellent at tracking when and what information one

principal communicates to another, specifically by transferring data from one label

to another. It is less clear when communications occur in authorization logics.

A common approach [Abadi, 2006; Lampson et al., 1991; Schneider et al., 2011]

simply models Alice delegating trust to Bob as Alice importing all of Bob’s beliefs.

On the other hand, Authorization logics do excel at reasoning about beliefs.

Authorization logics allow us to write Alice says ϕ, which means that Alice believes

formula ϕ. Because this says statement is itself a formula, we can reason about

what Bob believes Alice believes by nesting says formulae. Information flow, in

contrast, has no notion of belief, and so cannot reason about principals’ beliefs

about each others’ beliefs.

In order to express authorization policies, not only does one need the ability

to express trust and communication, but also a battery of propositions and logical

101

connectives. Any tool that combines authorization and information flow should be

capable of expressing enough logical connectives to reason about real-world policies.

First-order logic seems to be a sweet spot of expressive power: it can encode most

authorization policies, but it is still simple enough to have clean semantics. For

instance, Nexus [Schneider et al., 2011; Sirer et al., 2011]—a distributed operating

system that uses authorization logic directly in its authorization mechanism—can

encode all of its authorization policies using first-order logic.1

Finally, evaluating any attempt to combine authorization and information flow

policies must examine the resulting security guarantees. Both authorization log-

ics and information-flow systems have a security property called non-interference.

Information-flow systems view non-interference as standard, while authorization

logics often view it as desirable but unobtainable. Although the two formulations

look quite different, both make guarantees limiting how one component of a system

can influence—i.e., interfere with—another. In authorization logics, this takes the

form “Alice’s beliefs can only impact the provability of Bob’s beliefs if Bob trusts

Alice.” In information-flow systems—which are mostly defined over programs—

changing the value of an input variable x can only change the value of an output

variable y when the label of x flows to the label of y.

Both of these notions of non-interference are important. Consider again the

example where Bob’s friend list is private but Alice attempts to view his photo.

Because Bob’s friend list is private, changing the list should not affect Alice’s

beliefs. For instance, Alice should not be affected by Bob adding or removing

Cathy. To enforce this, whether or not Cathy is Bob’s friend must not affect

the set of Bob’s beliefs that Alice may learn. This requires authorization-logic

1The Nexus Authorization Logic is actually a monadic second-order logic, but this is used
only to encode speaksfor and False; their examples only use first-order quantification [Schneider
et al., 2011].

102

non-interference, since Bob’s beliefs should not affect Alice’s beliefs unless they

communicate. It also, however, requires information-flow non-interference, since

the privacy of Bob’s belief is why he is unwilling to communicate.

Gluing together both ideas of non-interference requires understanding the con-

nection between their notions of trust. As we have discussed, this connection is

difficult to formulate, making the non-interference combination harder still.

Our goal in this work is to provide a logic that supports reasoning about both

information flow and authorization policies by combining their models of trust to

obtain the advantages of both. To this end, we present the Flow-Limited Autho-

rization First-Order Logic (FLAFOL), which

• provides a notion of trust between principals that can vary depending on

information-flow labels,

• clearly denotes points where communication occurs,

• uses says formulae to reason about principals’ beliefs, including their beliefs

about others’ beliefs,

• is expressive enough to encode real-world authorization policies, and

• provides a strong security guarantee which combines both authorization-logic

and information-flow non-interference.

We additionally aim to clarify the foundations of flow-limited authorization

(introduced by Arden et al. [2015]). We therefore strive to keep FLAFOL’s model

of principals, labels, and communication as simple as possible. For example, unlike

previous work, we do not require that labels form a lattice.

A final contribution is development of an implementation of FLAFOL in the

103

Coq proof assistant [The Coq development team, 2004] and formal proofs of all

theorems in this chapter except those in Section 4.6. Together these consists of

18,384 lines of Coq code in 23 files. We hope that this will form the basis of work

using FLAFOL to verify new and existing authorization mechanisms.

We are, of course, not the first to recognize the interaction of information-flow

policies with authorization, but all prior work in this area is missing at least one

important feature. The three projects that have done the most to combine autho-

rization and information flow are FLAM [Arden et al., 2015], SecPAL+ [Becker,

2010; Becker et al., 2010], and Aura [Jia and Zdancewic, 2009; Jia et al., 2008].

FLAM models trust using information flow, Aura uses DCC [Abadi, 2006; Abadi

et al., 1999], a propositional authorization logic, and SecPAL+ places information

flow labels on principal-based trust policies, but does not attempt to reason about

the combination at all. Neither FLAM nor SecPAL+ can reason about nested

beliefs, and both are significantly restricted in what logical forms are allowed. Fi-

nally, FLAM’s security guarantees are non-standard and difficult to compare to

other languages, while Aura relies on DCC’s non-interference guarantee which

does not apply on any trust relationships outside of those assumed in the static

lattice.

The rest of this chapter is organized as follows: In Section 4.1 we discuss three

running examples. This also serves as an intuitive introduction to FLAFOL. In

Section 4.2 we use a more-detailed example to show how FLAFOL’s parameter-

ization allows it to model real systems. In Section 4.3 we detail the FLAFOL

proof rules. In Section 4.4 we discuss the proof theory of FLAFOL, proving im-

portant meta-level theorems, including consistency and cut elimination. Finally,

in Section 4.5 we provide FLAFOL’s non-interference theorem.

104

4.1 FLAFOL By Example

We now examine several examples of authorization policies and how FLAFOL

expresses them. This will serve as a gentle introduction to the main ideas of

FLAFOL, and introduce notation and running examples we use throughout the

paper.

We explore three main examples in this section:

1. Viewing pictures on social media

2. Sanitizing data inputs to prevent SQL injection attacks

3. Providing a hospital bill in the presence of reinsurance

Each setting has different requirements; for instance, each defines the meaning

of labels in its own way. The ability of FLAFOL to adapt to each demonstrates

its expressive power. In a new setting, it is often convenient—even necessary—

to define constants, functions, and relations beyond those baked into FLAFOL.

These are straightforward to define since FLAFOL’s security guarantee holds for

any parameterization. We use such symbols freely in our examples to express our

intent clearly. Formally, FLAFOL interprets them using standard proof-theoretic

techniques, as we see in Section 4.2.

Notably, FLAFOL does not allow computation on terms, so the meaning of

functions and constants are axiomatized via FLAFOL formulae. This allows prin-

cipals to disagree on how functions behave, which can be useful in modeling situ-

ations where each principal has their own view of some piece of data.

105

4.1.1 Viewing Pictures on Social Media

We begin by reconsidering in more detail the example from the beginning of this

chapter where Alice requests to view Bob’s picture on a social-media service. This

service allows Bob to set privacy policies, and Bob made his pictures visible only

to his friends. When Alice makes her request, the service can check if she is

authorized by scanning Bob’s friend list. If she is on the list and the photo is

available, it shows her the photo. If she is not on Bob’s friend list, it shows her an

HTTP 403: Forbidden page.

Bob may choose who belongs in the role of “friend.” Following the lead of

other authorization logics, FLAFOL represents Bob believing that Alice is his

friend as Bob says IsFriend(Alice). Since says statements can encompass any for-

mula, we can express the fact that Bob believes that Alice is not his friend as

Bob says ¬IsFriend(Alice).

We interpret these statements as Bob’s beliefs. This reflects the fact that Bob

could be wrong, in the sense that he may affirm formulae with provable negations.

There is no requirement that Bob believes all true things nor that Bob only believe

true things (see Section 4.3), so holding an incorrect belief does not require Bob

to believe False. Note that because False allows us to prove anything, a principal

who does believe False will affirm every statement.

Now imagine that, as in the beginning of this chapter, the social-media service

allows Bob to set a privacy policy on his friend list as well. As before, Bob can

restrict his friend list so that only his friends may learn its contents. If Alice makes

her request and she is on Bob’s friend list, she may again see the photo. However,

if she is not, showing her an HTTP 403 page would leak Bob’s private information;

106

Alice would learn that she is not on Bob’s friend list, something Bob only shared

with his friends. There is nothing the server can do but hang.

In order to discuss this in FLAFOL, we need a way to express that Bob’s friend

list is private. Since, formally, his friend list is a series of beliefs about who his

friends are, we must express the privacy of those beliefs. We view this as giving

each belief a label describing Bob’s policy about who may learn that belief.

Syntactically, we attach this label to the says connective. For example, Bob

may use the label Friends to represent the information-security policy “I will share

this with only my friends.” If he attaches this policy to the beliefs representing

his friend list, there is no way to securely prove either Bob says` IsFriend(Alice) or

Bob says` ¬IsFriend(Alice) when ` is less restrictive than Friends; FLAFOL’s security

guarantee (Theorem 19) shows that every FLAFOL proof is secure, so neither

option is provable in FLAFOL. Because the system searches for one proof to show

Alice the picture, and the other to show her the 403 page, hanging is its only

option.

A better design of the social-media service might reject policies where the only

secure behavior is to hang. Such a system would only allow policies P (~x) where it

can either prove P (~t) or prove ¬P (~t) for any list of terms ~t. That is, the predicate P

must be decidable. Since FLAFOL is intuitionistic, this is the same as a FLAFOL

proof that ∀~x, P (~x) ∨ ¬P (~x).

To avoid hanging in response to Alice’s request, the social-media service thus

needs the predicate Bob says` IsFriend(Alice) to be decidable at some ` that Alice

can read. Unfortunately, both options leak information about Bob’s friend list—

which is restricted to Friends—and all FLAFOL proofs are secure, so it must be

107

undecidable. If Bob’s friend list were public, simply checking the list would be

enough to decide this predicate. FLAFOL can easily express this by labeling each

of Bob’s beliefs about IsFriend as Public.

A more subtle change would be to say that every principal can find out whether

they are on Bob’s friend list, but only Bob’s friends can see the rest of the list.

FLAFOL can also express this policy and prove it decidable, but doing so would

require significant infrastructure using the technology we will build in Sections 4.2

and 4.3.

4.1.2 Integrity Tracking to Prevent SQL Injection

For our second example, imagine a stateful web application. It takes requests,

updates its database, and returns web pages. In order to avoid SQL injection

attacks, the system will only update its database based on high-integrity input.

However, it marks all web request inputs as low integrity, representing the fact

that they may contain attacks. The server has a sanitization function San that

will neutralize attacks, so when it encounters a low-integrity input, it is willing to

sanitize that input and endorse the result.

FLAFOL’s support for arbitrary implications allows it to easily encode such

endorsements. Let the predicate DBInput(x) mean that a value x—possibly taken

from a web request—is a database input. When a user makes a request with

database input x, we can thus represent it as System saysLInt DBInput(x). Here

LInt is a label which represents low-integrity beliefs. We represent the system’s

willingness to endorse any sanitized input as:

System saysLInt DBInput(x)→ System saysHInt DBInput(San(x))

108

This example shows the power of arbitrary implications for expressing autho-

rization and information-flow policies. It also, however, demonstrates their dan-

gers, since unconstrained downgrades can allow information to flow in unintended

ways. In Section 4.5 we will discuss how our non-interference theorem (Theo-

rem 19) adapts to these downgrades by weakening its guarantees.

4.1.3 Hospital Bills Calculation and Reinsurance

Imagine now that Alice finds herself in the hospital. Luckily she has employer-

provided insurance, but her employer just switched insurance companies. Now she

has two unexpired insurance cards, and she cannot figure out which one should

be paying for this operation. Thus, either of the two insurers I1 and I2 might be

paying for the operation.

Imagine further that Bob’s job is to create a correct hospital bill for Alice. He

uses the label `H to determine both who may learn the contents of Alice’s bill and

who may help determine them. That is, `H expresses both a confidentiality policy

and an integrity policy. Bob believes that Alice’s insurer may help determine the

contents of Alice’s bill, since they can decide how much they are willing to pay for

Alice’s surgery.

Bob knows that I2 has a reinsurance treaty with I1. This means that if Alice

is insured with I2 and the surgery is very expensive, I1 will pay some of the bill.

Thus, I1 may help determine the contents of Alice’s hospital bill, even if I2 turns

out to be her current insurer.

Bob is willing to accept Alice’s insurance cards as evidence that she is insured by

either I1 or I2, which we express as Bob says`H (CanWrite(I1, `H) ∨ CanWrite(I2, `H)).

109

Because Bob knows about I2’s reinsurance treaty with I1, he knows that if I2 helps

determine the contents of Alice’s bill, they will delegate some of their power to I1,

which we express as Bob says`H (I2 says`H CanWrite(I1, `H)).

Bob’s beliefs allow him to prove that I1 may help determine the contents of

Alice’s bill, since by assuming the previous two statements we can prove that

Bob says`H CanWrite(I1, `H). There are two possible cases: if Bob already believes

that I1 can help determine the contents of Alice’s bill, we are done. Otherwise,

Bob believes that I2 can help determine the contents of Alice’s bill, and so Bob

is willing to let I2 delegate their power. Since he knows that they will delegate

their power to I1, he knows that I1 can help determine the contents of Alice’s

bill in this case as well. This covers all of the cases, so we can conclude that

Bob says`H CanWrite(I1, `H).

We think of Bob as performing this proof, since it is entirely about Bob’s beliefs.

From this point of view, Bob’s ability to reason about I2’s beliefs appears to be

Bob simulating I2. This ability of one principal to simulate another provides the

key intuition to understand the generalized principal, a fundamental construct in

the formal presentation of FLAFOL (see Section 4.2).

We also note that Bob used I2’s beliefs in this proof, even though he does not

necessarily trust I2. However, he might trust it if it turns out to be Alice’s insurer.

Because Bob trusts I2 in part of the proof but not in general, we refer to this as

discoverable trust. FLAFOL’s ability to handle discoverable trust makes reasoning

about its security properties more difficult, as we see in Section 4.5.

This example shows how disjunctions can be used to express policies when

principals do not know the state of the world. It also demonstrates how disjunctions

110

make it difficult to know how information can flow at any point in time, since we

may discover new statements of trust under one branch of a disjunction. FLAFOL’s

non-interference theorem adapts to this by considering all declarations of trust that

could possibly be discovered in a given context.

4.1.4 Further Adapting FLAFOL

All of the above examples use information-flow labels to express confidentiality

policies, integrity policies, or both. While confidentiality and integrity are mainstay

features of information flow tracking, information-flow labels can also express other

properties. For instance, MixT [Milano and Myers, 2018] describes how to use

information-flow labels to create safe transactions across databases with different

consistency models, and the work of Zheng and Myers [2005] uses information-

flow labels to provide availability guarantees. FLAFOL allows such alternative

interpretations of labels by using an abstract permission model to give meaning to

labels.

By default, the permissions gain meaning only through their behavior in con-

text, but they are able to encode and reason about a wide variety of authorization

mechanisms. In Section 4.2, we see how FLAFOL can be used to reason about

capabilities in particular.

4.2 Using FLAFOL

In this section, we examine how to use FLAFOL to reason about real systems. To

do this, we look at a fictional verified distributed-systems designer Dana. She wants

111

to formally prove that confused-deputy attacks are impossible in her capability-

based system with copyable, delegatable read capabilities. Dana employs a six-step

process to reason about her system in FLAFOL:

1. Decide on a set S of sorts of data she wants to represent.

2. Choose a set F of function symbols representing operations in the system, and

give those operations types.

3. Choose a set R of relation symbols representing atomic facts to reason about,

and give those relations types.

4. Develop axioms that encode meaning for these relationships.

5. Specify meta-level theorems stating her desired properties.

6. Prove that those meta-level theorems hold.

Sorts First, Dana decides on what sorts of data she wants to represent. We can

think of sort as the logic word for “type.” FLAFOL is defined with respect to a

set S of sorts that must include at least Label and Principal, but may contain more.

Dana wants to reason about capability tokens that grant read access to data, so

she also includes a sort named Token.

Dana uses the Principal sort to represent system principals, but conceptu-

ally divides the Label sort into Confidentiality and Integrity. Each Confidentiality

value defines a confidentiality policy which may be applied to many pieces of

data. A capability (which is always public itself) grants read access to data

governed by one or more such policies. She uses the Integrity sort to represent

integrity policies on tokens themselves. We will see below how she can enforce

Label = Confidentiality× Integrity.

112

Function Symbols Dana next decides on operations she wants to reason about.

This is also her chance to define constants using nullary operations. Formally,

FLAFOL is defined with respect to an arbitrary set F of function symbols. Each

function comes equipped with a signature, or type, expressing when it can be

applied.

Dana thinks about what information she needs to access about a given token.

She needs to be able to determine the confidentiality a token grants permission

to read, the integrity of that token, and which principal is the token’s root of

authority—that is, who created the token. She thus creates three function symbols,

TknConf : Token→ Confidentiality which represents the confidentiality that a token

protects, IntegOfTkn : Token→ Integrity which represents the integrity of the token,

and RootOfAuth : Token→ Principal which represents who created the token. She

also needs to be able to determine the integrity that a principal commands, so she

includes a function symbol IntegOf : Principal→ Integrity. Finally, since a token

can potentially be transferred to anyone in her system, she creates a constant

Public : Confidentiality to represent this.

Dana wants to enforce that labels are pairs of confidentiality and integrity. She

therefore creates two “projection” function symbols πC : Label→ Confidentiality

and πI : Label→ Integrity, along with a representation of pairing, written using

mix-fix notation as (,) : Confidentiality→ Integrity→ Label. The first two ensure

that labels contain a confidentiality and an integrity, while pairing allows creation

of labels from a confidentiality with an integrity. This makes labels pairs of confi-

dentiality and integrity.2

2Technically, Dana also needs to write axioms equivalent to the η and β laws for pairs in order
to labels to truly be pairs. However, this is a technical point that does not add to the current
discussion, so we elide them below.

113

Relation Symbols Dana can now choose relations representing facts that she

wants to reason about. Along with sorts and functions, FLAFOL is defined with

respect to a set R of relation symbols, allowing it to reason about more facts.

The set R must include at least Label v Label, CanRead(Principal, Label), and

CanWrite(Principal, Label), but may contain more. We call these required relations

permissions because they define the trust relationships governing communication.

The relation ` v `′ means information with label ` can affect information with

label `′, CanRead(p, `) means that principal p may learn beliefs with label `, and

CanWrite(p, `) means p may influence beliefs with label `.

Dana is able to use these relations to define the permissions her capability

tokens grant. She also includes a fourth relation in R, HasToken(Principal,Token),

defining token possession: if HasToken(p, t), then principal p has (a copy of) token t.

Axioms Dana describes the behavior of her system with axioms that use the

sorts, functions, and relations she defined above. These should be consistent, in

the sense that they do not allow a derivation of False. Theorem 12 in Section 4.4.1

gives conditions under which all of the axioms that we will discuss in this section

are consistent.

Dana uses three main axioms: one describing how tokens may be copied and

delegated, one describing when one principal may read another’s beliefs, and one

describing when a principal may affect another’s beliefs. She may use more ax-

ioms if she likes—e.g., to capture principals’ beliefs about permitted flows between

labels.

Dana’s first axiom allows any principal to copy any capability it holds and give

114

that copy to another principal:

∀q :Principal.∀t :Token. ∃p :Principal.HasToken(p, t) ∧

p says(Public,IntegOfTkn(t)) HasToken(q, t)

→ HasToken(q, t)

This says that, for principals p and q, if p holds a read capability token t, p can

pass t to q. To do so, p must affirm that q has t at a public label with the integrity

of the token. The public label requires Dana to ensure that, when one principal

copies a token and passes it to another principal, everyone is allowed to know this

information.

Dana’s second axiom defines when a principal p allows q to read a belief of p’s

labeled `. First, p checks that q has a token, and that p believes that the token

gives read access to something at least as confidential as `. Second, p checks to

make sure that the token’s root authority may influence this belief:

∀q :Principal.∀` :Label.∀p :Principal.∀`′ :Label.
∃t :Token.HasToken(q, t)

∧ p says`′ πC(`) v TknConf(t)

∧ p says`′ CanWrite(RootOfAuth(t), `′)

→ p says`′ (CanRead(q, `))

More formally, it says that if q holds some token t and p believes both that t

grants read permissions for `’s confidentiality and that the root of authority for t

can influence p’s beliefs at `′, then p will allow q to read `. This defines what it

means for a principal (p here) to believe that a token grants read access to their

data. Dana now needs to make sure that whenever a read access is granted in her

system, not only does the principal who gets read access have a token, but that

the principal who owns the data does indeed believe that the token grants read

access to that data.

115

Sorts σ ::= Label | Principal | · · ·
Labels `
Principals p, q, r
Functions f ::= · · ·
Relations R ::= CanRead(Principal, Label)

| CanWrite(Principal, Label)
| Label v Label | · · ·

σ-terms t ::= x | f(t1, . . . , tn)
Formulae ϕ, ψ, χ ::= R(t1, . . . , tn)

| True | False
| ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ
| ∀x :σ. ϕ | ∃x :σ. ϕ
| p says` ϕ

Generalized
Principals

g ::= 〈〉 | g · p〈`〉

Figure 4.1: FLAFOL Syntax

Finally, her third axiom states that a principal can write a label (according to

a second principal) if the integrity of that principal flows to the integrity of the

label:

∀q :Principal.∀` :Label.∀p :Principal. ∀`′ :Label.

p says`′ (IntegOf(q) v πI(`))→ p says`′ (CanWrite(q, `))

Metatheoretic Properties Dana has now created a model of her system, so she

can use it to state and prove properties of her system as meta-theorems. Luckily,

Rajani et al. [2016] have shown that information-flow integrity tracking with a non-

interference result is sufficient to avoid confused deputy attacks with capability

systems. Therefore Theorem 19 provides the guarantees she needs.

FLAFOL Syntax This example demonstrates FLAFOL’s flexibility as a power-

ful tool for reasoning about authorization mechanisms with information-flow poli-

cies. We saw that, since FLAFOL is defined with respect to the three sets S, F ,

116

and R, it can express the key components of a system. This parameterized defini-

tion gives rise to the formal FLAFOL syntax in Figure 4.1.

In order to use the function and relation symbols and incorporate axioms,

FLAFOL allows proofs to occur in a context. FLAFOL additionally includes rules

requiring flows-to to be reflexive and transitive, placing a preorder on the Label

sort,3 and requiring CanRead and CanWrite to respect a form of variance. If `1 v `2

and Alice can read data A with label `2, then she may learn information about

data with label `1 used to calculate A. This means she should also be able to read

data with label `1. Thus, CanRead must (contravariantly) respect the preorder

on labels. Similarly, if Alice can help determine some piece of data B labeled

with `1, she can influence any data labeled with `2 that is calculated from B, so

Alice should be able to help determine data labeled at `2. Thus, CanWrite must

(covariantly) respect the preorder on labels.

Figure 4.2 presents these rules formally. We give the proof rules in the form

of a sequent calculus. The trailing @ g represents who affirms that formula in

the proof, similarly to how says formulae represent who affirms a statement at

the object level. Unlike says formulae, these meta-level objects—called generalized

principals—encode arbitrary reasoners, including possibly-simulated principals.

Recall from Section 4.1.3 that we can think of some proofs as being performed

by principals if those proofs entirely involve that principal’s beliefs. In that exam-

ple, Bob reasoned about his belief that another principal, the insurer I2, trusted a

third principal, the insurer I3. We think of this ability to reason about the beliefs

of others as the ability to simulate other principals. In fact, because principals’

3Many information-flow tools require their labels to form a lattice. We find that a preorder is
sufficient for FLAFOL’s design and guarantees, so we decline to impose additional structure. In
Section 4.4.1 we show that enforcing a lattice structure is both simple and logically consistent.

117

FlowsToRefl
Γ ` ` v ` @ g

FlowsToTrans
Γ ` `1 v `2 @ g Γ ` `2 v `3 @ g

Γ ` `1 v `3 @ g

CRVar
Γ ` CanRead(p, `2) @ g Γ ` `1 v `2 @ g

Γ ` CanRead(p, `1) @ g

CWVar
Γ ` CanWrite(p, `1) @ g Γ ` `1 v `2 @ g

Γ ` CanWrite(p, `2) @ g

Figure 4.2: Permission Rules

beliefs are segmented by labels, principals can have multiple simulations of the

same other principal.

This suggests that FLAFOL captures the reasoning of principals at some level of

simulation. A generalized principal is a stack of principal/label pairs, representing

a stack of simulators and simulations. The empty stack, written 〈〉, represents

ground truth. A stack with one more level, written g ·p〈`〉, represents the beliefs of

p at level ` according to the generalized principal g. Figure 4.1 contains the formal

grammar for generalized principals.

4.3 Proof System

So far, we have discussed the intuitions behind FLAFOL and its syntax. Here

we introduce FLAFOL formally. Unfortunately, we cannot examine every aspect

of FLAFOL’s formal presentation in detail, though interested readers should see

Appendix B. Instead, we discuss the most novel and most security-relevant aspects

of FLAFOL’s design.

118

FLAFOL sequents are of the form Γ ` ϕ @ g, where Γ is a context contain-

ing beliefs. This means that the FLAFOL proof system manipulates beliefs, as

described in Section 4.2. Readers familiar with sequent calculus may recognize

that FLAFOL is intuitionistic, as there is only one belief on the right side of the

turnstile.

Sequent calculus rules tend to manipulate beliefs either on the left or the right

side of the turnstile. For instance, consider the FLAFOL rules for conjunctions:

AndL
Γ, ϕ @ g, ψ @ g ` χ @ g′

Γ, (ϕ ∧ ψ @ g) ` χ @ g′
AndR

Γ ` ϕ @ g Γ ` ψ @ g

Γ ` ϕ ∧ ψ @ g

We find it easiest to read left rules “up” and right rules “down.” With this reading,

the AndL rule uses an assumption of the form ϕ ∧ ψ @ g by splitting it into two

assumptions, one for each conjunct, while the AndR rule takes proofs of two

formulae and proves their conjunction.4

Most of the rules of FLAFOL are standard rules for first-order logic with gen-

eralized principals included to indicate who believes each formula. For instance,

the rules for conjunctions above were likely familiar to those who know sequent

calculus.

Figure 4.3 contains FLAFOL rules selected for discussion. The first, FalseL,

tells us how to use False as an assumption. In standard intuitionistic first-order

logic, this is simply the principle of Ex Falso: if we assume False, we can prove

anything. In FLAFOL, a generalized principal who assumes false is willing to

affirm any formula. This includes statements about other principals, so FalseL

extends the generalized principal arbitrarily. We use g ·g′ as notation for extending

4For readers interested in learning more about sequent calculus, we recommend MIT’s inter-
active tool for teaching sequent caluclus as a tutorial [Yang, 2012].

119

FalseL
Γ,False @ g ` ϕ @ g · g′

OrL
Γ, ϕ @ g ` χ @ g′ Γ, ψ @ g ` χ @ g′

Γ, (ϕ ∨ ψ @ g) ` χ @ g′
OrR1

Γ ` ϕ @ g

Γ ` ϕ ∨ ψ @ g

OrR2
Γ ` ψ @ g

Γ ` ϕ ∨ ψ @ g

ImpL
Γ ` ϕ @ 〈〉 Γ, ψ @ g ` χ @ g′

Γ, (ϕ→ ψ @ g) ` χ @ g′
ImpR

Γ, ϕ @ 〈〉 ` ψ @ g

Γ ` ϕ→ ψ @ g

SaysL
Γ, ϕ @ g · p〈`〉 ` ψ @ g′

Γ, p says` ϕ @ g ` ψ @ g′
SaysR

Γ ` ϕ @ g · p〈`〉
Γ ` p says` ϕ @ g

VarR
Γ ` ϕ @ g · p〈`′〉 · g′ Γ ` `′ v ` @ g · p〈`〉

Γ ` ϕ @ g · p〈`〉 · g′

FwdR

Γ ` ϕ @ g · p〈`〉 · g′
Γ ` CanRead(q, `) @ g · p〈`〉 Γ ` CanWrite(p, `) @ g · q〈`〉

Γ ` ϕ @ g · q〈`〉 · g′

Figure 4.3: Selected FLAFOL Proof Rules

the generalized principal g with a list of principal-label pairs, denoted g′.

We discuss the disjunction rules OrR1, OrR2, and OrL because says dis-

tributes over disjunctions. That is, given that p says` (ϕ ∨ ψ), we can prove that

(p says` ϕ) ∨ (p says` ψ). In an intuitionistic logic like FLAFOL,5 disjunctions must

be a proof of one side or the other. The proof of distribution of says over ∨ then

says that if p has evidence of either ϕ or ψ, then p can examine this evidence to

discover whether it is evidence of ϕ or evidence of ψ. However, it does mean there

are some situations that we cannot model, such as one where Alice knows that

Bob has a hidden bit, but does not know whether it is on or off.

5Recall that we argued in Section 4.1.1 that reasoning about authorization and information-
flow security together is naturally intuitionistic.

120

The implication rules ImpR and ImpL interpret the premise of an implication as

ground truth, while the generalized principal who believes the implication believes

the consequent. In particular, this means that says statements do not distribute

over implication as one might expect, i.e., p says` (ϕ → ψ) does not imply that

(p says` ϕ) → (p says` ψ). Instead, p says` (ϕ→ ψ) implies ϕ→ (p says` ψ). We

can thus think of implications as conditional knowledge. That is, if a generalized

principal g believes ϕ → ψ, then g believes ψ conditional on ϕ being true about

the system.

We can still form implications about generalized principals’ beliefs, but we must

insert appropriate says statements into the premise to do so. In Section 4.4.6, we

discuss how this semantics is necessary for both our proof theoretic and security

results.

The next two rules of Figure 4.3, SaysR and SaysL, are the only rules which

specifically manipulate says formulae. Essentially, generalized principals allow us to

delete the says part of a formula while not forgetting who said it. Thus, generalized

principals allow us to define sequent calculus rules once for every possible reasoner.

The final rules, VarR and FwdR, define communication in FLAFOL. Both

manipulate beliefs on the right and have corresponding left rules which act con-

travariantly. Those left rules can be found in Appendix B.

Information-flow communication is provided by the variance rule VarR. This

can be thought of like the variance rules used in subtyping. Most systems with

information-flow labels do not have explicit variance rules, but instead manipulate

relevant labels in every rule. By adding an explicit variance rule, we not only

simplify every other FLAFOL rule, we also remove the need for the label join and

121

meet operators that are usually used to perform the label manipulations. Others

have noted that adding explicit variance rules improves the design of the rest of

the system [Algehed, 2018; Volpano et al., 1996], but it remains an unusual choice.

The forwarding rule Fwd provides authorization-logic-style communication. In

FLAFOL, p can forward a belief at label ` to q if:

• p is willing to send its beliefs at label ` to q, denoted p says` CanRead(q, `),

and

• q is willing to allow p to determine its beliefs at label `, which we write

q says` CanWrite(p, `).

After establishing this trust, p can package up its belief and send it to q, who will

believe it at the same label.

4.4 Proof Theory

In this section, we evaluate FLAFOL’s logical design. We show that FLAFOL has

the standard sequent calculus properties of (left) consistency, (positive) consistency

and cut elimination and discuss fundamental limitations that inform our unusual

implication semantics. We also develop a new proof-theoretic tool, compatible

supercontexts, for use in our non-interference theorem in Section 4.5. Finally, we

evaluate FLAFOL’s design as a modal logic by showing how it admits (a version

of) the classic proof rule for modalities.

122

s ∈ {+,−} + = − − = +

ϕs ≤ ϕs
ϕs ≤ ψs′ ψs

′ ≤ χs′′

ϕs ≤ χs′′ ϕs ≤ (ϕ ∨ ψ)s ψs ≤ (ϕ ∨ ψ)s

ϕs ≤ (ϕ ∧ ψ)s ψs ≤ (ϕ ∧ ψ)s ϕs ≤ (ϕ→ ψ)s ψs ≤ (ϕ→ ψ)s

(ϕ[x 7→ t])− ≤ (∀x :σ. ϕ)− ϕ+ ≤ (∀x :σ. ϕ)+ ϕ− ≤ (∃x :σ. ϕ)−

(ϕ[x 7→ t])+ ≤ (∃x :σ. ϕ)+ ϕs ≤ (p says` ϕ)s

Figure 4.4: Signed Subformula Relation

4.4.1 Consistency

One of the most important properties about a logic is consistency, meaning it is

impossible to prove False. This is not possible in an arbitrary context, since one

could always assume False. One standard solution is to limit the theorem to the

empty context. By examining the FLAFOL proof rules, however, we see that it is

only possible to prove False by assumption or by Ex Falso. Either method requires

that False already be on the left-hand side of the turnstile, so if False can never

get there, then it should be impossible to prove.

To understand when False can appear on the left-hand side of the turnstile, we

note that formulae on the left tend to stay on the left and formulae on the right

tend to stay on the right. The only exception is the implication rules ImpL and

ImpR which move the premise of the implication to the other side. The fact that

no proof rule allows us to arbitrarily change either side of the sequent gives useful

structure to proofs. To handle implications, however, we must keep track of their

nesting structure, which we do by considering signed formulae. We call a formula

in a sequent positive if it appears on the right side of the turnstile and negative if it

123

appears on the left. If ϕ is positive we write ϕ+, and if ϕ is negative we write ϕ−.

Figure 4.4 shows rules defining the signed subformula relation, which we discuss in

more depth in Section 4.4.2.

The intuition above and this relation lead to the following theorem. Note that

formulae which do not contain False as a negative subformula are called positive

formulae, explaining the name.

Theorem 12 (Positive Consistency). For any context Γ, if

False− � ϕ− for all ϕ @ g ∈ Γ

then Γ 0 False @ g′.

The proof follows by induction on the FLAFOL proof rules.

We get the result with an empty context as a corollary. This states that False

is not a theorem of FLAFOL.

Corollary 1 (Consistency). 0 False @ g

Proof. Because Γ is empty, the “for all” premise in Theorem 12 is vacuously true.

Theorem 12 demonstrates that a variety of useful constructs are logically con-

sistent. For instance, we can add a lattice structure to FLAFOL’s labels. We can

define join (t) and meet (u) as binary function symbols on labels and > and ⊥ as

label constants. Then we can simply place the lattice axioms (e.g., ∀` :Label. ` v >)

in our context to achieve the desired result. Since none of the lattice axioms include

False, Theorem 12 ensures that they are consistent additions to the logic.

124

4.4.2 Signed Subformula Property

As we mention in Section 4.4.1, FALFOL formulae tend not to move between

the left-hand side of the turnstile and the right-hand side. Moreover, the only

exceptions to this are the implication rules. This means that looking at where a

subformula appears in a sequent tells us which side of the turnstile it can appear

on for the rest of the proof.

Note that every subformula of a signed formula has a unique sign. If a subfor-

mula appears by itself in a sequent during a proof, then which side of the turnstile

it is on is determined by its sign. This structure results in the following formal

property.

Theorem 13 (Left Signed-Subformula Property). If Γ ` ϕ @ g1 appears in a proof

of ∆ ` ψ @ g2, then for all χ1 @ g3 ∈ Γ, either (1) χ−1 ≤ ψ+ or (2) there is some

χ2 @ g4 ∈ ∆ such that χ−1 ≤ χ−2 .

The proof follows by induction on the FLAFOL proof rules.

Many logics also have a similar right signed-subformula property. FLAFOL

does not enjoy that property since Γ ` ϕ @ g1 may be a side condition on a forward

or a variance rule, and thus not related directly to ψ.

4.4.3 Compatible Supercontexts

To prove Theorems 12 and 13 we needed to consider the possible locations of

formulae within a sequent, but in Section 4.5 we will need to reason about the

possible locations of beliefs. To enable this, we introduce the concept of a compat-

125

CSCRefl
Γ� Γ ` ϕ @ g

CSCUnion
∆1 � Γ ` ϕ @ g ∆2 � Γ ` ϕ @ g

∆1 ∪∆2 � Γ ` ϕ @ g

CSCOrL1
∆� Γ, ϕ @ g ` χ @ g′

∆� Γ, (ϕ ∨ ψ @ g) ` χ @ g′
CSCImpR

∆� Γ, ϕ @ 〈〉 ` ψ @ g

∆� Γ ` ϕ→ ψ @ g

Figure 4.5: Selected Rules for Compatible Supercontexts

ible supercontext (CSC). Informally, the CSCs of a sequent are those contexts that

contain all of the information in the current context, along with any counterfactual

information that can be considered during a proof. Intuitively, the rules OrL and

ImpL allow a generalized principal to consider such information by using either

side of a disjunction or the conclusion of an implication. If it is possible to con-

sider such a counterfactual, there is a CSC which contains it. We use the syntax

∆� Γ ` ϕ @ g to denote that ∆ is a CSC of the sequent Γ ` ϕ @ g. Figure 4.5

contains selected rules for CSCs. Others can be found in Appendix C.

Since all of the information in Γ has already been discovered by the generalized

principal who believes that information, we require that Γ � Γ ` ϕ @ g with

CSCRefl.

If we can discover two sets of information, we can discover everything in the

union of those sets using CSCUnion. This rule feels different from the others,

since it axiomatizes certain properties of CSCs. We conjecture that there is an

alternative presentation of CSCs for which we can prove that this rule is admissable.

The rest of the rules for CSCs essentially follow the proof rules, so that any

belief added to the context during a proof can be added to a CSC. For instance

CSCOrL1 and CSCOrL2 allow either branch of an assumed disjunction to be

added to a CSC, following the two branches of the OrL rule of FLAFOL.

126

If a context appears in a proof of a sequent, then it is a CSC of that sequent.

We refer to this as the compatible-supercontext property (CSC property).

Theorem 14 (CSC Property). If ∆ ` ψ @ g′ appears in a proof of Γ ` ϕ @ g,

then ∆� Γ ` ϕ @ g.

The following lemma about compatible supercontexts helps us prove our main

security result.

Lemma 5. The following two rules are admissible up to α equivalence of Γ ` ϕ @

g1:

CSCAtomic
∆� Γ ` ϕ @ g1 ϕ is atomic

∆� Γ ` ψ @ g2

CSCWeaken
∆� Γ ` ϕ @ g1

∆, ψ @ g2 � Γ, ψ @ g2 ` ϕ @ g1

Proof. Note that this lemma is not available in the Coq. In order to avoid reasoning

about α equivalence, we instead added these as CSC rules. Both proofs are by

induction on the derivation of ∆� Γ ` ϕ @ g1.

CSCAtomic follows from the fact that no right rules that consider the shape

of ϕ apply when it is atomic. CSCIR, CSCSCR, CSCVarR, and CSCFwdR

can simply be eliminated when we replace ϕ @ g1 with ψ @ g2. All other rules

either cannot apply when ϕ is atomic, or apply equally with ψ @ g2.

CSCWeaken follows from a direct straightforward induction (with heavy use

of CSCExchange) noting that CSCRefl is the only way to terminate the in-

duction.

127

4.4.4 Simulation

In (multi-)modal logics, we are interested in modeling perfect reasoners. That is,

reasoners should reason correctly based on their assumed beliefs; if their assumed

beliefs were true, then all of their derived beliefs would be as well.

In most logics (which do not have generalized principals), this is axiomatized

as a rule in the system, written as follows:

SaysF
Γ ` ϕ

p says` Γ ` p says` ϕ

(Note that this is essentially SaysLRI from Chapter 3. The name SaysF which

we use here refers to the fact that this makes p says` functorial for every p and `.)

Here, p says` Γ refers to a copy of Γ with p says` in front of every formula in Γ. In

such logics, SaysF is the main rule for manipulating says statements. However,

this requires removing all beliefs that are not those of p at level ` in a context

before using this rule to reason as p at level `.

FLAFOL instead uses the says introduction rules in Section 4.3, which allows

us to retain the beliefs of other principals and of p at other labels, making it easier

to discuss communication. However, FLAFOL reasoners are still perfect reasoners,

which we show by proving that FLAFOL admits a rule analogous to SaysF. We

refer to this as the simulation theorem, since it says that p is correctly “simulating

the world in its head.”

FLAFOL does not precisely admit SaysF for two reasons. The first is that our

belief syntax pushes says statements into generalized principals, so we must place

the new principal-label pair at the beginning of the generalized principal instead

of on the formula. The second is that the semantics of implications in FLAFOL

128

mean that p says` (ϕ→ ψ) has different semantics from (p says` ϕ)→ (p says` ψ).

To address this concern, we define the � operator:

p〈`〉 � ϕ ,

(p says` (p〈`〉 � ψ))→ (p〈`〉 � χ) ϕ = ψ → χ

(p〈`〉 � ψ) ∧ (p〈`〉 � χ) ϕ = ψ ∧ χ

(p〈`〉 � ψ) ∨ (p〈`〉 � χ) ϕ = ψ ∨ χ

∀x :σ. (p〈`〉 � ψ) ϕ = ∀x :σ. ψ

∃x :σ. (p〈`〉 � ψ) ϕ = ∃x :σ. ψ

ϕ otherwise

This essentially “repairs” implications to have the right says statements in front of

the premise.

We allow the same syntax to prepend to a generalized principal, defining

p〈`〉 � (〈〉 · g′) , 〈〉 · p〈`〉 · g′.

We can therefore lift the operator to beliefs straightforwardly, defining

p〈`〉 � (ϕ @ g) , (p〈`〉 � ϕ) @ p〈`〉 � g,

and from there to contexts as:

p〈`〉 � Γ ,

· Γ = ·

(p〈`〉 � Γ′) , p〈`〉 � (ϕ @ g) Γ = Γ′, ϕ @ g

With this definition in hand, we can now state the simulation theorem in full:

Theorem 15 (Simulation). The following rule is admissible:

Γ ` ϕ @ g

(p〈`〉 � Γ) ` p〈`〉 � (ϕ @ g)

The proof follows by induction on the proof.

129

4.4.5 Cut Elimination

In constructing a proof, it is often useful to create a lemma, prove it separately,

and use it in the main proof. If we both prove and use the lemma in the same

context, the main proof follows in that context as well. We can formalize this via

the following rule:

Cut
Γ ` ϕ @ g1 Γ, ϕ @ g1 ` ψ @ g2

Γ ` ψ @ g2

This rule is enormously powerful. It allows us to not only create lemmata to

use in a proof, but also prove things that do not obviously have other proofs. For

instance, consider the rule

UnsaysR
Γ ` p says` ϕ @ g

Γ ` ϕ @ g · p〈`〉

We can show that this rule is admissible—meaning any sequent provable with this

rule is provable without it—by cutting a proof of the sequent Γ ` p says` ϕ @ g

with the following proof:6

SaysL

Ax

ϕ @ g · p〈`〉 ` ϕ @ g · p〈`〉

p says` ϕ @ g ` ϕ @ g · p〈`〉

However, the Cut rule allows an arbitrary formula to appear on both sides of

the turnstile in a proof. That formula may not even be a subformula of anything

in the sequent at the root of the proof-tree! This would seemingly destroy the CSC

property that FLAFOL enjoys, and which we rely on in order to prove FLAFOL’s

6Not only can UnsaysR be proven admissable without Cut (as can all FLAFOL proofs), it
is actually important for proving cut elimination.

130

security results. As is standard in sequent calculus proof theory, we show that Cut

can be admitted, allowing FLAFOL the proof power of Cut while maintaining the

analytic power of the CSC property.

Theorem 16 (Cut Elimination). The Cut rule is admissible.

This theorem is one of the key theorems of proof theory [Girard et al., 1989;

Takeuti, 1987]. Pfenning [1995] has called it “[t]he central property of sequent cal-

culi.” From the propositions-as-types perspective, cut elimination is preservation

of types under substitution, a fact that will be important in the next section.

The proof of Theorem 16 uses the fact that every proof can be put into a certain

normal form. 7 A proof is in normal form if all rules which do not manipulate

formulae are higher in the proof tree than those which do. Formally, we define

two normal forms, called first and second normal form, which represent “might

use formula-manipulating rules” and “will not use formula manipulating rules”,

respectively. A proof is in first normal form if, when a rule which manipulates

something other than a formula is used, all subproofs above that rule are in second

normal form, while a proof is in second normal form it if never uses any rules which

manipulate formulae.

Theorem 17 (FLAFOL Normalization). If Γ ` ϕ @ g is provable, then it has a

normal-form proof.

The proof is by induction on the proof tree of Γ ` ϕ @ g.

In order to prove 16, we first normalize both proofs. If they’re both in First

Normal Form but not in Second Normal Form, we proceed as suggested by Pfenning

7In the literature, “normal proof” refers to a cut-free proof, rather than a proof in FLAFOL’s
normal form.

131

[1995]: nested triple induction on the formula being cut and on both proofs. If one

of them is in Second Normal Form we use a different procedure. This procedure

consists of getting the dual rule to the last rule used in the proof that is in Second

Normal Form (e.g. VarL for the VarR case) and make it the last rule to the

other proof. Due to the covariant-contravariant nature of these rules and their

duals, this is always possible.

4.4.6 Implications and Communication

Recall from Section 4.3 how we interpret implications such as Alice says` (ϕ→ ψ):

if ϕ is true about the system, then Alice knows ψ at label `. We can now understand

why FLAFOL uses this interpretation.

Imagine we replace rules ImpL and ImpR with rules that interpret the above

formula in a more intuitive fashion: if Alice believes ϕ at label `, then she also

believes ψ at `. That is, we replace ImpL and ImpR with the following rules:

ImpL′
Γ ` ϕ @ g Γ, ψ @ g ` χ @ g′

Γ, (ϕ→ ψ) @ g ` χ @ g′
ImpR′

Γ, ϕ @ g ` ψ @ g

Γ ` ϕ→ ψ @ g

This would allow us to prove that says distributes over implication, as you can see in

Figure 4.6: if Alice says` (ϕ→ ψ) then (Alice says` ϕ)→ (Alice says` ψ).8 It would

also, unfortunately, allow us to prove the converse, as you can see in Figure 4.7

In this setting we can provide a proof that contains a cut we cannot eliminate

and demonstrates a security flaw. Imagine that Alice receives a TopSecret version

of ϕ from Cathy, and she wants to prove ψ at TopSecret. Alice can also prove

ψ publicly if she believes ϕ privately, but doing so requires sending ϕ to Bob.

8Note that, for space reasons, we drop 〈〉· and @ 〈〉 from proofs in this section.

132

SaysL

ImpR′
ImpL′
SaysL

Ax
ϕ @ g · p〈`〉 ` ϕ @ g · p〈`〉
p says` ϕ @ g ` ϕ @ g · p〈`〉

ψ @ g · p〈`〉 ` ψ @ g · p〈`〉
Ax

ψ @ g · p〈`〉 ` p says` ψ @ g
SaysR

(ϕ→ ψ) @ g · p〈`〉, p says` ϕ @ g ` p says` ψ @ g

(ϕ→ ψ) @ g · p〈`〉 ` (p says` ϕ)→ (p says` ψ) @ g

p says` (ϕ→ ψ) @ g ` (p says` ϕ)→ (p says` ψ) @ g

Figure 4.6: Proof that ImpL′ and ImpR′ allow says to distribute over implication.

SaysR

ImpR′
ImpL′
SaysR

Ax
ϕ @ g · p〈`〉 ` ϕ @ g · p〈`〉
ϕ @ g · p〈`〉 ` p says` ϕ @ g

ψ @ g · p〈`〉 ` ψ @ g · p〈`〉
Ax

p says` ψ @ g ` ψ @ g · p〈`〉
SaysL

(p says` ϕ)→ (p says` ψ) @ g, ϕ @ g · p〈`〉 ` ψ @ g · p〈`〉
(p says` ϕ)→ (p says` ψ) @ g ` (ϕ→ ψ) @ g · p〈`〉
(p says` ϕ)→ (p says` ψ) @ g ` p says` (ϕ→ ψ) @ g

Figure 4.7: Proof that ImpL′ and ImpR′ allow says to undistribute over implication.

By packaging this proof into an implication using these new rules and then using

variance, we obtain a proof that, if Alice believes ϕ at TopSecret, she can prove

ψ at TopSecret.9 We can cut these two proofs together, but eliminating this cut

would force Alice or Cathy to send a TopSecret belief to Bob, though they are

unwilling.

This insecurity stems from the ability to both distribute and un-distribute says

across implications while also using the variance and forward rules. Adopting a

propositions-as-types viewpoint provides further insight. In this perspective, the

says modalities are type constructors, the variance and forwarding rules act as

subtyping relations on the resulting types, and implications are functions. The

forward and variance rules require functions to behave contravariantly on their

inputs, as normal. Also allowing says to distribute over implications in both di-

rections, however, would force functions to behave covariantly on their inputs. A

standard type-theoretic argument suggests that this makes β-reduction—i.e., cut

9Note that ImpL and ImpR do not allow this proof.

133

elimination—impossible. By treating premises as ground truth, functions become

invariant on their premises, allowing us to prove cut elimination for FLAFOL.

Let us consider our example in more detail. There are three principals of

interest: Alice, Bob, and Cathy, and three labels: `0, `1, and `2, representing

Public, Private, and TopSecret, respectively. (We use the shorter names for the

sake of readability of formal proofs.) Anybody in the system can read public data

(i.e., data labeled with `0). Alice and Cathy believe all three principals of interest

can read private data (i.e., data labeled with `1), but Bob is unsure of the security

clearances and will only send public data to other principals. Alice and Cathy

also have top secret clearance, but Bob does not, so he cannot read data labeled

at `2. Finally, Bob serves as a redactor: given ϕ—which represents a document

containing private information—he can produce ψ—which represents a redacted

version of the same document—performing a declassification in the process.

The information needed to formalize these permission policies in our proof are

in the context below:

Γ = ∀p :Principal. p says`1 `0 v `1,

∀p :Principal. p says`2 `1 v `2,

CanRead(Bob, `1) @ Alice〈`1〉,

CanRead(Alice, `2) @ Cathy〈`2〉,

∀p, q :Principal. p says`0 CanRead(q, `0),

∀p, q :Principal.∀`, `′ :Label. p says` CanWrite(q, `′)

To represent Bob’s ability to redact information from the document ϕ, we add one

additional belief:

Γ′ = Γ, (Bob says`1 ϕ)→ (Bob says`0 ψ)

134

FwdL†

ImpL′

Ax
Γ, ϕ @ Alice〈`2〉 ` ϕ @ Alice〈`2〉 Γ, ϕ @ Alice〈`2〉, ψ @ Alice〈`2〉 ` ψ @ Alice〈`2〉

Ax

Γ, (ϕ→ ψ) @ Alice〈`2〉, ϕ @ Alice〈`2〉 ` ψ @ Alice〈`2〉

Γ, (ϕ→ ψ) @ Alice〈`2〉, ϕ @ Cathy〈`2〉 ` ψ @ Alice〈`2〉

Figure 4.8: Alice using Cathy’s ϕ and a redaction function

Imagine further that Alice decides she wants to redact private information from

a TopSecret version of ϕ that she receives from Cathy, but leave it TopSecret. If

she can figure out how to get a redaction implication, she’ll simply receive ϕ from

Cathy and then use the implication. This is the proof in Figure 4.8. Note that,

for the sake of brevity and readability, we do not explicitly state side conditions

which are proven straightforwardly from Γ. The rules where these side conditions

should appear are marked with “†.”

While she knows how to use and implication representing redaction, Alice

does not know how to redact ϕ except by giving it to Bob. Using ImpL′ and

ImpR′, she is able to package up the process “give Bob a secret version of ϕ, get

back a public version of ψ, and then use variance to get a private version of ψ”

as a belief ϕ→ ψ @ Alice〈`1〉. She can then use variance again to get a belief

ϕ→ ψ @ Alice〈`2〉. This is the proof in Figure 4.9. Again, we elide side conditions

which are proved straightforwardly from Γ, and mark the rules where they should

appear with “†.”

Cutting these two proofs together gives Alice what she wants: a TopSecret

version of ψ. However, this cut is not possible to eliminate! Examining this

through a propositions-as-types lens tells us why: one of Alice or Cathy must send

a TopSecret version of ϕ to Bob, which neither is unwilling to do.

135

VarR†

ImpR′
VarL†
FwdL†

FwdR†
ImpL′
SaysR

Ax
Γ, ϕ @ Bob〈`1〉 ` ϕ @ Bob〈`1〉
Γ, ϕ @ Bob〈`1〉 ` Bob says`1 ϕ

Γ, ψ @ Bob〈`0〉 ` ψ @ Bob〈`0〉
Ax

Γ,Bob says`0 ψ ` ψ @ Bob〈`0〉
SaysL

Γ, (Bob says`1 ϕ)→ (Bob says`0 ψ), ϕ @ Bob〈`1〉 ` ψ @ Bob〈`0〉
Γ′, ϕ @ Bob〈`1〉 ` ψ @ Alice〈`0〉
Γ′, ϕ @ Alice〈`1〉 ` ψ @ Alice〈`0〉
Γ′, ϕ @ Alice〈`0〉 ` ψ @ Alice〈`0〉

Γ′ ` ϕ→ ψ @ Alice〈`0〉
Γ′ ` ϕ→ ψ @ Alice〈`2〉

Figure 4.9: Proof corresponding to Alice sending ϕ to Bob and receiving a ψ back

4.5 Non-Interference

Both authorization logics and information flow systems have security properties

called non-interference [Denning, 1976; Garg and Pfenning, 2006; Goguen and

Meseguer, 1982], both of which are considered important. On the face, these two

notions of non-interference look very different, but their core intuitions are the

same. Both statements aim to prevent one belief or piece of data from interfering

with another—even indirectly—unless the security policies permit an influence.

Authorization logics traditionally define trust relationships between principals and

non-interference requires that p’s beliefs affect the provability of q’s beliefs only

when q trusts p. Information flow control systems generally specify policies as

labels on program data and use the label flows-to relation to constrain how inputs

can affect outputs. For non-interference to hold, changing an input with label `1

can only alter an output with label `2 if `1 v `2.

FLAFOL views both trust between principals and flows between labels as ways

to constrain communication of beliefs. The forward rules model an authorization-

logic-style sending of beliefs from one principal to another based on their trust

relationships. The label variance rules model a single principal transferring beliefs

136

between labels based on the flow relationship between them. By reasoning about

generalized principals, which include both the principal and the label, we are able

to capture both at the same time. The result (Theorem 19) mirrors the structure

of existing authorization logic non-interference statements [Abadi, 2006; Garg and

Pfenning, 2006]. No similar theorem reasons about information flow or applies

to policies combining discoverable trust and logical disjunction. Theorem 19 does

both.

4.5.1 Trust in FLAFOL

Building a notion of trust on generalized principals requires us to consider both

the trust of the underlying (regular) principals and label flows. The explicit label

flow relation (v) cleanly captures restrictions on changing labels. Trust between

principals requires more care. Alice may trust Bob with public data, but that does

not mean she trusts him with secret data. Similarly, Alice may believe that Bob

can influence low integrity data without believing Bob is authorized to influence

high integrity data. This need to trust principals differently at different labels

leads us to define our trust in terms of the two permission relations: CanRead(p, `)

and CanWrite(p, `).

We group label flows and principal trust together in a meta-level statement

relating generalized principals. As this relation is the fundamental notion of trust

in FLAFOL, we follow existing authorization logic literature and call it speaks for.

The speaks-for relation captures any way that one generalized principal’s beliefs

can be safely transfered to another. This can happen through flow relationships

(g · p〈`〉 speaks for g · p〈`′〉 if ` v `′), forwarding (g · p〈`〉 speaks for g · q〈`〉 if p can

137

ReflSF
Γ ` g SF g

ExtSF
Γ ` g1 SF g2

Γ ` g1 · p〈`〉 SF g2 · p〈`〉

SelfLSF
Γ ` g · p〈`〉 SF g · p〈`〉 · p〈`〉

SelfRSF
Γ ` g · p〈`〉 · p〈`〉 SF g · p〈`〉

VarSF
Γ ` ` v `′ @ g · p〈`′〉

Γ ` g · p〈`〉 SF g · p〈`′〉

FwdSF
Γ ` CanRead(q, `) @ g · p〈`〉 Γ ` CanWrite(p, `) @ g · q〈`〉

Γ ` g · p〈`〉 SF g · q〈`〉

TransSF
Γ ` g1 SF g2 Γ ` g2 SF g3

Γ ` g1 SF g3

Figure 4.10: The rules defining speaks for.

forward beliefs at ` to q), and introspection (g · p〈`〉 speaks for g · p〈`〉 · p〈`〉 and

vice versa). We formalize speaks-for with the rules in Figure 4.10.

To validate this notion of trust, we note that existing authorization logics often

define speaks-for as an atomic relation and create trust by requiring that, if p

speaks for q, then p’s beliefs can be transfered to q. As our speaks-for relation

exactly mirrors FLAFOL’s rules for communication, it enjoys this same property.

Theorem 18 (Speaks-For Elimination). FLAFOL admits the following rule:

ElimSF
Γ ` ϕ @ g1 Γ ` g1 SF g2

Γ ` ϕ @ g2

This notion of trust allows us to begin structuring a non-interference statement.

We might like to say that beliefs of g1 can only influence beliefs of g2 if Γ ` g1 SF g2.

Formally, this might take the form: if Γ, (ϕ @ g1) ` ψ @ g2 is provable, then either

Γ ` ψ @ g2 is provable or Γ ` g1 SF g2. Unfortunately, this statement is false

for three critical reasons: says statements, implication, and the combination of

138

discoverable trust and disjunctions.

4.5.2 Says Statements and Non-Interference

The first way to break the proposed non-interference statement above is simply

by moving affirmations of a statement between the formula—using says—and the

generalized principal who believes it. For example, we can trivially prove p says`

ϕ @ 〈〉 ` ϕ @ 〈〉 · p〈`〉, yet we cannot prove 〈〉 SF 〈〉 · p〈`〉.

To address this case, we can view p says` ϕ @ 〈〉 as a statement that 〈〉 · p〈`〉

believes ϕ. This insight suggests that we might generally push all says modalities

into the generalized principal. We can do this for simple formulae, but the process

breaks down with conjunction and disjunction. In those cases, the different sides

may have different says modalities, and either side could influence a belief through

the different resulting generalized principals. We alleviate this concern by consid-

ering a set of generalized principals referenced in a given belief. We build this set

using an operator G:

G(χ @ g) ,

G(ϕ @ g · p〈`〉) χ = p says` ϕ

G(ϕ @ g) ∪ G(ψ @ g) χ = ϕ ∧ ψ or ϕ ∨ ψ

G(ψ @ g) χ = ϕ→ ψ⋃
t:σ G(ϕ[x 7→ t] @ g) χ = ∀x :σ. ϕ or ∃x :σ. ϕ

{g} otherwise

For implications, G only considers the consequent, as the implication cannot affect

the provability of a belief unless its consequent can. For quantified formulae, a

proof may substitute any term of the correct sort for the bound variable, so we

must as well.

139

Using this new operator, we can patch the hole says statements created in our

previous non-interference statement, producing the following: If Γ, (ϕ @ g1) ` ψ @

g2, then either Γ ` ψ @ g2, or there is some g′1 ∈ G(ϕ @ g1), g′2 ∈ G(ψ @ g2), and

some g′′1 such that Γ ` g′1 · g′′1 SF g′2.

Here g′′1 represents the ability of a generalized principal to ship entire simula-

tions to other generalized principals. In particular, the forward and variance rules

operate on an “active” prefix of the current generalized principal; g′′1 represents

the suffix.

The G operator converts reasoning about beliefs from the object level (FLAFOL

formulae) to the meta level (generalized principals). FLAFOL’s ability to freely

move between the two forces us to push all such reasoning in the same direction to

effectively compare the reasoner in two different beliefs. Prior authorization logics

do not contain a meta-level version of says, meaning similar conversions do not

even make sense.

4.5.3 Implications

While use of the G function solves part of the problem with our original non-

interference proposal, it does not address all of the problems. Implications can

implicitly create new trust relationships, allowing beliefs of one generalized prin-

cipal to affect beliefs of another, even when no speaks-for relationship exists. To

understand how this can occur, we revisit our example of preventing SQL injection

attacks from from Section 4.1.2.

Recall from Section 4.1.2 that a web server might treat sanitized versions of low-

integrity input as high integrity. Further recall, it might represent this willingness

140

with the following implication.

System saysLInt DBInput(x)→ System saysHInt DBInput(San(x))

In an intuitively-sensible context where System believes HInt v LInt—high

integrity flows to low integrity—but not vice versa, there is no way to prove

System〈LInt〉 SF System〈HInt〉. The presence of this implication, however, allows

some beliefs at System〈LInt〉 to influence beliefs at System〈HInt〉. This influence is

actually an endorsement from LInt to HInt, and our speaks-for relation explicitly

does not capture such effects.

Prior work manages this trust-creating effect of implications either by claiming

security only when all implications are provable [Abadi, 2006] or by explicitly using

assumed implications to represent trust [Garg and Pfenning, 2006]. We hew closer

to the latter model and make the implicit trust of implications explicit in our

statement of non-interference. We therefore cannot use the speaks-for relation, so

we construct a new relation between generalized principals we call can influence.

Intuitively, g1 can influence g2—denoted Γ ` g1 CanInfl g2—if either g1 speaks

for g2 or there is an implication in Γ that allows a belief of g1 to affect the prov-

ability of a belief of g2. This relation, formally defined in Figure 4.11, uses the G

operator discussed above to capture the generalized principals actually discussed

by each subformla of the implication. Because FLAFOL interprets the premise of

an implication as a condition whose modality is independent of the entire belief,

so too does the can-influence relation. The relation is also transitive, allowing it

to capture the fact that a proof may require many steps to go from a belief at g1

to a belief at g2.

Simply taking our attempted non-interference statement from above and re-

141

SF-CI
Γ ` g1 SF g2

Γ ` g1 CanInfl g2
ExtCI

Γ ` g1 CanInfl g2

Γ ` g1 · g′ CanInfl g2 · g′

TransCI
Γ ` g1 CanInfl g2 Γ ` g2 CanInfl g3

Γ ` g1 CanInfl g3

ImpCI
ϕ→ ψ @ g ∈ Γ g1 ∈ G(ϕ @ 〈〉) g2 ∈ G(ψ @ g)

Γ ` g1 CanInfl g2

Figure 4.11: The rules defining the can influence relation.

placing speaks-for with can-influence allows us to straightforwardly capture the

effect of implications on trust within the system.

While this change may appear small, it results in a highly conservative es-

timate of possible influence. Implications are precise statements that can allow

usually-disallowed information flows under very particular circumstances. Unfor-

tunately, because our non-interference statement only considers the generalized

principals involved, not the entire beliefs, it cannot represent the same level of pre-

cision. A single precise implication added to a context can therefore relate whole

classes of previously-unrelated generalized principals, eliminating the ability for

non-interference to say anything about their relative security.

This same lack of precision in information flow non-interference statements

has resulted in long lines of research on how to precisely model or safely restrict

declassification and endorsement [Askarov and Myers, 2011; Cecchetti et al., 2017;

Chong and Myers, 2008; Li and Zdancewic, 2005; Mantel and Sands, 2004; Myers

et al., 2006; Sabelfeld and Myers, 2004; Sabelfeld and Sands, 2005; Waye et al.,

2015; Zdancewic and Myers, 2001]. It would be interesting future work to apply

these analyses and restrictions to FLAFOL to produce more precise statements of

security.

142

4.5.4 Discovering Trust with Disjunctions

The G operator and can-influence relation address difficulties from both says formu-

lae and implications, but our statement of non-interference still does not account

for the combination of disjunctions and the ability to discover trust relationships.

To understand the effect of these two features in combination, recall the reinsur-

ance example from Section 4.1.3. Bob can derive CanWrite(I1, `H) if he already

believes both CanWrite(I1, `H) ∨ CanWrite(I2, `H) and I2 says`H CanWrite(I1, `H).

We clearly cannot remove either of Bob’s beliefs and still prove the result. Our

desired theorem statement would thus require that Bob〈`H〉 · I2〈`H〉 can influence

Bob〈`H〉, which there is no way to prove. The reason the sequent is still provable,

as we noted in Section 4.1.3, is that Bob can discover trust in I2 when he branches

on an Or statement, which then allows I2 to influence Bob. In this branch, we can

prove Bob〈`H〉 · I2〈`H〉 SF Bob〈`H〉 · Bob〈`H〉, which then speaks for Bob〈`H〉.

To handle such assumptions, we cannot simply consider the context in which

we are proving a sequent; we must consider any context that can appear in the

proof of that sequent. We developed the notion of compatible supercontexts in

Section 4.4.3 for exactly this purpose. Indeed, if we replace Γ with an appropriate

CSC when checking the potential influence of generalized principals, we remove

the last barrier to a true non-interference theorem.

4.5.5 Formal Non-Interference

The techniques above allow us to modify our attempted non-interference statement

into a theorem that holds.

143

Theorem 19 (Non-Interference). For all contexts Γ and beliefs ϕ @ g1 and ψ @ g2,

if Γ, ϕ @ g1 ` ψ @ g2, then either (1) Γ ` ψ @ g2, or (2) there is some ∆� Γ, ϕ @

g1 ` ψ @ g2, g′1 ∈ G(ϕ @ g1), g′2 ∈ G(ψ @ g2), and g′′1 such that ∆ ` g′1 · g′′1 CanInfl

g′2.

This follows by induction on the proof of the sequent Γ, ϕ @ g1 ` ψ @ g2. For

each proof rule, we argue that either ϕ @ g1 is unnecessary for all premises or we

can extend an influence from one or more subproofs to an influence from ϕ @ g1

to ψ @ g2.

This theorem limits when a belief ϕ @ g1 can be necessary to prove ψ @ g2 in

context Γ, much like other authorization logic non-interference statements [Abadi,

2006; Garg and Pfenning, 2006]. As we mentioned above, however, it is the first

such non-interference statement for any authorization logic supporting all first-

order connectives and discoverable trust. Moreover, it describes how FLAFOL

mitigates both:

• communication between principals, through CanRead and CanWrite state-

ments, and

• movement of information between security levels represented by information

flow labels, via flows-to statements.

The CanInfl relation seems to make our non-interference statement much less

precise than we would like. After all, implications precisely specify what beliefs

can be declassified or endorsed, whereas CanInfl conservatively assumes any beliefs

can move between the relevant generalized principals. This lack of precision serves

a purpose. It allows us to reason about any implications, including those that arbi-

trarily change principals and labels, something which other no authorization logics

144

have done before. It is therefore worth noting that, when all of the implications

in the context are provable, the theorem holds even if you replace CanInfl with SF

everywhere. The same proof works, with some simple repair in the ImpL case.

Another complaint of imprecision applies to compatible supercontexts. Specif-

ically, if any principal assumes ϕ ∨ ¬ϕ for any formula ϕ, then there is a CSC in

which that principal has assumed both, even though these are arrived at through

mutually-exclusive choices. Since CSCs have been added in order to allow disjunc-

tions and discoverable trust to co-exist, it is good to know that if we disallow either,

CSCs are not required for non-interference. That is, if there are no disjunctions in

the context, then we can always instantiate the ∆ in Theorem 19 with Γ, ϕ @ g1.

Similarly, if every permission that is provable under any CSC of Γ, ϕ @ g1 ` ψ @ g2

is provable under Γ, ϕ @ g1, then we can again always instantiate ∆ with Γ, ϕ @ g1.

Together, these points demonstrate that there are only two types of poorly-

behaved formulae that force the imprecision in Theorem 19. This further shows

that our non-interference result is no less precise than those of other authorization

logics in the absence of such formulae. We add imprecision only when needed to

allow our statement to apply to more proofs. Interesting future research would

allow for a more precise non-interference theorem even in the presence of such

formulae.

To see how Theorem 19 corresponds to traditional non-interference results for

information flow, consider a setting where every principal agrees on the same label

ordering, and where there are no implications corresponding to declassifications

or endorsements. Then any two contexts Γ and Γ′ which disagree only on beliefs

labeled above some ` can prove exactly the same things at label `—Γ ` ϕ @ g ·p〈`〉

if and only if Γ′ ` ϕ @ g · p〈`〉—since Theorem 19 allows us to delete all of the

145

beliefs on which they disagree. If we view contexts as inputs, as in a propositions-

as-types interpretation, then this says that changing high inputs cannot change

low results.

4.6 Respect of Permission Beliefs

The non-interference statement of the previous section gives a powerful guarantee

about security, combining both authorization-logic and information-flow notions

of trust. We achieve this by stating non-interference in terms of generalized princi-

pals. However, when considering the security of a system, the security of (proper)

principals matters.

In FLAFOL different principals have different information-security policies,

expressed through permissions. Thus, the security of principals requires that Al-

ice’s beliefs about permissions be respected on Alice’s data. For example, Alice’s

beliefs at label ` should only affect Bob’s beliefs (at any label) if Alice believes

CanRead(Bob, `). Enforcing this is only possible if Alice exclusively sends data to

people who will respect her policies. If Cathy is willing to send any data labeled

` to Bob, but Alice believes Cathy can read label ` and Bob cannot, Cathy might

violate Alice’s policies.

To ensure that nobody violates Alice’s policies, it therefore seems necessary for

Alice to only send data to principals who hold similar beliefs. Such a strong restric-

tion, however, does not account for the fact that Alice may trust Cathy to decide

who can read data at `. Specifically, if Alice believes CanWrite(Cathy, `), then Al-

ice would accept Cathy’s claim that CanRead(Bob, `). This does not necessarily

mean that Alice also holds this belief, because telling Alice that CanRead(Bob, `)

146

may violate Cathy’s information-security policies. The result is a situation where

Alice’s permission beliefs are respected, Alice’s beliefs at ` influence Bob’s, but

Alice does not believe CanRead(Bob, `).

Our formal notion of trustworthiness describes these two cases explicitly. The

case where Cathy must hold similar beliefs to Alice formalizes that anyone Cathy

may pass Alice’s beliefs to must be someone Alice believes can read that informa-

tion.

Definition 2 (Trustworthy). We say that a principal p is trustworthy with respect

to q at label ` in world (g,Γ) if either (1) Γ ` CanWrite(p, `) @ g · q〈`〉, or (2) for

all `′ such that Γ ` ` v `′ @ g · p〈`′〉,

• Γ ` ` v `′ @ g · q〈`′〉, and

• {r | Γ ` CanRead(r, `′) @ g · p〈`′〉}

⊆ {r | Γ ` CanRead(r, `′) @ g · q〈`′〉}.

In this definition, we refer to a pair of a generalized principal and a context

(g,Γ) as a world. Since FLAFOL beliefs are held by generalized principals and

must be proven in a context, we can only reason about p’s beliefs surrounding

permissions (or anything else) in a world simulated by a generalized principal g

and defined by context Γ. For example, we can read a proof of Γ ` ϕ @ g as saying

that ϕ holds in world (g,Γ).

Definition 2 captures who will respect Alice’s permission beliefs at a given

label, and therefore where Alice should be willing to send data. We would like

to say that Alice can safely send data to trustworthy people, but trustworthiness

is unfortunately not quite sufficient. Alice may believe CanWrite(Cathy, `), but

Cathy may send data at ` to someone untrustworthy. If Cathy—and everyone she

147

sends data to, recursively—is trustworthy, however, then we can verify that Alice’s

permission beliefs are respected. We refer to Alice as wise if she will only send

data to principals who will (recursively) respect her beliefs.

Definition 3 (Wisdom). We say that p is wise at label ` in world (g,Γ) if for all

labels `′ and principals q, Γ ` ` v `′ @ g · p〈`′〉 and Γ ` CanRead(q, `′) @ g · p〈`′〉

imply that q is both trustworthy with respect to p and wise at `′ in world (g,Γ).

Using these definitions we can formulate how FLAFOL respects permission

beliefs. Specifically, we analyze when q can receive beliefs from p, formalized using

the speaks-for relation. We return to speaks-for because can-influence is expressly

designed to capture the implicit trust created when assumed implications violate

existing trust relationships. This makes can-influence poorly suited to making

strong statements about respecting permissions.

Using speaks-for, we show that, if a principal p is wise, then any other principal

q who can receive p’s beliefs must acquire them through a trustworthy chain. A

chain is trustworthy if each principal believes that the following principal has

permission to both see the belief and decide who else can see it. The label may

vary incrementally, and each hop in the chain must believe that the variance it sees

is permitted by the flows-to-relation. Finally, the recipient of the data (q) must

transitively trust the entire sequence to provide information at the resulting label,

allowing q to safely incorporate the resulting belief. We formalize this intuition as

follows.

Theorem 20 (Respect of Permission Beliefs10). For all contexts Γ, generalized

principals g, regular principals p and q, and labels ` and `′, if Γ ` g ·p〈`〉 SF g ·q〈`′〉

is provable without using ExtSF, SelfLSF, or SelfRSF and p is wise at ` in

10Recall that no theorems in this section have been proven in Coq.

148

world (g,Γ), then there exists a sequence (p0, `0), . . . , (pn, `n) such that p0 = p,

`0 = `, pn = q, Γ ` `n v `′ @ g · q〈`′〉, and for all i ∈ [1, n],

• Γ ` `i−1 v `i @ g · pi−1〈`i〉,

• Γ ` CanRead(pi, `i) @ g · pi−1〈`i〉,

• Γ ` CanWrite(pi−1, `i) @ g · pi〈`i〉,

• i = n or Γ ` CanWrite(pi, `i) @ g · pi−1〈`i〉.

To prove Theorem 20, we first examine the proof that Γ ` g · p〈`〉 SF g · q〈`′〉.

We construct a (potentially-longer) sequence of principal-label pairs transitioning

from p〈`〉 to q〈`′〉, each using a flow belief or a trust belief. We can then combine

flows and forwards into single steps. Using the wisdom of p at `, we can also

bypass forwards whose trustworthiness relies on the second case of Definition 2

rather than the first, giving us the desired trust conditions.

While our proof relies on the speaks-for proof not using ExtSF, SelfLSF, or

SelfRSF, we conjecture that this condition is redundant for generalized principals

of the appropriate form.

Conjecture 1. If Γ ` g · p〈`〉 SF g · q〈`′〉 is provable, then it is provable without

using ExtSF, SelfLSF, and SelfRSF.

Theorem 20 is a novel security result for FLAFOL. It captures that principals’

information-security policies can only be violated by those that they trust, transi-

tively. Not only does it provide a security result for (proper) principals, it describes

how Alice’s beliefs about who can decide her policies can safely cause her data to

be shared with others whom she would not be willing share with directly.

The core of this proof is contained in the following lemma.

149

Lemma 6. Let (p0, `0), . . . , (pm, `m) be a sequence of principal-label pairs. Assume

p0 is wise at `0 in world (g,Γ) and, for all i ∈ [1,m], Γ ` `i−1 v `i @ g · pi−1〈`i〉

and either

1. pi−1 = pi, or

2. Γ ` CanRead(pi, `i) @ g · pi−1〈`i〉 and

Γ ` CanWrite(pi−1, `i) @ g · pi〈`i〉.

Then there exists some sequence (q0, `
′
0), . . . , (qn, `

′
n) where n ≤ m such that q0 =

p0, `′0 = `0, qn = pm, and Γ ` `′n v `m @ g · pm〈`m〉, and for all i ∈ [1, n],

• Γ ` `′i−1 v `′i @ g · qi−1〈`′i〉,

• Γ ` CanRead(qi, `
′
i) @ g · qi−1〈`′i〉,

• Γ ` CanWrite(qi−1, `
′
i) @ g · qi〈`′i〉,

• i = n or Γ ` CanWrite(qi, `
′
i) @ g · qi−1〈`′i〉,

Proof. This is a proof by induction on m.

If m = 0 then n = 0 and (q0, `
′
0) = (p0, `0) and the case is complete.

If m = 1, we consider the two cases of the hypothesis. If p0 = p1, then we let

n = 0, set (q0, `
′
0) = (p0, `0). Since Γ ` `0 v `1 @ g · p0〈`1〉, this completes the

case. If p0 6= p1, then we let n = 1 and set (qi, `
′
i) = (pi, `i). This means that

Γ ` `′1 v `1 @ g · p1〈`1〉 by FlowsToRefl, and all other conditions are satisfied

by assumptions.

We now assume m ≥ 2 and, inductively, that the lemma is true for all shorter

sequences. We first examine the relationship between (p0, `0) and (p1, `1).

150

If p0 = p1, then we have both

Γ ` `0 v `1 @ g · p0〈`1〉

Γ ` `1 v `2 @ g · p0〈`2〉

Using VarR on the first wit the second as the side condition, and then Flow-

sToTrans, we can prove Γ ` `0 v `2 @ g · p0〈`2〉. Moreover, because p0 = p1, any

relationships between p1 and (p2, `2) obviously hold between p0 and (p2, `2). There-

fore the shorter sequence (p0, `0), (p2, `2), . . . , (pm, `m) satisfies the premises of our

inductive hypothesis, and an inductive application solves this case.

We now examine the case where both permissions hold — i.e., where both

Γ ` CanRead(p1, `1) @ g · p0〈`1〉 and Γ ` CanWrite(p0, `1) @ g · p1〈`1〉. Since

• p0 is wise at `0,

• Γ ` `0 v `1 @ g · p0〈`0〉, and

• Γ ` CanRead(p1, `1) @ g · p0〈`1〉,

we know that p1 is trustworthy with respect to p0 at `1 and p1 is wise at `1. We can

therefore apply our inductive hypothesis to (p1, `1), . . . , (pm, `m), producing some

(q1, `
′
1), . . . , (qn, `

′
n) where q1 = p1, `′1 = `1, and n ≤ m. The trustworthiness of p1

with respect to p0 at `1 gives us two sub-cases to consider.

If Γ ` CanWrite(p1, `1) @ g · p0〈`1〉, then we can simply add (p0, `0) to the front

of the sequence and satisfy all necessary conditions, proving the case.

The last sub-case is slightly more involved. Since Γ ` `1 v `′2 @ g · p1〈`′2〉, p0

believes the same thing at `′2. Using the assumption that Γ ` `0 v `1 @ g · p0〈`1〉,

VarR, and FlowsToTrans, we can therefore prove

Γ ` `0 v `′2 @ g · p0〈`′2〉.

151

By the second condition on trustworthiness, and Γ ` CanRead(q2, `
′
2) @ g · p1〈`′2〉,

we also know that

Γ ` CanRead(q2, `
′
2) @ g · p0〈`′2〉.

Next we claim that Γ ` CanWrite(p0, `
′
2) @ g · q2〈`′2〉. We already know that we

have proofs of the following:

Γ ` CanRead(p2, `
′
2) @ g · p1〈`′2〉

Γ ` CanWrite(p1, `
′
2) @ g · q2〈`′2〉

Γ ` CanWrite(p0, `1) @ g · p1〈`1〉

Γ ` `1 v `′2 @ g · p1〈`′2〉

Applying the rules VarR then CWVar to Γ ` CanWrite(p0, `1) @ g · p1〈`1〉 using

the flow relationship as the side condition both times yields a proof of the sequent

Γ ` CanWrite(p0, `
′
2) @ g · p1〈`′2〉. We can now forward this belief to q2, using FwdR

and the first two beliefs above as side conditions, to produce a proof of

Γ ` CanWrite(p0, `
′
2) @ g · q2〈`′2〉.

We have now proven all required conditions between p0 and (q2, `
′
2) except the final

bullet. We do not do this directly, but rather note that the first three conditions

are sufficient to satisfy the premises of the lemma, and thus our inductive hypoth-

esis. Since n ≤ m, we therefore have that (p0, `0), (q2, `
′
2), . . . , (qn, `

′
n) satisfies the

conditions of our inductive hypothesis. The output of this application proves the

case.

We additionally prove one more simple lemma.

Lemma 7. If Γ ` g · p〈`〉 SF g′ is provable without using ExtSF, SelfLSF, or

SelfRSF, then g′ is of the form g · q〈`′〉.

152

Proof. This argument follows by induction on the proof of Γ ` g · p〈`〉 SF g′.

The cases for ReflSF, VarSF, and FwdSF are trivial, as they can only prove

speaks-for relationships of the desired form.

For TransSF, we have

Γ ` g · p〈`〉 SF g′′ Γ ` g′′ SF g′

Γ ` g · p〈`〉 SF g′

By induction on the first hypothesis, we have that g′′ = g ·p′〈`′′〉 for some p′ and `′′.

Therefore the right premise becomes Γ ` g · p′〈`′′〉 SF g′. Applying the inductive

hypothesis again to this premise proves that g′ = g · q〈`′〉 for some q and `′, thus

proving the case.

Theorem 20 (Respect of Permission Beliefs). For all contexts Γ, generalized prin-

cipals g, regular principals p and q, and labels ` and `′, if Γ ` g · p〈`〉 SF g · q〈`′〉

is provable without using ExtSF, SelfLSF, or SelfRSF and p is wise at ` in

world (g,Γ), then there exists a sequence (p0, `0), . . . , (pn, `n) such that p0 = p,

`0 = `, pn = q, Γ ` `n v `′ @ g · q〈`′〉, and for all i ∈ [1, n],

• Γ ` `i−1 v `i @ g · pi−1〈`i〉,

• Γ ` CanRead(pi, `i) @ g · pi−1〈`i〉,

• Γ ` CanWrite(pi−1, `i) @ g · pi〈`i〉,

• i = n or Γ ` CanWrite(pi, `i) @ g · pi−1〈`i〉.

Proof. This proof proceeds by first constructing a sequence of principal-label pairs

satisfying the hypothesis of Lemma 6, and then applying the lemma.

To construct such a sequence, we induct on the proof of Γ ` g · p〈`〉 SF g · q〈`′〉.

We consider each rule that may occur in that proof separately. For ReflSF, we

153

know (p, `) = (q, `′), so we simply output (p0, `0) = (p, `). For VarSF, we know

that p = q and Γ ` ` v `′ @ g · p〈`′〉, so we output (p, `), (p, `′). For FwdSF,

we know that ` = `′, so we output (p, `), (q, `), and the conditions on FwdSF are

exactly those needed when p 6= q.

For the TransSF case, Lemma 7 tells us we have a proof of the form

Γ ` g · p〈`〉 SF g · p′〈`′′〉 Γ ` g · p′〈`′′〉 SF g · q〈`′〉

Γ ` g · p〈`〉 SF g · q〈`′〉

In this case, we acquire sequences (p0, `0), . . . , (pa, `a) and (q0, `
′
0), . . . , (qb, `

′
b) by

inductively applying the procedure to both premises. We note that (p0, `0) = (p, `)

and (qb, `
′
b) = (q, `′), but also (pa, `a) = (q0, `

′
0). This means we can simply connect

the two sequences, producing the following sequence with all necessary properties

(p0, `0), . . . , (pa, `a), (q1, `
′
1), . . . , (qb, `

′
b).

This sequence, by construction, satisfies the premises of Lemma 6. By simply

applying the lemma to this sequence, we thus prove the theorem.

154

CHAPTER 5

FUTURE WORK

In this chapter, we discuss future extensions of the work in the preceding chap-

ters, divided into three parts. First, in Section 5.1, we consider extensions to

the work in Chapter 2 on effectful programs. Then, in Section 5.2, we consider

extensions to the work in Chapters 3 and 4 on authorization logic. Finally, in

Section 5.3, we consider bringing these two lines of research together.

5.1 Semantics of Effectful Programs

In Chapter 2, we looked at a technique for combining monadic and comonadic

effects using layering, giving a denotational account of strictness and laziness in

the process. We also noted that layering can be used to give a lazy account of

other producer effects by layering a monad with the ! comonad. In this section, I

propose three projects designed to expand the theory of layering.

5.1.1 Probabilistic Game Semantics are Monadic

As fields like machine learning and differential privacy become more popular, prob-

abilistic programming is ascendant. Probabilistic programming languages provide

primitives for creating probability distributions over data types and for manipu-

lating those distributions, such as by creating conditional distributions. Higher-

order probabilistic languages thus need to define and manipulate distributions over

higher-order types, including function types.

Usually we give semantics to a probabilistic programming language using a

155

Giry monad [Giry, 1982], as originally suggested by Kozen [1981]. However, the

category of probability spaces is not Cartesian-closed [Jung and Tix, 1998], and so

this semantics does not scale to higher-order languages. In particular, probability

distributions are defined via a construction called a σ-algebra, and the space of

structure-preserving functions between σ-algebras is not a σ-algebra. This has in-

spired a long line of work attempting to generalize σ-algebras to spaces appropriate

for higher-order probabilistic programming, such as quasi-Borel predomains [Vákár

et al., 2019].

Another line of work abandons monadic semantics for probabilistic programs,

preferring game semantics. Game semantics views programs as strategies for in-

teracting with the environment, or proofs as strategies for interacting with an

opponent of a proposition. Originally, game semantics were invented for linear

logic by Blass [1992]. Intuitively, states of play in Blass’s semantics are “used

up” every round, modeling linearity. Later, game semantics was updated for pro-

gramming languages by Hyland and Ong [1993] and independently by Abramsky,

Jagadeesan, and Pasquale [1994]. This semantics operates under the ! comonad of

linear logic, allowing them to give semantics to non-linear languages. Still later,

game semantics was adapted for probabilistic programming by Danos and Harmer

[2002] and Winskel [2013, 2015].

A deeper dive reveals that the work on probabilistic game semantics gives

semantics exclusively to lazy languages. From Chapter 2, we know that the Kleisli

category of the ! comonad represents lazy programs, so this is not surprising.

However, this observation immediately leads to another: any Giry-like monad

implicit in probabilistic game semantics would appear on both the input and the

output, rather than just on the output.

156

With this observation, it is easy to see how we might show that probabilistic

game semantics are, in fact, monadic. First, we must develop a linear game seman-

tics with appropriate structure to define both a Giry-like monad and a ! comonad.

Melliès and Tabareau [2007] give a recipe to develop the ! comonad. In order to

develop the Giry-like monad, the move set of these games must be σ-algebras.

Then, the Giry-like monad sends a game G to a game where the moves are the

probability distributions of the moves of G.

Once these are developed, Danos and Harmer’s [2002] games should correspond

to the comonad-prioritizing layering, while the monad-prioritizing layering corre-

sponds to a probabilistic game semantics made strict in the style of Abramsky and

McCusker [1997] and Honda and Yoshida [1997].

However, there are still design challenges. For instance, strategies can be viewed

as partial functions that take a list of moves and produce a move, representing

the ability of a player to choose their move based on the current state of play.

However, the above description of a Giry-like monad for game semantics would

then view strategies as partial functions from lists of distributions over moves

to a distribution over moves. This would represent allowing a program to see

the probability distributions previous states were drawn from, but not the states

themselves.

If we can overcome these challenges, we would have a monadic semantics of

higher-order probabilistic programming that is much simpler than quasi-Borel pre-

domains. A monadic semantics for higher-order probabilistic programming would

allow us to match the informal semantics of several probabilistic programming

languages.

157

5.1.2 Strict and Lazy Semantics for Effect Systems

The theory of effects originally stems from effect systems [Lucassen and Gifford,

1988; Marino and Milstein, 2009; Nielson, 1996; Nielson and Nielson, 1999], exten-

sions of type systems used to analyze code for producer effects. When Wadler and

Thiemann [1998] argued for the “marriage of effects and monads,” they focused

on how effect systems can be given semantics via generalizations of monads de-

signed to allow more than one effect. A long line of later work has explored this

idea [Atkey, 2009; Filinski, 1999; Katsumata, 2014; Tate, 2013].

More recently, there has been a surge of work focused on analyses for systems

of consumer effects, called coeffect systems [Brunel et al., 2014; Petricek et al.,

2012, 2014]. These are mostly used for analyzing resource usage by splitting the

linear modality ! into many effects !n, representing a resource that must be used

exactly n times.

So far, little ink has been spilled on the semantics of effect-and-coeffect systems,

which analyze code for both producer effects and consumer effects. In fact, the

only previous work on such semantics uses distributive laws [Gaboardi et al., 2016].

Since the doubly-effectful languages of Chapter 2 can be viewed as limited effect-

and-coeffect systems, we have already shown that distributive laws do not always

exist for effect-and-coeffect systems. We would like to expand the theory of layering

to other effect-and-coeffect systems. This would not only be a theoretical win, but

would allow us to expand the resource usage analyses described above to lazy

languages.

158

5.1.3 Connections with Adjunction Models

As we pointed out in Chapter 2, strictness and laziness are extremely important

phenomena in programming languages which have been with us since the begin-

ning [Church and Rosser, 1936]. Moreover, many algorithms and data structures

vitally use laziness for their time and space complexities [Okasaki, 1996]. Haskell

programs, among others, commonly use laziness to represent infinite data struc-

tures [Friedman and Wise, 1976].

Despite the importance of laziness, the denotational semantics of laziness is

a shockingly modern topic. For instance, in domain theory—the premier style

of denotational semantics—one can express non-strictness much more easily than

one can express true laziness. In the past two decades there have been several

attempts at denotational models of laziness. For instance, Zeilberger [2009] uses

polarization, an idea from logic, to give an account of strictness and laziness.

Several models of laziness come from denotational semantics for calculi with

mixed strictness and laziness. The most successful of these calculi is Levy’s Call-

By-Push-Value [Levy, 1999, 2001]. Another equally-interesting line of work is the

λµ-calculus of Parigot [1992a,b] and the λ̄µµ̃-calculus of Curien, Fiore, and Munch-

Maccagnoni [2016], which are designed based on sequent calculus for classical logic.

Interestingly, all of these semantics are based on categorical structures called

adjunctions, which are deeply connected to monads and comonads. Importantly,

every adjunction gives rise to a monad and a comonad through composition. Even

more importantly, every monad (and every comonad) gives rise to many adjunc-

tions, and the Kleisli category is the initial such adjunction. Perhaps this means

that layering decomposes into an adjunction model in a way that gives deep con-

159

nections to previous models. However, adjunction models use (mostly) arbitrary

adjunctions, while layering uses specific properties of Kleisli categories. Overcom-

ing this difficulty will expose deep connections between effects and Call-By-Push-

Value calculi, λµ-calculus, and λ̄µµ̃-calculus. Moreover, we may be able to develop

effect-and-coeffect systems for languages with mixed strictness and laziness.

5.2 Semantics of Authorization Policies

In Chapter 3, we looked at belief models of authorization logic, and in Chapter 4 we

looked at a first-order logic for flow-limited authorization. In this section, we pro-

pose several projects extending the semantics of authorization policies, especially

flow-limited authorization.

5.2.1 Model Theory for FLAFOL

In Chapter 3, we discussed how a soundness theorem for a proof system can assure

correctness of the proof rules. However, in Chapter 4 we presented FLAFOL

without providing any model-theoretic semantics. In this section, we propose a

belief semantics for FLAFOL.

Developing belief semantics for FLAFOL poses some serious challenges. In

particular, FLAFOL uses formal beliefs and generalized principals rather than

Says-ILR to give rules for manipulating modalities, unlike FOCAL. Moreover,

FLAFOL’s interpretation of implications (see Section 4.4.6) does not have any

obvious counterpart in belief semantics.

160

Instead, we propose a belief semantics for a new logic, Limited FLAFOL, which

combines the designs of FLAFOL and FOCAL. Like FOCAL, Limited FLAFOL

would not use formal beliefs, but would instead use (a version of) the Says-ILR,

Says-IL, and Says-IR rules. This means that the Fwd rule would work only

on statements of the form p says` ϕ. However, it not only connects to FOCAL

and belief semantics, but also has significant proof-theoretic advantages, since

says now distributes over implication (see Section 4.4.6), but not disjunction (see

Section 4.3).

5.2.2 Secure Checking of FLAFOL proofs

Recall the example from Section 4.1.1 in which Alice attempts to view Bob’s photo

on social media. In this example, Bob may set his policy such that only those on

his friend list may view his photo. In order to view Bob’s photo, Alice must prove

to the system that she is on Bob’s friend list, which may require communication

with Bob.

Now, imagine that Alice runs the following program:

if (secret) {

look at Bob’s picture

} else {

do nothing

}

If every principal knows the program text (a standard assumption in information

flow), then Bob knows Alice’s secret variable is true if Alice communicates with

him to prove that she is his friend. If Bob is not supposed to know this secret,

161

Alice’s information has leaked. Sadly, since FLAFOL knows nothing about secret

its non-interference theorem fails to protect against this leak.

This particular type of leak is called an implicit flow. Standard information-

flow-control type systems combat implicit flows using PC labels, which represent

the labels of any information used to get to a program point. Importing this

idea to FLAFOL would limit participation in a proof to those who may know and

influence the current context. Thus the above program would not be allowed to

compile compile unless Bob is allowed to know the value of secret.

This logic has a simple design, though with some surprises. For example, in

order to eliminate cuts every formula must have its own PC label since proofs

cut in for assumptions may themselves involve communication. While the design

is simple, determining an appropriate guarantee is harder. The guarantee should

capture the intuition that secrets in the environment do not leak. One possible

guarantee axiomatizes the information principals learn when checking a proof.

Pursuing this strategy would mean that we need an extra security guarantee on

the cut-elimination procedure since we need to know whether cut elimination allows

principals to learn more information during proof checking. This guarantee would

allow system designers to use cut freely when proving meta-theorems, without fear

that eliminating those cuts will weaken their guarantees.

5.2.3 Temporal Authorization Logic

Imagine that Alice and Bob are trying to engage in an atomic swap, where Alice

and Bob want to exchange items without either of them ever having access to

both. They can implement this by having box A and box B, where Alice has

162

access to box A and Bob has access to box B. When they are ready to swap, both

Alice and Bob place their items in their respective boxes. Whenever both boxes

are filled, Alice loses access to box A and gains access to box B, while Bob loses

access to box B and gains access to box A. This is clearly an authorization policy.

Unfortunately, since authorization logics do not have a notion of time built in, no

authorization logic (including FOCAL and FLAFOL) can reason about this policy.

Other logics do attempt to reason about programs over time. Temporal log-

ics [Pnueli, 1977] divide time into logical steps by providing modalities representing

how formulae can vary over time. For example, temporal logics usually include:

• a modality X with Xϕ representing “ϕ holds in the next step.”

• a modality � with �ϕ representing “ϕ holds from now on.”

• a connective U with ϕ U ψ representing “ψ holds at some point in the future,

and ϕ holds until that time.”

No previous work of which we are aware has combined authorization logic with

temporal logic. Such a logic would be able to reason about dynamic policies.

Previous work [Garg and Pfenning, 2010] focused on authorization logics for time-

limited policies which can be tagged with a statement like expires at 5PM. However,

time-limited policies cannot describe atomic swap as described above.

The non-interference statement we used for FLAFOL (Theorem 19) does not

work if authorization may by revoked, which would naturally show up in temporal

authorization logic. An appropriate analogue for the temporal setting must be

found. Moreover, models of authorization logic (which focus on the semantics

of says) and models of temporal logic (which focus on time) are difficult to combine.

163

5.3 Combining Semantics for Programs and Policies

So far we have argued that one must understand the semantics of both effectful

programs and security policies in order to create proven-secure programs. However,

we have yet to discuss the highly-nontrivial work required to bring these lines of

research together. It is critically important that we do bring them together, since

in order to verify that a security mechanism does indeed enforce a security policy,

we need to show that the semantics of the mechanism match the semantics of the

policy. In this section, we propose three projects on this interface.

5.3.1 Producer Effects in Information Flow

In Section 5.2.2, we discussed how standard information-flow-typed languages use

PC labels to prevent implicit flows by collecting information on the labels used in

the control flow. They then require that any principal who can see an effect be

able to read the PC, and also that any principal who can change the effect be able

to write the PC.

Recall that monads capture effects by changing the output type of a program,

operationalizing the effect and rendering that program pure. When a monad is

defined on a language with information-flow labels in the types, the monad can

also change the labels in that output type. This represents both which principals

may see the effect and which principals may control the effect. For instance, the

state monad in a language with information flow types would be

State(X{`}) = σ{`σ} → (X{`} × σ{`σ}){⊥},

where `σ represents the label on the state. This represents programs with a state

164

which can be both read from and written to, but which only principals that can

read `σ can see, and only principals that can write `σ can affect.

This state monad with information-flow types might look a little different than

expected. In previous work [Crary et al., 2005; Devriese and Piessens, 2011; Harri-

son and Hook, 2005; Jia and Zdancewic, 2009; Li and Zdancewic, 2006; Russo et al.,

2008; Stefan et al., 2011; Tsai et al., 2007], information flow and monadic effects

have been combined very differently. Instead of focusing on effects in language with

information-flow security types, these papers look at enforcing information flow us-

ing monads, a technique pioneered by Abadi et al. [1999]. Combining this method

with the monad design pattern for functional languages allowed these authors to

bake reasoning about effects into their information-flow enforcement.

Let us look at what that reasoning about effects in information-flow enforce-

ment looks like: imagine that we have a program such as

if Alice.secret then write(3) else write(4),

which represents a branch on a secret of Alice’s, causing either 3 or 4 to be written

to the state. This program will only type-check if Alice may control the data

written to the state and Alice allows her secrets to be written to the state. In order

to enforce this, in each branch the PC is tainted with Alice’s confidentiality and

integrity, which ensures that the write commands cannot type check otherwise.

Similar reasoning, changing only the label, works for many effects. We would

like to understand this reasoning as generic over effects, assuming only that we

have a system of producer effects. Concretely, we would like to show that if we

translate this into a pure monadic program, then the normal check on if statements

subsumes this PC check. In order to do this we will need to create a language with

information-flow types which can express monads representing the most common

165

effects in the information-flow-control literature. We can then develop monadic

translations from an effectful language, and show that the PC checks in this ef-

fectful language correspond to monadic operations. In particular, we would like to

consider non-termination as an effect, deriving the rules for termination-sensitive

information-flow control; and to consider state as an effect, deriving the PC checks

required for state.

Once we have this, we can apply layering to get a semantics for a lazy language

with information-flow types. Such languages have never been formally considered

before, though explorations of information flow often take place in Haskell [Li

and Zdancewic, 2006; Russo et al., 2008; Stefan et al., 2011; Tsai et al., 2007;

Waye et al., 2015]. Since PCs correspond to labels on effects (such as `σ above)

layering suggests that you should need a PC on each input. We also see this in

FLAFOL due to cut elimination (see Section 5.2.2). This further suggests a method

for developing information-flow type systems for languages with full β-reduction,

though that is mostly of theoretical interest.

5.3.2 Distributed Modal Type Theory

It is always interesting, and often enlightening, to think about a propositions-as-

types interpretation of a new logic. In particular, we have flirted with propositions-

as-types interpretations of authorization logic several times in this dissertation.

Such an interpretation would be a program calculus with a notion of location, a

notion of communication between locations, and a notion of trust.

Previous work by Ahmed, Jia, and Walker [2003], Jia and Walker [2004], and

Murphy [2008] used modal logic as a basis for distributed programming. These used

166

hybrid logic which allows formulae to reference Kripke-style possible worlds. Under

this interpretation, each computer in the system is a world of a Kripke model.

However, they then have difficulties defining β-reduction for the same reason that

we had difficulty proving cut in a version of FLAFOL where says distributes across

implication (see Section 4.4.6). Thus, Murphy [2008] develops a notion of mobile

code in order to disallow communication of functions that reference local data.

Authorization logics reason about distributed programs from the top down,

considering the actions of all principals at once. Choreographies [Montesi, 2013]

provide a way of writing distributed programs from the top down, directing all par-

ticipants at once, and compiling these programs to code for each individual process.

We propose formalizing this into a propositions-as-types connections, though this

is a non-trivial task since choreographies are usually presented untyped. There

is some work on types for choreographies [Carbone and Montesi, 2013; Carbone

et al., 2014; Cruze-Filipe and Montesi, 2017], but this work uses session types.

Session types constrain the behavior of a program to follow some protocol. The

program already specifies the protocol, so this simply repeats code, which is an

unsatisfying role for a type system.

5.3.3 A Distributed, Modal, Dependently-Typed Language

Let us now consider a longer-term and thus more-speculative project. With current

proof assistants, writing machine-checked proven-secure distributed programs is

incredibly difficult. There are essentially two choices: (a) write each component

separately and prove things about the component without any guarantees about

the system as a whole, or (b) create a virtual machine and prove things about the

virtual machine instead, a massive effort which obliterates many of the advantages

167

of proof assistants. There is no language on the market for writing proofs about

distributed programs. We propose further extending the ideas from Section 5.3.2

to provide such a language.

We can think of dependently-typed languages as polymorphic languages which

have forgotten the difference between types and programs. [Jacobs, 1999] sug-

gests starting from a logic for programs—that is, a second-order logic where

terms include programs and reasoning about computation—and bootstrapping

from there. While this has worked well in the case of intuitionistic logic, it has

proven to be much more difficult to make work for more-complicated logics, like

linear logic McBride [2016]. Dependent modal type theory has been considered

before [Birkedal et al., 2019; de Paiva and Ritte, 2016; Nanevski et al., 2007], but

never in the context of distributed computing. There is significant theoretical and

practical challenge in building such a type theory.

However, we would like to do so with a language built on an authorization logic

like FLAFOL or FOCAL. Using the reasoning from Section 5.3.2, we can see that

this bootstrapped language would provide choreographic distributed programming

as well as the full power of dependent types. Moreover, it could encode secu-

rity constraints using authorization logic and information-flow-control types. This

would provide a single framework in which distributed systems could be written,

the security of the system expressed, and the system be proven secure.

168

CHAPTER 6

RELATED WORK

6.1 Effects, Monads, and Comonads

Monads and Effects Monads are the centerpoint of most of the research on

effects. This began with Moggi’s [1989] seminal paper on the work. He defined

a monadic notion of computation, using strong monads to extend the λ-calculus

with operations such as throwing exceptions and reading and writing state.

At about the same time, Lucassen and Gifford [1988] were developing the first

type-and-effect system. Type-and-effect systems classify programs as having effects

from some set, and give ways of combining these effects. Lucassen and Gifford also

provided an effect-inference algorithm, analogous to a type-inference algorithm.

Wadler and Thiemann [1998] developed an indexed version of Moggi’s monadic

semantics for Lucassen and Gifford’s type-and-effect system, building a bridge

between these areas. Since then, significantly more research has been done in

both monadic semantics [Atkey, 2009; Filinski, 1999; Hicks et al., 2014; Hyland

et al., 2006, 2007; Lüth and Ghani, 2002; Peyton Jones and Wadler, 1993] and

type-and-effect systems [Marino and Milstein, 2009; Nielson, 1996; Nielson and

Nielson, 1999]. Many of these later developments required generalizations of the

previous work. Tate [2013] unified these generalizations with a formalization of

producer effects and a semantics for producer effect systems, which he proved to

be as general as possible.

169

Comonads Comonads and consumer effects, or “coeffects,” have not been as

thoroughly studied as monads and producer effects. The first use of comonads

in computer science comes from Brookes and Geva [1992]. They gave a deno-

tational account of how computations use inputs. In particular, their semantics

showed how different computations with different evaluation orders might have dif-

ferent meanings. They discovered that by giving semantics in domain theory with

comonadic computations, one can distinguish between amounts of computation

done on different inputs.

Several years later, Uustalu and Vene [2008] identified many more applica-

tions of comonads, and showed them to be difficult to express monadically. A

particularly interesting example was their use of comonadic computation to give

meaning to dataflow languages [Uustalu and Vene, 2005]. Uustalu and Vene’s work

considered a single comonad at a time, whereas Petricek, Orchard, and Mycroft

[2012, 2014] identified a way to index comonads. Brunel, Gaboardi, Mezza, and

Zdancewic [2014] then adapted Petricek et al.’s work to comonads with weakening

and contraction.

Combining Monads and Comonads We are not the first to discover the

Kleisli-like constructions in Section 2.4, although we did strengthen their connec-

tion to effects. Brookes and Geva [1992] had discovered three comonads similar

to ! for domain theory. Brookes and van Stone [1993] later investigated how to

combine these comonads with various monads in a general fashion in order to

connect with Moggi’s monadic notions of computation. In doing so, they devel-

oped the constructions of Section 2.4. However, they focused on distributive laws

because they did not identify the equivalence in Theorem 6 that implies that dis-

tributive laws cannot be used for the application they were striving for. On the

170

other hand, Power and Watanabe [2002] developed a 2-categorical treatment of

the constructions, even identifying the equivalence in Theorem 6. However, Power

and Watanabe did not identify applications to any particular monad and comonad

without a distributive law. Therefore, we are the first to recognize that there are

important applications in the theory of effects where a distributive law cannot

exist, such as strictness versus laziness.

We are the first we are aware of to formalize a notion of doubly-effectful lan-

guages. This means that we are the first to prove that the semantics using dis-

tributive laws is complete as well as sound for the subsumption laws we presented

for Kσ
C,M . We are also the first to note that in some doubly-effectful languages,

producer-effectful programs or consumer-effectful programs may not be able to

embed into the doubly-effectful language.

More recently, Gaboardi, Katsumata, Orchard, Breuvart, and Uustalu [2016]

have extended the theory of distributive laws to cover graded monads and comon-

ads. As an example, they apply this to show that information flow commutes with

non-determinism. That is, they prove that following a non-deterministic program

with a program whose access to confidential data is limited does not unintentionally

leak more data to that program.

6.2 Strictness and Laziness

The divide between strict and lazy evaluation strategies has long been a point of

interest [Ariola et al., 1995; Levy, 1999, 2001; Maraist et al., 1995; Plotkin, 1975;

Sabry and Wadler, 1997; Zeilberger, 2009], even since the beginning of computer

science [Church and Rosser, 1936]. Plotkin [1975] described the two main ways of

171

providing languages with strict and lazy evaluation orders: call-by-value and call-

by-name. Decades later, this led to a series of papers that gave several evaluation

strategies with varying properties [Ariola et al., 1995; Levy, 1999, 2001; Maraist

et al., 1995; Sabry and Wadler, 1997; Zeilberger, 2009].

One of these, by Maraist et al. [1995], used intutionistic linear type theory,

which among other things does not have the ? exponential, to give semantics

to strictness and laziness. More specifically, they in a sense give semantics to

different evaluation strategies via the linear λ-calculus invented by Wadler [1990].

They are interested in intensional properties of these translations, such as whether

various terms are syntactically identical, whereas we are interested in extensional

properties, such as whether various terms interact similarly. Thus, they focus on

where to place supply!x{−} to force or delay evaluation, whereas we focus on how

to compose programs so that they exhibit specific interactions.

6.2.1 Polarization and Focusing

Other works connect the proof theory of classical logic with strictness and laziness

through linear logic. For instance, Danos, Joinet, and Schellinx [1997] develop

two new logics, LKT and LKQ, each of which restricts classical logic such that

cut elimination is confluent. LKT and LKQ can be viewed through the lens of

polarization, which was developed by Girard to constructivize classical logic [Gi-

rard, 1991]. Polarization associates each basic proposition and connective with

a positive or negative polarity, and recursively associates each formula with a

polarity. Viewed through this lens, LKT corresponds to classical logic with an

always-negative interpretation, while LKQ corresponds to classical logic with an

always-positive interpretation. They connected LKT and LKQ to Schellinx’s [1994]

172

linear decorating, showing that LKT can be translated into linear logic using a

comonad-prioritizing layering, and that LKQ can be translated into linear logic

using a monad-prioritizing layering.

An important theorem of Danos et al. [1997] is that Parigot’s logic, Free De-

duction [Parigot, 1992b], embeds into a unifying logic, LKtq . This allowed them

to embed Parigot’s λµ-calculus [Parigot, 1992a] into LKT. Parigot developed λµ-

calculus by restricting Free Deduction such that η-equalities are respected in cut

elimination. Essentially, λµ-calculus gives a method of writing programs with

multiple outputs without using parallelism. Instead, it uses names to essentially

choose an output to focus on in the program, with mechanisms for switching be-

tween named outputs. This gives a computational model of classical logic via a

proofs-as-programs correspondence with classical natural deduction.

Our work stands that of Danos et al. [1997] on its head. Instead of developing

the layerings via polarization, we directly use the layerings. The layerings force

a positive or negative interpretation because of the polarization properties of the

linear exponentials. However, by putting the layerings first, we are able to connect

to the work on effects through monadic and comonadic semantics.

While Danos et al. did not discuss strictness and laziness, several follow-up

pieces of work did. In particular, the λµ-calculus of Parigot [1992a], the λ̄µµ̃-

calculus of Curien and Herbelin [2000], and the CPS translations of Zeilberger

[2009] use polarization to discuss strictness and laziness through Andreoli’s 1992

work on focusing. Categorical models for λµ-calculus and λ̄µµ̃-calculus were ex-

plored by Curien, Fiore, and Munch-Maccagnoni [2016]. Interestingly, models for

the Effect Calculus of Egger, Møgelberg, and Simpson [2014] and the Call-By-

Push-Value model of computation of Levy [2001] are subsumed by Curien et al.’s

173

models of λ̄µµ̃-calculus, which connects that calculus to effects. However, Curien

et al. mention that they struggle to develop a calculus with exceptions and han-

dlers that matches their semantics.

6.3 Linear Logic

The exponentials of linear logic are the basis of our motivation for layering. Linear

logic was developed by Girard [1987] to give a logic of resources. However, it

has been described as “a proof-theorist’s logic,” since it is often understood as

calling out the structural rules of Gentzen’s original sequent-calculus formulation

of classical logic [Gentzen, 1935a,b].

Linear logic retains Gentzen’s cut-elimination theorem, which tells us that the

proofs-as-programs construction for classical linear logic is normalizing [Girard,

1987]. In classical logic, there are multiple ways to reduce a cut, but in linear

logic there is only one. As a consequence, the proofs-as-programs construction for

classical linear logic is also confluent (modulo exchange), which altogether makes

it canonicalizing [Bellin and Scott, 1994].

These deep connections between classical logic and classical linear logic led to

attempts to embed classical logic into classical linear logic. Girard [1987] was able

to embed intuitionistic logic into linear logic by prepending every formula on the

left of a turnstile with a !. However, he was only able to give an embedding for cut-

free proofs of classical logic into classcal linear logic by prepending every formula

on the left of a turnstile with a ! and every formula on the right of the turnstile

with a ?. Later, Girard [1991] used the concept of polarization to give a semantics

to classical logic through correlation domains. Correlation domains are a semantic

174

object that Girard used to give meaning to classical linear logic.

However, Girard never gave a syntactic translation from classical logic to clas-

sical linear logic, though Schellinx [1994] was able to do so in his thesis. He

explored several ways of embedding classical-logic proofs into classical linear logic

by prepending formulae with exponents, a pattern he called linear decorating. In

particular, he then showed two compositional embeddings, which correspond to

the two layerings presented in this paper. However, he did not generalize beyond

linear logic itself to other monads and comonads or to other languages.

Schellinx noted that his embeddings of classical logic into linear logic were

constructivizations. He even connected this to the proofs-as-programs principle.

However, he did not explore the operational point-of-view of his embeddings. We

have illustrated here using effects that they correspond to strict and a lazy no-

tions of classical reasoning, but others have also illustrated this correspondence by

instead using polarization and focusing.

6.4 Authorization Logic

Semantic structures similar to the belief models of Chapter 3 have been investigated

in the context of epistemic logic [Eberle, 1974; Fagin et al., 1995; Moore and

Hendrix, 1979]. Konolige [Konolige, 1986] proves an equivalence result for classical

propositional logic similar to Theorem 8.

Garg and Abadi [2008] give a Kripke semantics for a logic they call ICL, which

could be regarded as the propositional fragment of FOCAL. The ICL semantics

of says, however, uses invisible worlds to permit principals to be oblivious to the

175

truth of formulas at some worlds. That makes Unit (Section 3.4.1) valid in ICL,

whereas Unit is invalid in both FOCAL and FLAFOL.

Garg [2008] studies the proof theory of a logic called DTL0 and gives a Kripke

semantics that uses both invisible worlds and fallible worlds, at which false is

permitted to be valid. Instead of Unit, it uses the axiom p says ((p says φ)⇒ φ).

That axiom is unsound in FOCAL, though it is valid in FLAFOL. DTL0 does not

have a speaksfor connective, nor does it have any analogue of CanRead or CanWrite.

Genovese et al. [2012] study several uses for Kripke semantics with an au-

thorization logic they call BLsf, which also could be regarded as the propositional

fragment of FOCAL. They show how to generate evidence for why an access should

be denied, how to find all logical consequences of an authorization policy, and how

to determine which additional credentials would allow an access. These questions

would also be interesting to address in FOCAL. However, the Kripke semantics of

BLsf differs from FOCAL’s in its interpretation of both says and speaksfor, so the

results of Genovese et al. are not immediately applicable to FOCAL.

Garg and Pfenning [2006] present an authorization logic and a non-interference

result that ensures untrusted principals cannot influence the truth of statements

made by other principals. FLAFOL differs from this logic in two ways. First,

FLAFOL supports all first-order connectives while Garg and Pfenning only support

implication and universal quantification. Second, Garg and Pfenning only use

implications to encode trust, rather than having an explicit trust relation between

principals. Abadi [2006] also proves such a property for dependency core calculus

(DCC), which is the basis of authorization logic CDD. We believe that similar

properties could be proved for FOCAL.

176

One of the more intriguing consequences of our semantics is that says is not a

monad [Moggi, 1989] for either FOCAL or FLAFOL. Since Abadi’s invention of

CDD [Abadi, 2006], says is frequently assumed to satisfy the monad laws, which

include Unit. In our semantics, however, Unit is invalid. We don’t know whether

rejecting the monad laws will have any practical impact on FOCAL or FLAFOL.

But the seminal authorization logic, ABLP [Abadi et al., 1993], didn’t adopt the

monad laws. Likewise, Garg and Pfenning [2010] reject Unit in their authorization

logic BL0; they demonstrate that Unit leads to counterintuitive interpretations of

some formulas involving delegation. And Abadi [2003] notes that Unit “should be

used with caution (if at all),” suggesting that it be replaced with the weaker axiom

(p says φ) ⇒ (q says p says φ). Genovese et al. [2012] adopt that axiom; in their

Kripke semantics, the frame condition that validates it is: w ≤p u ≤q v implies

w ≤q v. So in rejecting the monad laws, FOCAL and FLAFOL are at least in

good company.

6.5 Combining Authorization and Information Security

Prior work in both information flow control and authorization logics has explored

connections between authorization and information security. The Decentralized

Label Model [Myers and Liskov, 1998] incorporates a notion of ownership into its

information flow policies, specifying who may authorize exceptions to a policy.

The Flow-Limited Authorization Model (FLAM) [Arden et al., 2015] was the

first information-flow label model to directly consider the confidentiality and in-

tegrity of policies when authorizing information flows. Prior work on Rx [Swamy

et al., 2006] and RTI [Bandhakavi et al., 2008] enforced information flow policies

177

via roles whose membership are protected with confidentiality and integrity labels.

We deviate from these works in several important ways. First, FLAFOL is a

formal authorization logic. Second, we employ both principals and labels, but keep

them entirely separate. Many information flow models are defined with respect to

an abstract security lattice and omit any direct representation of principals. The

Decentralized Label Model [Myers and Liskov, 1998] expresses labels in terms of

principals. FLAM [Arden et al., 2015] takes this a step further and represents

principals directly as a combination of confidentiality and integrity labels. This

view restricts FLAM from reasoning about labels with policies other than confi-

dentiality and integrity, since they might necessitate subtle changes to FLAM’s

reasoning rules.

Unifying principals and labels also undermines FLAM’s effectiveness as an au-

thorization logic. It is convenient to construct complex policies from simpler ones,

such as a policy protecting Alice’s confidentiality and Bob’s integrity. FLAM re-

gards such a compound policy as a principal, but this principal does not represent

an actual entity in the system. These principals break the connection between

principals and system entities often present in authorization logics. While it is cer-

tainly possible to represent these unusual principals in FLAFOL, FLAFOL does

not necessarily force a reasoner to break this connection between principals and

system entities.

Becker [2012] explores preventing probing attacks, authorization queries which

leak secret information, in Datalog-based authorization logics like DKAL [Gure-

vich and Neeman, 2008] and SecPAL [Becker et al., 2010]. In SecPAL+ [Becker,

2010], Becker proposes a new can listen to operator, similar to FLAFOL’s CanRead

permission, that expresses who is permitted to learn specific statements. However,

178

can listen to expresses permissions on specific statements, not labels as CanRead

does. Moreover, FLAFOL tracks dependencies between statements using these

labels, so the security consequences of adding a new permission are more explicit.

The Dependency Core Calculus [Abadi, 2006; Abadi et al., 1999] (DCC) has

been used to model both information flow control and authorization, but not at the

same time. DCC also has a non-interference property, but like many authorization

logics, it employs an external lattice to express trust between principals. FLAFOL

supports both finer-grained trust and discoverable trust.

The Flow-Limited Authorization Calculus [Arden and Myers, 2016] uses ideas

from FLAM and DCC to support discoverable trust. FLAC and Polymorphic

DCC [Abadi, 2006] are based on System F, which contains some elements of

second-order logic since it supports universal quantification over types, but does

not support some features of first-order logic like existential quantification.

Finally, Aura [Jia and Zdancewic, 2009; Jia et al., 2008] embeds DCC into

a language with dependent types in order to explore how authorization logic in-

teracts with programs. Their non-interference result for authorization comes di-

rectly from DCC, but they express first-order properties by combining constructs

from the programming language with constructs from DCC. This makes it unclear

what guarantees the theorem provides. Jia and Zdancewic [Jia and Zdancewic,

2009] encode information-flow labels into Aura as principals and develop a non-

interference theorem in the style of information-flow systems [Jia and Zdancewic,

2009]. This setup unfortunately makes it impossible for principals to disagree

about the meaning of labels, since the labels themselves define their properties.

179

CHAPTER 7

CONCLUSION

In Chapter 1 we argued that in order to build machine-checked proven-secure

software, we need semantics for both effectful programs and security policies. In

the subsequent chapters we presented work that expanded both types of semantics.

In Chapter 5 we discussed a vision for future work further expanding both types

of semantics, and even bringing the two types together.

We would like to draw attention to the following three themes running through-

out this dissertation:

• Modal Logic

• Constructivity

• Propositions as Types

Let us briefly reflect on how each of these themes affect the work presented here

and future work using this work as a springboard.

Modal Logic Authorization logics are multi-modal logics—a point that we made

repeatedly in Chapters 3 and 4—and thus it is easy to see how modal logic is

relevant. Moreover, layering is also essentially a modal-logic technique since the !

and ? exponentials of classical-linear logic are modalities.

Constructivity In Chapter 2, we focus on layerings, which correspond to em-

beddings of classical logic into classical linear logic. Since classical linear logic is

constructive, this constructivizes classical logic. Keeping that in mind, it seems

180

incongruous to note—as we did in Chapter 3—that world experts in authoriza-

tion logic feel that authorization logic must be constructive in order to preserve

evidence. This continued in Chapter 4, where we noted that flow-limited autho-

rization logics ought to reject the law of the excluded middle since it was important

that decidability be a meta-property of a collection of policies.

Propositions as Types It is hard to over-emphasize how much the propositions-

as-types principle influenced the work in this dissertation. This is most clear in

Chapter 2, since we designed Proc to have a propositions-as-types connection with

(a fragment of) classical linear logic. However, both FOCAL and FLAFOL take

great inspiration from the propositions-as-types point-of-view as well. Because

information-flow labels are usually defined as part of the type system of a pro-

gramming language, we took particular inspiration from propositions-as-types in

the design of FLAFOL.

The themes of both modal logic and constructivity can be viewed through the

lens of propositions as types. In fact, it is probably no understatement to say that a

propositions-as-types perspective is fundamental for understanding the semantics

of both effectful programs and security policies, especially as the two come together

more and more.

181

BIBLIOGRAPHY

Mart́ın Abadi. Logic in access control. In Logic in Computer Science (LICS), 2003.

doi:10.1109/LICS.2003.1210062.

Mart́ın Abadi. Access control in a core calculus of dependency. In

International Conference on Functional Programming (ICFP), 2006.

doi:10.1145/1159803.1159839.

Mart́ın Abadi. Variations in access control logic. In Deontic Logic in Computer

Science (DEON), 2008. doi:10.1007/978-3-540-70525-3 9.

Mart́ın Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin.

A calculus for access control in distributed systems. Transactions on

Programming Languages and Systems (TOPLAS), 15(4), September 1993.

doi:10.1145/155183.155225.

Mart́ın Abadi, Anindya Banerjee, Nevin Heintze, and Jon Riecke. A core cal-

culus of dependency. In Principles of Programming Languages (POPL), 1999.

doi:10.1145/292540.292555.

Samson Abramsky. Proofs as processes. Theoretical Computer Science (TCS),

1994. doi:10.1016/0304-3975(94)00103-0.

Samson Abramsky and Guy McCusker. Call-by-value games. In Computer Science

Logic (CSL), 1997. doi:10.1007/BFb0028004.

Samson Abramsky, Radha Jagadeesan, and Malacaria Pasquale. Full abstrac-

tion for PCF. In Theoretical Aspects of Computer Software (TACS), 1994.

doi:10.1006/inco.2000.2930.

Amal Ahmed, Limin Jia, and David Walker. Reasoning about hierarchical storage.

In Logic in Computer Science (LICS), 2003. doi:10.1109/LICS.2003.1210043.

182

http://dx.doi.org/10.1109/LICS.2003.1210062
http://dx.doi.org/10.1145/1159803.1159839
http://dx.doi.org/10.1007/978-3-540-70525-3_9
http://dx.doi.org/10.1145/155183.155225
http://dx.doi.org/10.1145/292540.292555
http://dx.doi.org/10.1016/0304-3975(94)00103-0
http://dx.doi.org/10.1007/BFb0028004
http://dx.doi.org/10.1006/inco.2000.2930
http://dx.doi.org/10.1109/LICS.2003.1210043

Maximilian Algehed. Short paper: A perspective on the dependency core cal-

culus. In Programming Languages and Analysis for Security (PLAS), 2018.

doi:10.1145/3264820.3264823.

Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Jour-

nal of Logic and Computation (JLC), 2(3), 1992. doi:10.1093/logcom/2.3.297.

Andrew W. Appel and Edward W. Felten. Proof-carrying authentication. In Com-

puter and Communication Security (CCS), 1999. doi:10.1145/319709.319718.

Owen Arden and Andrew C. Myers. A calculus for flow-limited authorization. In

Computer Security Foundations (CSF), 2016. doi:10.1109/CSF.2016.17.

Owen Arden, Jed Liu, and Andrew C. Myers. Flow-limited authorization. In

Computer Security Foundations (CSF), 2015. doi:10.1109/CSF.2015.42.

Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip

Wadler. A call-by-need lambda calculus. In Principles of Programming Lan-

guages (POPL), 1995. doi:10.1145/199448.199507.

Aslan Askarov and Andrew C. Myers. Attacker control and impact for confi-

dentiality and integrity. Logical Methods in Computer Science (LMCS), 7(3),

September 2011. doi:10.2168/LMCS-7(3:17)2011.

Robert Atkey. Parameterised notions of computation. Journal of Functional Pro-

gramming (JFP), 19(3–4), July 2009. doi:10.1017/S095679680900728X.

Sruthi Bandhakavi, William Winsborough, and Marianne Winslett. A trust man-

agement approach for flexible policy management in security-typed languages.

In Computer Security Foundations (CSF), 2008. doi:10.1109/CSF.2008.22.

183

http://dx.doi.org/10.1145/3264820.3264823
http://dx.doi.org/10.1093/logcom/2.3.297
http://dx.doi.org/10.1145/319709.319718
http://dx.doi.org/10.1109/CSF.2016.17
http://dx.doi.org/10.1109/CSF.2015.42
http://dx.doi.org/10.1145/199448.199507
http://dx.doi.org/10.2168/LMCS-7(3:17)2011
http://dx.doi.org/10.1017/S095679680900728X
http://dx.doi.org/10.1109/CSF.2008.22

Lujo Bauer, Scott Garriss, Jonathan M. McCune, Michael K. Reiter, Jason Rouse,

and Peter Rutenbar. Device-enabled authorization in the Grey system. In In-

formation Security Conference (ISC), 2005. doi:10.1007/11556992 31.

Moritz Y. Becker. Information flow in credential systems. In Computer Security

Foundations (CSF), 2010. doi:10.1109/CSF.2010.19.

Moritz Y Becker. Information flow in trust management systems. Journal of

Computer Security (JCS), 20(6), December 2012. doi:10.3233/JCS-2012-0443.

Moritz Y. Becker and Peter Sewell. Cassandra: Distributed access control policies

with tunable expressiveness. In Policies for Distributed Systems and Networks

(POLICY), 2004. doi:10.1109/POLICY.2004.1309162.

Moritz Y Becker, Cédric Fournet, and Andrew D Gordon. SecPAL: Design and se-

mantics of a decentralized authorization language. Journal of Computer Security

(JCS), 18(4), June 2010. doi:10.3233/JCS-2009-0364.

Emmanuel Beffara. A concurrent model for linear logic. In Mathematical Founda-

tions of Programming Semantics (MFPS), 2005. doi:10.1016/j.entcs.2005.11.055.

Gianluigi Bellin and Philip J. Scott. On the π-calculus and linear logic. The-

oretical Computer Science (TCS), 135(1), December 1994. doi:10.1016/0304-

3975(94)00104-9.

Jean Bénabou. Catégories avec multiplication. Comptes Rendus de l’Académie

des Sciences Paris, 258, 1963. URL http://gallica.bnf.fr/ark:/12148/

bpt6k3208j/f1965.image.

Lars Birkedal, Ranald Clouston, Bassel Mannaa, Rasmus Ejlers Møgelberg, An-

drew M. Pitts, and Bas Spitters. Modal dependent type theory and dependent

184

http://dx.doi.org/10.1007/11556992_31
http://dx.doi.org/10.1109/CSF.2010.19
http://dx.doi.org/10.3233/JCS-2012-0443
http://dx.doi.org/10.1109/POLICY.2004.1309162
http://dx.doi.org/10.3233/JCS-2009-0364
http://dx.doi.org/10.1016/j.entcs.2005.11.055
http://dx.doi.org/10.1016/0304-3975(94)00104-9
http://dx.doi.org/10.1016/0304-3975(94)00104-9
http://gallica.bnf.fr/ark:/12148/bpt6k3208j/f1965.image
http://gallica.bnf.fr/ark:/12148/bpt6k3208j/f1965.image

right adjoints. ArXiV, 2019. URL https://arxiv.org/abs/1804.05236. In

Submission to Mathematical Structures in Computer Science.

Andreas Blass. A game semantics for linear logic. Annals of Pure and Applied

Logic, 56(1–3), April 1992. doi:10.1016/0168-0072(92)90073-9.

R. F. Blute, J. R. B. Cockett, and R. A. G. Seely. ! and ?: Storage as tensorial

strength. Mathematical Structures in Computer Science (MSCS), 6(4), August

1996. doi:10.1017/S0960129500001055.

Stephen Brookes and Shai Geva. Computational comonads and intensional

semantics. In Applications of Categories in Computer Science, 1992.

doi:10.1017/CBO9780511525902.003.

Stephen Brookes and Katheryn van Stone. Monads and comonads in intensional se-

mantics. Technical Report CMU-CS-93-140, Carnegie Mellon University Depart-

ment of Computer Science, 1993. URL https://www.cs.cmu.edu/~brookes/

papers/MonadsComonads.pdf.

Alöıs Brunel, Marco Gaboardi, Damiano Mezza, and Steve Zdancewic. A

core quantitative coeffect calculus. In European Symposium on Programming

(ESOP), 2014. doi:10.1007/978-3-642-54833-8 19.

Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: Multiparty

asynchronous global programming. In Principles of Programming Languages

(POPL), 2013. doi:10.1145/2429069.2429101.

Marco Carbone, Fabrizio Montesi, and Carsten Schürmann. Choreographies, log-

ically. In Concurrency Theory (CONCUR), 2014. doi:10.1007/978-3-662-44584-

6 5.

185

https://arxiv.org/abs/1804.05236
http://dx.doi.org/10.1016/0168-0072(92)90073-9
http://dx.doi.org/10.1017/S0960129500001055
http://dx.doi.org/10.1017/CBO9780511525902.003
https://www.cs.cmu.edu/~brookes/papers/MonadsComonads.pdf
https://www.cs.cmu.edu/~brookes/papers/MonadsComonads.pdf
http://dx.doi.org/10.1007/978-3-642-54833-8_19
http://dx.doi.org/10.1145/2429069.2429101
http://dx.doi.org/10.1007/978-3-662-44584-6_5
http://dx.doi.org/10.1007/978-3-662-44584-6_5

Ethan Cecchetti, Andrew C. Myers, and Owen Arden. Nonmalleable informa-

tion flow control. In Computer and Communication Security (CCS), 2017.

doi:10.1145/3133956.3134054.

J. G. Cederquist, Ricardo Corin, M. A. C. Dekker, Sandro Etalle, J. I. den Hartog,

and Gabriele Lenzini. Audit-based compliance control. International Journal of

Information Security, 6(2–3), 2007. doi:10.1007/s10207-007-0017-y.

Peter Chapin, Christian Skalka, and X. Sean Wang. Authorization in trust man-

agement: Features and foundations. ACM Computing Surveys (CSUR), 40(3),

August 2008. doi:10.1145/1380584.1380587.

Stephen Chong and Andrew C. Myers. End-to-end enforcement of era-

sure and declassification. In Computer Security Foundations (CSF), 2008.

doi:10.1109/CSF.2008.12.

Alonzo Church and J.B. Rosser. Some properties of conversion. Transactions of

the American Mathematical Society, 39(3), May 1936. doi:10.2307/1989762.

Andrew Cirillo, Radha Jagadeesan, Corin Pitcher, and James Riely. Do As I

SaY! Programmatic access control with explicit identities. In Computer Security

Foundations (CSF), 2007. doi:10.1109/CSF.2007.19.

Karl Crary, Aleksey Kliger, and Frank Pfenning. A monadic analysis of information

flow security with mutable state. Journal of Functional Programming (JFP), 15

(2), March 2005. doi:10.1017/S0956796804005441.

Lúıs Cruze-Filipe and Fabrizio Montesi. A core model for choreographic program-

ming. In Formal Aspects of Component Software (FACS), 2017. doi:10.1007/978-

3-319-57666-4 3.

186

http://dx.doi.org/10.1145/3133956.3134054
http://dx.doi.org/10.1007/s10207-007-0017-y
http://dx.doi.org/10.1145/1380584.1380587
http://dx.doi.org/10.1109/CSF.2008.12
http://dx.doi.org/10.2307/1989762
http://dx.doi.org/10.1109/CSF.2007.19
http://dx.doi.org/10.1017/S0956796804005441
http://dx.doi.org/10.1007/978-3-319-57666-4_3
http://dx.doi.org/10.1007/978-3-319-57666-4_3

Pierre-Louis Curien and Hugo Herbelin. The duality of computation.

In International Conference on Functional Programming (ICFP), 2000.

doi:10.1145/351240.351262.

Pierre-Louis Curien, Marcelo Fiore, and Guillaume Munch-Maccagnoni. A theory

of effects and resources: Adjunction models and polarised calculi. In Principles

of Programming Languages (POPL), 2016. doi:10.1145/2837614.2837652.

Vincent Danos and Russell S. Harmer. Probabilistic game semantics. Transactions

on Computational Logic (TOCL), 3(3), July 2002. doi:10.1145/507382.507385.

Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. A new deconstruc-

tive logic: Linear logic. The Journal of Symbol Logic, 62(3), September 1997.

doi:10.2307/2275572.

Valeria de Paiva and Eike Ritte. Fibrational modal type theory.

In Logic and Semantic Frameworks, with Applications (LSFA), 2016.

doi:10.1016/j.entcs.2016.06.010.

Dorothy E. Denning. A lattice model of secure information flow. Communications

of the ACM (CACM), 19(5), May 1976. doi:10.1145/360051.360056.

John DeTreville. Binder, a logic-based security language. In Symposium on Secu-

rity and Privacy (SSP) (Oakland), 2002. doi:10.1109/SECPRI.2002.1004365.

Dominique Devriese and Frank Piessens. Information flow enforcement in monadic

libraries. In Types in Language Design and Implementation (TLDI), 2011.

doi:10.1145/1929553.1929564.

Henry DeYoung, Lúıs Caires, Frank Pfenning, and Bernardo Toninho. Cut reduc-

tion in linear logic as asynchronous session-typed communication. In Computer

Science Logic (CSL), 2012. doi:10.4230/LIPIcs.CSL.2012.228.

187

http://dx.doi.org/10.1145/351240.351262
http://dx.doi.org/10.1145/2837614.2837652
http://dx.doi.org/10.1145/507382.507385
http://dx.doi.org/10.2307/2275572
http://dx.doi.org/10.1016/j.entcs.2016.06.010
http://dx.doi.org/10.1145/360051.360056
http://dx.doi.org/10.1109/SECPRI.2002.1004365
http://dx.doi.org/10.1145/1929553.1929564
http://dx.doi.org/10.4230/LIPIcs.CSL.2012.228

Rolf A. Eberle. A logic of believing, knowing and inferring. Synthese, 26(3–4),

April 1974. doi:10.1007/BF00883100.

Jeff Egger, Rasmus Ejlers Møgelberg, and Alex Simpson. The enriched effect

calculus: Syntax and semantics. Journal of Logic and Computation (JLC), 24

(3), June 2014. doi:10.1093/logcom/exs025.

W. B. Ewald. Intuitionistic tense and modal logic. Journal of Symbolic Logic, 51

(1), March 1986. doi:10.2307/2273953.

Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Rea-

soning About Knowledge. MIT Press, Cambridge, Massachusetts, 1995. ISBN

9780262061629.

Andrzej Filinski. Representing layered monads. In Principles of Programming

Languages (POPL), 1999. doi:10.1145/292540.292557.

Andrzej Filinski. Monads in action. In Principles of Programming Languages

(POPL), 2010. doi:10.1145/1706299.1706354.

Gisèle Fischer Servi. Semantics for a class of intuitionistic modal calculi. In Italian

Studies in the Philosophy of Science. Springer, 1981. doi:10.1007/978-94-009-

8937-5 5.

Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. A type discipline for

authorization policies. In European Symposium on Programming (ESOP), 2005.

doi:10.1007/978-3-540-31987-0 11.

Daniel P. Friedman and David S. Wise. CONS should not evaluate its argu-

ments. In International Conference on Automata, Languages, and Programming

(ICALP), 1976. doi:10.1145/130854.130858.

188

http://dx.doi.org/10.1007/BF00883100
http://dx.doi.org/10.1093/logcom/exs025
http://dx.doi.org/10.2307/2273953
http://dx.doi.org/10.1145/292540.292557
http://dx.doi.org/10.1145/1706299.1706354
http://dx.doi.org/10.1007/978-94-009-8937-5_5
http://dx.doi.org/10.1007/978-94-009-8937-5_5
http://dx.doi.org/10.1007/978-3-540-31987-0_11
http://dx.doi.org/10.1145/130854.130858

Marco Gaboardi, Shin-ya Katsumata, Dominic Orchard, Flavien Breuvart,

and Tarmo Uustalu. Combining effects and coeffects via grading.

In International Conference on Functional Programming (ICFP), 2016.

doi:10.1145/2951913.2951939.

Deepak Garg. Principal-centric reasoning in constructive authorization logic. In

Intuitionistic Modal Logic and Applications (IMLA), 2008.

Deepak Garg and Mart́ın Abadi. A modal deconstruction of access control logics.

In Foundations of Software Science and Computational Structures (FOSSACS),

2008. doi:10.1007/978-3-540-78499-9 16.

Deepak Garg and Frank Pfenning. Non-interference in constructive autho-

rization logic. In Computer Security Foundations Workshop (CSFW), 2006.

doi:10.1109/CSFW.2006.18.

Deepak Garg and Frank Pfenning. Stateful authorization logic: Proof theory and a

case study. In Security and Trust Management (STM), 2010. doi:10.3233/JCS-

2012-0456.

Valerio Genovese, Deepak Garg, and Daniele Rispoli. Labeled sequent calculi for

access control logics: Countermodels, saturation, and abduction. In Computer

Security Foundations (CSF), 2012. doi:10.1109/CSF.2012.11.

Gerhard Gentzen. Untersuchungen über das logische schließen i. Mathematische

Zeitschrift, 39(1), December 1935a. doi:10.1007/BF01201353.

Gerhard Gentzen. Untersuchungen über das logische schließen ii. Mathematische

Zeitschrift, 39(1), December 1935b. doi:10.1007/BF01201363.

Jean-Yves Girard. Linear logic. Theoretical Computer Science (TCS), 50(1), 1987.

doi:10.1016/0304-3975(87)90045-4.

189

http://dx.doi.org/10.1145/2951913.2951939
http://dx.doi.org/10.1007/978-3-540-78499-9_16
http://dx.doi.org/10.1109/CSFW.2006.18
http://dx.doi.org/10.3233/JCS-2012-0456
http://dx.doi.org/10.3233/JCS-2012-0456
http://dx.doi.org/10.1109/CSF.2012.11
http://dx.doi.org/10.1007/BF01201353
http://dx.doi.org/10.1007/BF01201363
http://dx.doi.org/10.1016/0304-3975(87)90045-4

Jean-Yves Girard. A new constructive logic: Classical logic. Technical Report

RR-1443, INRIA, 1991. URL https://hal.inria.fr/inria-00075117/.

Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

ISBN 978-0521371810. doi:10.2307/2274726.

Michèle Giry. A categorical approach to probability theory. In Categorical Aspects

of Topology and Analysis, 1982. doi:10.1007/BFb0092872.

Joseph A. Goguen and Jose Meseguer. Security policies and security mod-

els. In Symposium on Security and Privacy (SSP) (Oakland), 1982.

doi:10.1109/SP.1982.10014.

Yuri Gurevich and Itay Neeman. DKAL: Distributed-knowledge authorization lan-

guage. In Computer Security Foundations (CSF), 2008. doi:10.1109/CSF.2008.8.

William L. Harrison and James Hook. Achieving information flow security through

precise control of effects. In Computer Security Foundations Workshop (CSFW),

2005. doi:10.1109/CSFW.2005.6.

Michael Hicks, Gavin Bierman, Nataliya Guts, Daan Leijen, and Nikhil Swamy.

Polymonadic programming. In Mathematically Structured Functional Program-

ming (MSFP), 2014. doi:10.4204/EPTCS.153.7.

Jaakko Hintikka. Knowledge and Belief. Cornell University Press, Ithaca, New

York, 1962.

Andrew K. Hirsch and Michael R. Clarkson. Belief semantics of autho-

rization logic. In Computer and Communication Security (CCS), 2013a.

doi:10.1145/2508859.2516667.

190

https://hal.inria.fr/inria-00075117/
http://dx.doi.org/10.2307/2274726
http://dx.doi.org/10.1007/BFb0092872
http://dx.doi.org/10.1109/SP.1982.10014
http://dx.doi.org/10.1109/CSF.2008.8
http://dx.doi.org/10.1109/CSFW.2005.6
http://dx.doi.org/10.4204/EPTCS.153.7
http://dx.doi.org/10.1145/2508859.2516667

Andrew K. Hirsch and Michael R. Clarkson. Belief semantics of authorization logic

coq code, November 2013b.

Andrew K. Hirsch and Ross Tate. Strict and lazy semantics of effects: Layering

monads and comonads. International Conference on Functional Programming

(ICFP), 2018. doi:10.1145/3236783.

Andrew K. Hirsch, Pedro de Amorim, Ethan Cecchetti, Owen Arden, and Ross

Tate. First-order logic for flow-limited authorization: Technical report. Technical

report, Cornell, 2019.

Kohei Honda and Nobuko Yoshida. Game theoretic analysis of call-by-value com-

putation. In International Conference on Automata, Languages, and Program-

ming (ICALP), 1997. doi:10.1007/3-540-63165-8 180.

Jon Howell and David Kotz. A formal semantics for SPKI. In European Symposium

on Research in Computer Security (ESORICS), 2000. doi:10.1007/10722599 9.

Jonathan Howell. Naming and Sharing Resources across Administrative Domains.

PhD thesis, Dartmouth College, 2000. URL https://www.cs.dartmouth.edu/

~dfk/jonh/dissertation/thesis-final-single.pdf.

George Edward Hughes and Max J. Cresswell. A New Introduction to Modal Logic.

Routledge, 1996. doi:10.4324/9780203028100.

John Martin Elliot Hyland and Luke Ong. Pi-calculus, dialogue games, and PCF.

In Functional Programming Languages and Computer Architecture (FPLCA),

1993. doi:10.1145/224164.224189.

Martin Hyland, Gordon Plotkin, and John Power. Combining effects: Sum

and tensor. Theoretical Computer Science (TCS), 357(1–3), July 2006.

doi:10.1016/j.tcs.2006.03.013.

191

http://dx.doi.org/10.1145/3236783
http://dx.doi.org/10.1007/3-540-63165-8_180
http://dx.doi.org/10.1007/10722599_9
https://www.cs.dartmouth.edu/~dfk/jonh/dissertation/thesis-final-single.pdf
https://www.cs.dartmouth.edu/~dfk/jonh/dissertation/thesis-final-single.pdf
http://dx.doi.org/10.4324/9780203028100
http://dx.doi.org/10.1145/224164.224189
http://dx.doi.org/10.1016/j.tcs.2006.03.013

Martin Hyland, Paul Blain Levy, Gordon Plotkin, and John Power. Combining

algebraic effects with continuations. Theoretical Computer Science (TCS), 375

(1–3), May 2007. doi:10.1016/j.tcs.2006.12.026.

Bart Jacobs. Categorical Logic and Type Theory. Studies in Logic and The Foun-

dations of Mathematics. Elsevier, 1999. ISBN 0-444-50853-8.

Limin Jia and David Walker. Modal proofs as distributed programs. In European

Symposium on Programming (ESOP), 2004. doi:10.1007/978-3-540-24725-8 16.

Limin Jia and Steve Zdancewic. Encoding information flow in Aura.

In Programming Languages and Analysis for Security (PLAS), 2009.

doi:10.1145/1554339.1554344.

Limin Jia, Jeffrey A. Vaughan, Karl Mazurak, Jianzhou Zhao, Luke Zarko, Schorr,

Joseph, and Steve Zdancewic. Aura: A programming language for authorization

and audit. In International Conference on Functional Programming (ICFP),

2008. doi:10.1145/1411204.1411212.

Trevor Jim. SD3: A trust management system with certified evalua-

tion. In Symposium on Security and Privacy (SSP) (Oakland), 2001.

doi:10.1109/SECPRI.2001.924291.

Mark P. Jones and Paul Hudak. Implicit and explict parallel programming in

haskell. Technical report, Yale University, 1993. URL http://web.cecs.pdx.

edu/~mpj/pubs/par.html.

Achim Jung and Regina Tix. The troublesome probabilistic powerdo-

main. In Workshop on Computation and Approximation (Comprox), 1998.

doi:10.1016/S1571-0661(05)80216-6.

192

http://dx.doi.org/10.1016/j.tcs.2006.12.026
http://dx.doi.org/10.1007/978-3-540-24725-8_16
http://dx.doi.org/10.1145/1554339.1554344
http://dx.doi.org/10.1145/1411204.1411212
http://dx.doi.org/10.1109/SECPRI.2001.924291
http://web.cecs.pdx.edu/~mpj/pubs/par.html
http://web.cecs.pdx.edu/~mpj/pubs/par.html
http://dx.doi.org/10.1016/S1571-0661(05)80216-6

Shin-ya Katsumata. Parametric effect monads and semantics of ef-

fect systems. In Principles of Programming Languages (POPL), 2014.

doi:10.1145/2535838.2535846.

Kurt Konolige. A Deduction Model of Belief. Morgan Kaufmann, 1986.

Dexter Kozen. Semantics of probabilistic programs. Journal of Computer and

System Sciences, 22(3), June 1981. doi:10.1016/0022-0000(81)90036-2.

Saul Kripke. A semantical analysis of modal logic I: Normal modal propositional

calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 9,

1963. doi:10.1002/malq.19630090502. Announced in Journal of Symbolic Logic,

24:323, 1959.

Joachim Lambek. Deductive systems and categories ii. standard constructions and

closed categories. In Category Theory, Homology Theory and Their Applications

I, 1969. doi:10.1007/BFb0079385.

Butler Lampson, Mart́ın Abadi, Michael Burrows, and Edward Wobber. Authenti-

cation in distributed systems: Theory and practice. In Symposium on Operating

Systems Principles (SOSP), 1991. doi:10.1145/138873.138874.

Tom Leinster. General operads and multicategories, 1998. URL https://arxiv.

org/abs/math/9810053.

Chris Lesniewski-Laas, Bryan Ford, Jacob Strauss, Robert Morris, and M. Frans

Kaashoek. Alpaca: extensible authorization for distributed services. In Com-

puter and Communication Security (CCS), 2007. doi:10.1145/1315245.1315299.

Paul Blain Levy. Call-by-push-value: A subsuming paradigm. In Typed Lambda

Calculi and Applications (TLCA), 1999. doi:10.1007/3-540-48959-2 17.

193

http://dx.doi.org/10.1145/2535838.2535846
http://dx.doi.org/10.1016/0022-0000(81)90036-2
http://dx.doi.org/10.1002/malq.19630090502
http://dx.doi.org/10.1007/BFb0079385
http://dx.doi.org/10.1145/138873.138874
https://arxiv.org/abs/math/9810053
https://arxiv.org/abs/math/9810053
http://dx.doi.org/10.1145/1315245.1315299
http://dx.doi.org/10.1007/3-540-48959-2_17

Paul Blain Levy. Call-By-Push-Value. PhD thesis, Queen Mary and Westfield

College University of London, March 2001. URL http://www.cs.bham.ac.uk/

~pbl/papers/thesisqmwphd.pdf.

Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. A practically imple-

mentable and tractable delegation logic. In Symposium on Security and Privacy

(SSP) (Oakland), 2000. doi:10.1109/SECPRI.2000.848444.

Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-

based trust-management framework. In Symposium on Security and Privacy

(SSP) (Oakland), 2002. doi:10.1109/SECPRI.2002.1004366.

Peng Li and Steve Zdancewic. Downgrading policies and relaxed non-

interference. In Principles of Programming Languages (POPL), 2005.

doi:10.1145/1040305.1040319.

Peng Li and Steve Zdancewic. Encoding information flow in haskell. In Computer

Security Foundations Workshop (CSFW), 2006. doi:10.1109/CSFW.2006.13.

Francisco Javier López-Fraguas, Juan Rodŕıguez-Hortalá, and Jaime Sánchez-

Hernández. A simple rewrite notion for call-time choice semantics.

In Principles and Practice of Declarative Programming (PPDP), 2007.

doi:10.1145/1273920.1273947.

J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Principles of

Programming Languages (POPL), 1988. doi:10.1145/73560.73564.

Christoph Lüth and Neil Ghani. Composing monads using coproducts.

In International Conference on Functional Programming (ICFP), 2002.

doi:10.1145/581478.581492.

194

http://www.cs.bham.ac.uk/~pbl/papers/thesisqmwphd.pdf
http://www.cs.bham.ac.uk/~pbl/papers/thesisqmwphd.pdf
http://dx.doi.org/10.1109/SECPRI.2000.848444
http://dx.doi.org/10.1109/SECPRI.2002.1004366
http://dx.doi.org/10.1145/1040305.1040319
http://dx.doi.org/10.1109/CSFW.2006.13
http://dx.doi.org/10.1145/1273920.1273947
http://dx.doi.org/10.1145/73560.73564
http://dx.doi.org/10.1145/581478.581492

Saunders Mac Lane. Natural associativiy and commutativity. Rice University

Studies, 49(4), September 1963. URL http://hdl.handle.net/1911/62865.

Heiko Mantel and David Sands. Controlled Declassification based on Intransitive

Noninterference. In Asian Symposium on Programming Languages and Systems

(APLAS), 2004. doi:10.1007/978-3-540-30477-7 9.

John Maraist, Martin Odersky, David Turner, and Philip Wadler. Call-by-name,

call-by-value, call-by-need, and the linear lambda calculus. In Mathematical

Foundations of Programming Semantics (MFPS), 1995. doi:10.1016/S1571-

0661(04)00022-2.

Daniel Marino and Todd Milstein. A generic type-and-effect sys-

tem. In Types in Language Design and Implementation (TLDI), 2009.

doi:10.1145/1481861.1481868.

The Coq development team. The Coq proof assistant reference manual. LogiCal

Project, 2004. URL http://coq.inria.fr. Version 8.0.

Conor McBride. I got plenty o’ nuttin’. In A List of Successes That Can Change the

World: Essays Dedicated to Philip Wadler on the Occasion of his 60th Birthday.

Springer, 2016. doi:10.1007/978-3-319-30936-1 12.

Paul André Melliès and Nicolas Tabareau. Resource modalities in game semantics.

In Logic in Computer Science (LICS), 2007. doi:10.1109/LICS.2007.41.

Matthew P. Milano and Andrew C. Myers. MixT: A language for mixing con-

sistency in geodistributed transactions. In Programming Languages Design and

Implementation (PLDI), 2018. doi:10.1145/3192366.3192375.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile

195

http://hdl.handle.net/1911/62865
http://dx.doi.org/10.1007/978-3-540-30477-7_9
http://dx.doi.org/10.1016/S1571-0661(04)00022-2
http://dx.doi.org/10.1016/S1571-0661(04)00022-2
http://dx.doi.org/10.1145/1481861.1481868
http://coq.inria.fr
http://dx.doi.org/10.1007/978-3-319-30936-1_12
http://dx.doi.org/10.1109/LICS.2007.41
http://dx.doi.org/10.1145/3192366.3192375

processes, part i. Information and Computation, 100(1), September 1992.

doi:10.1016/0890-5401(92)90008-4.

Eugenio Moggi. Computational lambda-calculus and monads. In Logic in Com-

puter Science (LICS), 1989. doi:10.1109/LICS.1989.39155.

Fabrizio Montesi. Choreographic Programming. PhD thesis, IT University

of Copenhagen, 2013. URL https://www.fabriziomontesi.com/files/

choreographic_programming.pdf.

R.C. Moore and G. Hendrix. Computational models of beliefs and the semantics

of belief-sentences. Technical Report 187, SRI International, 1979.

Tom Murphy. Modal Types for Mobile Code. PhD thesis, Carnegie

Mellon University, 2008. URL http://www.cs.cmu.edu/~tom7/papers/

modal-types-for-mobile-code.pdf.

Andrew C. Myers and Barbara Liskov. Complete, safe information flow with de-

centralized labels. In Symposium on Security and Privacy (SSP) (Oakland),

1998. doi:10.1109/SECPRI.1998.674834.

Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. Enforcing robust de-

classification and qualified robustness. Journal of Computer Security (JCS), 14

(2), May 2006. doi:10.3233/JCS-2006-14203.

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal

type theory. Transactions on Computational Logic (TOCL), 5(N), February

2007. doi:10.1016/j.entcs.2016.06.010.

Sara Negri and Jan von Plato. Sequent calculus in natural deduction style. Journal

of Symbolic Logic, 66(4), March 2001. doi:10.2307/2694976.

196

http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1109/LICS.1989.39155
https://www.fabriziomontesi.com/files/choreographic_programming.pdf
https://www.fabriziomontesi.com/files/choreographic_programming.pdf
http://www.cs.cmu.edu/~tom7/papers/modal-types-for-mobile-code.pdf
http://www.cs.cmu.edu/~tom7/papers/modal-types-for-mobile-code.pdf
http://dx.doi.org/10.1109/SECPRI.1998.674834
http://dx.doi.org/10.3233/JCS-2006-14203
http://dx.doi.org/10.1016/j.entcs.2016.06.010
http://dx.doi.org/10.2307/2694976

Flemming Nielson. Annotated type and effect systems. ACM Computing Surveys

(CSUR), 28(2), June 1996. doi:10.1145/234528.234745.

Flemming Nielson and Hanne Riis Nielson. Type and effect systems. In Correct

System Design, Recent Insight and Advances, (to Hans Langmaack on the occa-

sion of his retirement from his professorship at the University of Kiel). Springer,

1999. doi:10.1007/3-540-48092-7 6.

Chris Okasaki. Purely Functional Data Structures. PhD thesis, Carnegie Mellon

University, 1996. URL https://www.cs.cmu.edu/~rwh/theses/okasaki.pdf.

Michel Parigot. λµ-calculus: An algorithmic interpretation of classical nat-

ural deduction. In Logic Programming and Automated Reasoning, 1992a.

doi:10.1007/BFb0013061.

Michel Parigot. Free deduction: An analysis of “computations” in classical logic.

In Logic Programming, 1992b. doi:10.1007/3-540-55460-2 27.

Rohit Parikh. Knowledge and the problem of logical omniscience. In International

Symposium on Methodologies for Intelligent Systems (ISMIS), 1987.

Tomas Petricek, Dominic Orchard, and Alan Mycroft. Coeffects: Unified static

analysis of context dependence. In International Conference on Automata, Lan-

guages, and Programming (ICALP), 2012. doi:10.1007/978-3-642-39212-2 35.

Tomas Petricek, Dominic Orchard, and Alan Mycroft. Coeffects: A calculus of

context-dependent computation. In International Conference on Functional Pro-

gramming (ICFP), 2014. doi:10.1145/2628136.2628160.

Simon Peyton Jones and Philip Wadler. Imperative functional pro-

gramming. In Principles of Programming Languages (POPL), 1993.

doi:10.1145/158511.158524.

197

http://dx.doi.org/10.1145/234528.234745
http://dx.doi.org/10.1007/3-540-48092-7_6
https://www.cs.cmu.edu/~rwh/theses/okasaki.pdf
http://dx.doi.org/10.1007/BFb0013061
http://dx.doi.org/10.1007/3-540-55460-2_27
http://dx.doi.org/10.1007/978-3-642-39212-2_35
http://dx.doi.org/10.1145/2628136.2628160
http://dx.doi.org/10.1145/158511.158524

Frank Pfenning. Structural cut elimination. In Logic in Computer Science (LICS),

June 1995. doi:10.1109/LICS.1995.523253.

Andrew Pimlott and Oleg Kiselyov. Soutei, a logic-based trust-management

system. In Functional and Logic Programming Symposium (FLOPS), 2006.

doi:10.1007/11737414 10.

Gordon Plotkin. Call-by-name, call-by-value, and the λ-calculus. Theoretical Com-

puter Science (TCS), 1(2), December 1975. doi:10.1016/0304-3975(75)90017-1.

Gordon Plotkin and Colin Stirling. A framework for intuitionistic modal logics.

In Theoretical Aspects of Reasoning about Knowledge (TARK), pages 399–406,

1986. URL http://tark.org/proceedings/tark_mar19_86/proceedings.

html.

Amir Pnueli. The temporal logic of programs. In Symposium on Foundations of

Computer Science (FOCS), 1977. doi:10.1109/SFCS.1977.32.

Jeff Polakow and Christian Skalka. Specifying distributed trust management in

LolliMon. In Programming Languages and Analysis for Security (PLAS), 2006.

doi:10.1145/1134744.1134753.

John Power and Hiroshi Watanabe. Combining a monad and a comonad. The-

oretical Computer Science (TCS), 280(1–2), May 2002. doi:10.1016/S0304-

3975(01)00024-X.

Vincent Rajani, Deepak Garg, and Tamara Rezk. On access control, capabilities,

their equivalence, and confused deputy attacks. In Computer Security Founda-

tions (CSF), 2016. doi:10.1109/CSF.2016.18.

Alejandro Russo, Koen Claessen, and John Hughes. A library for light-weight

198

http://dx.doi.org/10.1109/LICS.1995.523253
http://dx.doi.org/10.1007/11737414_10
http://dx.doi.org/10.1016/0304-3975(75)90017-1
http://tark.org/proceedings/tark_mar19_86/proceedings.html
http://tark.org/proceedings/tark_mar19_86/proceedings.html
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1145/1134744.1134753
http://dx.doi.org/10.1016/S0304-3975(01)00024-X
http://dx.doi.org/10.1016/S0304-3975(01)00024-X
http://dx.doi.org/10.1109/CSF.2016.18

information-flow security in haskell. In Haskell Symposium (HASKELL), 2008.

doi:10.1145/1411286.1411289.

Andrei Sabelfeld and Andrew C. Myers. A model for delimited information release.

In International Symposium on Software Security (ISSS), 2004. doi:10.1007/978-

3-540-37621-7 9.

Andrei Sabelfeld and David Sands. Dimensions and principles of declas-

sification. In Computer Security Foundations Workshop (CSFW), 2005.

doi:10.1109/CSFW.2005.15.

Amr Sabry and Philip Wadler. A reflection on call-by-value. Trans-

actions on Programming Languages and Systems (TOPLAS), 1997.

doi:10.1145/944705.944723.

Harold Schellinx. The Noble Art of Linear Decorating. PhD thesis, Unerversiteit

van Amsterdam, 1994. URL https://hdl.handle.net/11245/1.104138.

Fred B. Schneider. Personal communication, 2013. January 31, 2013.

Fred B. Schneider, Kevin Walsh, and Emin Gün Sirer. Nexus Authorization Logic

(NAL): Design rationale and applications. Transactions on Information and

System Security (TISSEC), 14(1), June 2011. doi:10.1145/1952982.1952990.

Alex K. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic.

PhD thesis, University of Edinburgh, 1994. URL http://hdl.handle.net/

1842/407.

Emin Gün Sirer, Willem De Bruijin, Patrick Reynolds, Alan Shieh, Kevin Walsh,

Dan Williams, and Fred B. Schneider. Logical attestation: An authorization

architecture for trustworthy computing. In Symposium on Operating Systems

Principles (SOSP), 2011. doi:10.1145/2043556.2043580.

199

http://dx.doi.org/10.1145/1411286.1411289
http://dx.doi.org/10.1007/978-3-540-37621-7_9
http://dx.doi.org/10.1007/978-3-540-37621-7_9
http://dx.doi.org/10.1109/CSFW.2005.15
http://dx.doi.org/10.1145/944705.944723
https://hdl.handle.net/11245/1.104138
http://dx.doi.org/10.1145/1952982.1952990
http://hdl.handle.net/1842/407
http://hdl.handle.net/1842/407
http://dx.doi.org/10.1145/2043556.2043580

Morten Heine Sørensen and Pave l Urzyczyn. Lectures on the Curry-Howard Iso-

morphism, volume 149 of Studies in Logic and the Foundations of Mathematics.

Elsevier, 2006. ISBN 9780444520777.

Robert Stalnaker. The problem of logical omniscience, I. Synthese, 89(3), Decem-

ber 1991. doi:10.1007/BF00413506.

Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. Flexible

dynamic information flow control in haskell. In Haskell Symposium (HASKELL),

2011. doi:10.1145/2034675.2034688.

Nikhil Swamy, Michael Hicks, Stephen Tse, and Steve Zdancewic. Managing policy

updates in security-typed languages. In Computer Security Foundations Work-

shop (CSFW), 2006. doi:10.1109/CSFW.2006.17.

M. E. Szabo. Polycategories. Communications in Algebra, 3(8), November 1975.

doi:10.1080/00927877508822067.

Gaisi Takeuti. Proof Theory. Dover Books on Mathematics. Dover Books, 1987.

ISBN 0-486-49073-4. Second Edition, republished by Dover Books in 2013. Orig-

inally published by North-Holland, Amsterdam.

Ross Tate. The sequential semantics of producer effect systems. In Principles of

Programming Languages (POPL), 2013. doi:10.1145/2429069.2429074.

Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathematics: Volume

I, volume 121 of Studies in Logic and the Foundations of Mathematics. Elsevier,

1988a.

Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathematics: Volume

II, volume 123 of Studies in Logic and the Foundations of Mathematics. Elsevier,

1988b. ISBN 9780444703583.

200

http://dx.doi.org/10.1007/BF00413506
http://dx.doi.org/10.1145/2034675.2034688
http://dx.doi.org/10.1109/CSFW.2006.17
http://dx.doi.org/10.1080/00927877508822067
http://dx.doi.org/10.1145/2429069.2429074

Tsa-ching Tsai, Alejandro Russo, and John Hughes. A library for secure multi-

threaded information flow in haskell. In Computer Security Foundations (CSF),

2007. doi:10.1109/CSF.2007.6.

Tarmo Uustalu and Varmo Vene. Signals and comonads. In Brazilian Symposium

on Programming Languages (SBLP), 2005. doi:10.3217/jucs-011-07-1311.

Tarmo Uustalu and Varmo Vene. Comonadic notions of computa-

tion. In Coalgebraic Methods in Computer Science (CMCS), 2008.

doi:10.1016/j.entcs.2008.05.029.

Matthijs Vákár, Ohad Kammar, and Sam Staton. A domain theory for statisical

probabilistic programming. In Principles of Programming Languages (POPL),

2019. doi:10.1145/3290349.

Dirk van Dalen. Logic and Structure. Springer, 2004. doi:10.1007/978-1-4471-

4558-5.

Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for

secure flow analysis. Journal of Computer Security (JCS), 4(3), April 1996.

doi:10.3233/JCS-1996-42-304.

Philip Wadler. Linear types can change the world! Programming Concepts

and Methods, 1990. URL https://homepages.inf.ed.ac.uk/wadler/topics/

linear-logic.html#linear-types.

Philip Wadler. Call-by-value is dual to call-by-name. In International Conference

on Functional Programming (ICFP), 2003. doi:10.1145/944705.944723.

Philip Wadler. Propositions as sessions. In International Conference on Functional

Programming (ICFP), 2012. doi:10.1145/2364527.2364568.

201

http://dx.doi.org/10.1109/CSF.2007.6
http://dx.doi.org/10.3217/jucs-011-07-1311
http://dx.doi.org/10.1016/j.entcs.2008.05.029
http://dx.doi.org/10.1145/3290349
http://dx.doi.org/10.1007/978-1-4471-4558-5
http://dx.doi.org/10.1007/978-1-4471-4558-5
http://dx.doi.org/10.3233/JCS-1996-42-304
https://homepages.inf.ed.ac.uk/wadler/topics/linear-logic.html#linear-types
https://homepages.inf.ed.ac.uk/wadler/topics/linear-logic.html#linear-types
http://dx.doi.org/10.1145/944705.944723
http://dx.doi.org/10.1145/2364527.2364568

Philip Wadler and Peter Thiemann. The marriage of effects and mon-

ads. In International Conference on Functional Programming (ICFP), 1998.

doi:10.1145/289423.289429.

Lucas Waye, Pablo Buiras, Dan King, Stephen Chong, and Alejandro Russo. It’s

my privilege: Controlling downgrading in DC-labels. In Security and Trust

Management (STM), 2015. doi:10.1007/978-3-319-24858-5 13.

Duminda Wijesekera. Constructive modal logics I. Annals of Pure and Applied

Logic, 50(3), December 1990. doi:10.1016/0168-0072(90)90059-B.

Glynn Winskel. Distributed probabilistic and quantum strategies. In

Mathematical Foundations of Programming Semantics (MFPS), 2013.

doi:10.1016/j.entcs.2013.09.024.

Glynn Winskel. On probabilistic distributed strategies. In International Collo-

quium on Theoretical Aspects of Computing (ICTAC), 2015. doi:10.1007/978-3-

319-25150-9 6.

Edward Wobber, Mart́ın Abadi, Michael Burrows, and Butler Lampson. Au-

thentication in the Taos operating system. Transactions on Computer Systems

(TOCS), 12(1), February 1994. doi:10.1145/174613.174614.

Edward Z. Yang. Logitext, 2012. URL http://logitext.mit.edu/main. Accessed

February 19, 2019.

Steve Zdancewic and Andrew C. Myers. Robust declassification. In Computer Se-

curity Foundations Workshop (CSFW), 2001. doi:10.1109/CSFW.2001.930133.

Noam Zeilberger. The Logical Basis of Evaluation Order and Pattern-

Matching. PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsylva-

202

http://dx.doi.org/10.1145/289423.289429
http://dx.doi.org/10.1007/978-3-319-24858-5_13
http://dx.doi.org/10.1016/0168-0072(90)90059-B
http://dx.doi.org/10.1016/j.entcs.2013.09.024
http://dx.doi.org/10.1007/978-3-319-25150-9_6
http://dx.doi.org/10.1007/978-3-319-25150-9_6
http://dx.doi.org/10.1145/174613.174614
http://logitext.mit.edu/main
http://dx.doi.org/10.1109/CSFW.2001.930133

nia, USA, 2009. URL http://reports-archive.adm.cs.cmu.edu/anon/2009/

CMU-CS-09-122.pdf.

Lantian Zheng and Andrew C. Myers. End-to-end availability policies and non-

interference. In Computer Security Foundations Workshop (CSFW), 2005.

doi:10.1109/CSFW.2005.16.

203

http://reports-archive.adm.cs.cmu.edu/anon/2009/CMU-CS-09-122.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2009/CMU-CS-09-122.pdf
http://dx.doi.org/10.1109/CSFW.2005.16

APPENDIX A

METATHEORY FOR PROC

Here we prove the properties of Proc that make it a well-behaved semantic

domain.

A.1 Preservation

Preservation is a straightforward proof by case. The only interesting part of the

proof is showing that consumed and produced can be defined syntactically, as shown

in Table A.1. These definitions can be shown to have the property that Γ ` ρ a ∆

implies consumed(ρ) is precisely the set of channels in Γ, and likewise produced(ρ)

is precisely the set of channels in ∆. Note that this in turn means type preservation

also guarantees consumed and produced are preserved by reduction.

A.2 Progress

In order to prove progress for Comp, we first have to specify the values of Proc.

A value in Proc is intuitively a process in which every subcomponent is waiting,

directly or indirectly, for messages from the “open” input and output channels

of the process. We formalize this in Table A.2 and Figure A.1. The judgement

ρ ` x ≺ y says that no reduction can occur with channel y as the cutpoint until a

reduction occurs with channel x as the cutpoint. The one exception is reductions

involving x
 y, which we address using a separate connected analysis.

A value is then a process in which every channel occurring in the process is

necessarily waiting on some open channel of the process, and every connected

204

Table A.1: Syntactic Definition of consumed, produced, opened, and closed

ρ consumed(ρ) produced(ρ)
∅ {} {}

ρ1 ‖ ρ2

(⋃ consumed(ρ1)
consumed(ρ2)

)
\ closed(ρ1, ρ2)

(⋃ produced(ρ1)
produced(ρ2)

)
\ closed(ρ1, ρ2)

y.init(c) {} {y}
x
 y {x} {y}
y.send() {} {y}
y.send(x) {x} {y}

handle?x{ρ} consumed(ρ) produced(ρ)
x.req() {x} {}
x.req(y) {x} {y}

x.req(!y1, !y2) {x} {y1, y2}
supply!y{ρ} consumed(ρ) produced(ρ)

opened(ρ) = consumed(ρ) ∪ produced(ρ)
closed(ρ1, ρ2) = opened(ρ1) ∩ opened(ρ2)

Table A.2: Formalization of mentioned and connected

ρ mentioned(ρ) connected(ρ)
∅ {} {}

ρ1 ‖ ρ2 mentioned(ρ1) ∪mentioned(ρ2) connected(ρ1) ∪ connected(ρ2)
y.init(c) {y} {}
x
 y {x, y} {x, y}
y.send() {y} {}
y.send(x) {x, y} {}

handle?x{ρ} mentioned(ρ) connected(ρ) \ opened(ρ)
x.req() {x} {}
x.req(y) {x, y} {}

x.req(!y1, !y2) {x, y1, y2} {}
supply!y{ρ} mentioned(ρ) connected(ρ) \ opened(ρ)

205

ρ1 ` x ≺ y

ρ1 ‖ ρ2 ` x ≺ y

y.send(x) ` y ≺ x

ρ ` y ≺ z z /∈ opened(ρ)

handle?x{ρ} ` y ≺ z

x.req(y) ` x ≺ y x.req(!y1, !y2) ` x ≺ y1 x.req(!y1, !y2) ` x ≺ y2

ρ ` x ≺ z z /∈ opened(ρ)

supply!y{ρ} ` x ≺ z

ρ ` x � x

ρ ` x ≺ y

ρ ` x � y

ρ ` x � y ρ ` y � z

ρ ` x � z

A Proc value is a process ρ satisfying
∀y ∈ mentioned(ρ). ∃x ∈ opened(ρ). ρ ` x � y

and
connected(ρ) ⊆ opened(ρ)

Figure A.1: Formalization of Proc Values

channel occurring in the process is itself some open channel of the process. To see

that this truly captures the concept of value one would expect, consider two cases.

First, suppose a value has no inputs or outputs. Then there are necessarily no

channels mentioned in the value, so the value must be ∅. Second, suppose a value

has only one output x of type N. Notice that no case of ρ ` x ≺ y can apply to a

channel x with type N. Consequently, x is the only channel that can be mentioned,

and the only processes doing so with the right type for x are of the form x.init(c).

Furthermore, every value is irreducible. To prove this, consider the reduction

rules. In each case, one can easily prove that the cutpoint channel y is either

connected or minimal with respect to ≺, by which we mean there is no variable x

such that ρ ` x ≺ y. Consequently, a reducible process necessarily has an inter-

206

Channels x, y, z, . . .
Constants c ::= 0 | 1 | . . .
Processes ρ ::= ∅

| ρ1 ‖ ρ2

| y.init(c)
| x
 y
| y.send(x)
| y.send()
| handle?x{ρ}
| x.req()
| x.req(y)
| x.req(!y1, !y2)
| supply!cy{ρ} (c ≥ 1)

Types τ ::= N | !cτ | ?τ (c ≥ 1)
Contexts Γ,∆,Ξ ::= x : τ, . . .

(no repeats)
(unordered)

Figure A.2: The Syntax of Procn

mediate channel that is either connected or does not depend on an open channel

of the process.

Finally, to prove progress, one can do induction on the proof that ρ is well-

typed to prove that ≺ is well-founded. The key induction invariant for this proof

is that Γ ` ρ a ∆ implies that, for all channels x and y in ∆, if ρ ` x � y

holds then x and y are the same channel. In combination with well-foundedness

of ≺, this means there are no dependency chains between the output channels

of a process. Well-foundedness is important because it implies that if ρ has any

intermediate variables with no dependency on an open variable, then at least one

of those intermediate variables, say y, is minimal with respect to ≺. Because y is

intermediate, it must occur in some Ξ context in the proof that ρ is well-typed.

Consequently, one can easily find a non-‖ process ρp producing y in parallel with a

non-‖ process ρc consuming y. Enumerating through all the possible cases where

207

` N ≤ N
c ≥ c′ ` τ ≤ τ ′

` !cτ ≤ !c′τ
′

` τ ≤ τ ′

` ?τ ≤ ?τ ′
` τ ≤ τ ′ . . .

` x : τ, . . . ≤ x : τ ′, . . .

` ∅ a
Γ ` ρ1 a ∆,Ξ Γ′,Ξ ` ρ2 a ∆′

Γ,Γ′ ` ρ1 ‖ ρ2 a ∆,∆′ ` y.init(c) a y : N

x : τ ` x
 y a y : τ

x : τ ` y.send(x) a y : ?τ ` y.send() a y : ?τ

!Γ, x : τ1 ` ρ a y : ?τ2

!Γ, x : ?τ1 ` handle?x{ρ} a y : ?τ2

x : !1τ ` x.req() a x : !1τ ` x.req(y) a y : τ

x : !2cτ ` x.req(!y1, !y2) a y1 : !cτ, y2 : !cτ

x1 : !c1τ1, · · · ` ρ a y : τ

x1 : !c1cτ1, · · · ` supply!cy{ρ} a y : !cτ

` Γ ≤ Γ′ Γ′ ` ρ a ∆′ ` ∆′ ≤ ∆

Γ ` ρ a ∆

Figure A.3: The Type System of Procn

ρp and ρc can have the same type for y and y is minimal with respect to ≺,

one can easily see that each case has a corresponding reduction rule that applies,

guaranteeing progress.

A.3 Termination

To show that Proc is terminating, we develop a decreasing well-founded measure.

However, in order to build this measure, we actually use a modified version of

Proc. This version keeps track of how many times a !τ channel might be used.

208

Parallel
ρ1 → ρ′1

ρ1 ‖ ρ2 → ρ′1 ‖ ρ2

Context
ρ→ ρ′

handle?x{ρ} → handle?x{ρ′}
ρ1 → ρ2

supply!cz{ρ1} → supply!cz{ρ2}

Identity
y ∈ consumed(ρ)

x
 y ‖ ρ→ ρ[y 7→ x]

y ∈ produced(ρ)

ρ ‖ y
 z → ρ[y 7→ z]

Fail

ρx = {x.req() | x ∈ consumed(ρ) ∧ x 6= y}
ρz = {z.send() | z ∈ produced(ρ)}
y.send() ‖ handle?y{ρ} → ρx ‖ ρz

Succeed y.send(x) ‖ handle?y{ρ} → ρ[y 7→ x]

Drop supply!cy{ρ} ‖ y.req()→ {x.req() | x ∈ consumed(ρ)}

Take supply!cy{ρ} ‖ y.req(z)→ ρ[y 7→ z]

Clone

for each x ∈ consumed(ρ), the channels yx1 and yx2 are fresh
ρx = {x.req(!yx1 , !y

x
2) | x ∈ consumed(ρ)}

ρz1 = supply!bc/2cz1
{ρ [y 7→ z1, x 7→ yx1 | x ∈ consumed(ρ)]}

ρz2 = supply!bc/2cz2
{ρ [y 7→ z2, x 7→ yx2 | x ∈ consumed(ρ)]}

supply!cy{ρ} ‖ y.req(!z1, !z2)→ ρx ‖ ρz1 ‖ ρz2

D
is
t
r
ib
u
t
e

y ∈ consumed(ρ2)

supply!c1y
{ρ1} ‖ supply!c2z

{ρ2} → supply!c2z
{supply!bc1/c2cy

{ρ1} ‖ ρ2}
y ∈ consumed(ρ2)

supply!cy{ρ1} ‖ handle?x{ρ2} → handle?x{supply!cy{ρ1} ‖ ρ2}
y ∈ produced(ρ1)

handle?x{ρ1} ‖ handle?y{ρ2} → handle?x{ρ1 ‖ handle?y{ρ2}}

Figure A.4: Annotated Procn Reduction Rules

This language, which we call Procn, has the syntax presented in Figure A.2 and

type system presented in Figure A.3. The only change is that !s and supplies are

annotated with a number capping how many times they can be used.

Given a Proc process ρ, one can construct a Procn process ρn that erases to ρ,

meaning dropping its annotations results in ρ. The typing rules are presented to

show how annotations can be inferred proceeding from right to left through the

209

typing proof (computing the maximum of given annotations where necessary). One

can simply initialize every ! in the output types of ρ with 1 and then apply this

inference process to get a suitable Procn process ρn.

Now suppose the Proc process ρ reduces in a single step to ρ′. Then one can

easily show that, because ρn is well-typed, ρn can also reduce (using the annotated

reduction rules in Figure A.4) to a Procn process ρ′n that erases to ρ′. Since, with

a bit of arithmetic, the annotated reduction rules can also be shown to be type-

preserving, ρ′n will also be well-typed. Repeating this process, one can show that

every sequence of reduction steps in well-typed Proc processes has a corresponding

sequence of reduction steps in well-typed Procn processes. Thus, if every such

sequence in Procn is guaranteed to terminate, then Proc is necessarily terminating

as well.

Table A.3: Measures for Procn Processes

ρ |ρ|1 |ρ|2

∅ 0 1

ρ1 ‖ ρ2 |ρ1|1 + |ρ2|1 |ρ1|2 · |ρ2|2

y.init(c) 0 1

x
 y 1 1

y.send(x) 0 1

y.send() 0 1

handle?x{ρ} |ρ|1 + 1 |ρ|2 + 1

x.req() 0 1

x.req(y) 0 1

x.req(!y1, !y2) 0 1

supply!cy{ρ} c · |ρ|1 + 2c− 1 |ρ|2 + 1

We now develop a well-founded

measure for Procn, which we show the

Procn reduction rules strictly decrease.

We use the lexicographic ordering of

two measures: |−|1 and |−|2. The first

caps the number of times intermediate

channels can be eliminated. The sec-

ond caps the number of times suppliers

and handlers can be distributed. The

two measures are defined in Table A.3.

Every reduction rule except the

Distribute rules can easily be shown

to strictly reduce the first measure.

210

The Distribute rules, however, can

only be shown to preserve the first mea-

sure. Fortunately, it is easy to show

that the Distribute rules strictly re-

duce the second measure. As a consequence, every reduction of Procn processes

also reduces the lexicographic order of these measures. This lexicographic order is

well-founded, so this implies Procn is terminating, which we have already shown

in turn implies that Proc is terminating.

A.4 Confluence

Because Proc is terminating, to prove confluence we only need to prove weak

confluence. That is, we only have to show that, for any two ways a given process ρ

can be reduced a single step, it is possible to apply further reductions to arrive at

the same process. This turns out to be easy to prove.

First, note that reduction is conceptually context-insensitive. That is, if the

two reduction steps are applied to disjoint parts of the process, then they trivially

commute with each other. Thus we only have two consider reductions that overlap

with each other.

Second, note that most pairs of reduction steps cannot overlap for one of two

reasons. The first reason is that many reduction steps are syntactically distinct.

For example, Fail reduces a send and a handle, whereas Take reduces a supply

and a req, so the two cannot overlap. The second reason is that Proc is linear.

So although it might seem that Fail and Succeed could each reduce the same

handle in different ways, this would mean there are two producers for the same

211

intermediate channel, which provably means the process must be ill-typed.

At this point, the remaining cases necessarily include a Context, Identity,

or Distribute as one of the two steps. The proofs involving Context rely on

the fact that reducing a process does not change the set of channels it produces

or consumes. The proofs involving Identity are trivial. The proofs involving

Distribute are straightforward case analyses. By this high-level reasoning, along

with the tedious proof work that we have left to the reader, Proc is weakly confluent

and, since Proc is terminating, this in turn implies Proc is confluent.

212

APPENDIX B

THE FULL FLAFOL PROOF SYSTEM

Ax

Γ, ϕ @ g ` ϕ @ g

Weakening
Γ ` ψ @ g

Γ, ϕ @ g′ ` ψ @ g

Contraction
Γ, (ϕ @ g), (ϕ @ g) ` ψ @ g′

Γ, ϕ @ g ` ψ @ g′

Exchange
Γ, (ϕ @ g1), (ψ @ g2),Γ′ ` χ @ g

Γ, (ψ @ g2), (ϕ @ g1),Γ′ ` χ @ g

FalseL

Γ,False @ g ` ϕ @ g · g′
TrueR

Γ ` True @ g

AndL
Γ, (ϕ @ g), (ψ @ g) ` χ @ g′

Γ, (ϕ ∧ ψ @ g) ` χ @ g′
AndR

Γ ` ϕ @ g Γ ` ψ @ g

Γ ` ϕ ∧ ψ @ g

OrL
Γ, ϕ @ g ` χ @ g′ Γ, ψ @ g ` χ @ g′

Γ, (ϕ ∨ ψ @ g) ` χ @ g′
OrR1

Γ ` ϕ @ g

Γ ` ϕ ∨ ψ @ g

OrR2
Γ ` ψ @ g

Γ ` ϕ ∨ ψ @ g

ImpL
Γ ` ϕ @ 〈〉 Γ, ψ @ g ` χ @ g′

Γ, (ϕ→ ψ @ g) ` χ @ g′
ImpR

Γ, ϕ @ 〈〉 ` ψ @ g

Γ ` ϕ→ ψ @ g

ForallL
Γ, ϕ[x 7→ t] @ g ` ψ @ g′

Γ, (∀x :σ. ϕ @ g) ` ψ @ g′
ForallR

Γ ` ϕ @ g x /∈ FV(Γ, g)

Γ ` ∀x :σ. ϕ @ g

ExistsL
Γ, ϕ @ g ` ψ @ g′ x /∈ FV(Γ, ψ, g, g′)

Γ, (∃x :σ. ϕ @ g) ` ψ @ g′
ExistsR

Γ ` ϕ[x 7→ t] @ g

Γ ` ∃x :σ. ψ @ g

213

SaysL
Γ, ϕ @ g · p〈`〉 ` ψ @ g′

Γ, p says` ϕ @ g ` ψ @ g′
SaysR

Γ ` ϕ @ g · p〈`〉

Γ ` p says` ϕ @ g

SelfL
Γ, (ϕ @ g · p〈`〉 · g′) ` ψ @ g′′

Γ, (ϕ @ g · p〈`〉 · p〈`〉 · g′) ` ψ @ g′′
================================= SelfR

Γ ` ϕ @ g · p〈`〉 · g′

Γ ` ϕ @ g · p〈`〉 · p〈`〉 · g′
=======================

VarL

Γ, (ϕ @ g · p〈`′〉 · g′) ` ψ @ g′′

Γ, (ϕ @ g · p〈`〉 · g′) ` ` v `′ @ g · p〈`′〉

Γ, (ϕ @ g · p〈`〉 · g′) ` ψ @ g′′

VarR
Γ ` ϕ @ g · p〈`′〉 · g′ Γ ` `′ v ` @ g · p〈`〉

Γ ` ϕ @ g · p〈`〉 · g′

FwdL

Γ, (ϕ @ g · q〈`〉 · g′) ` χ @ g′′

Γ, (ϕ @ g · p〈`〉 · g′) ` CanRead(q, `) @ g · p〈`〉

Γ, (ϕ @ g · p〈`〉 · g′) ` CanWrite(p, `) @ g · q〈`〉

Γ, ϕ @ g · p〈`〉 · g′ ` χ @ g′′

FwdR

Γ ` ϕ @ g · p〈`〉 · g′

Γ ` CanRead(q, `) @ g · p〈`〉

Γ ` CanWrite(p, `) @ g · q〈`〉

Γ ` ϕ @ g · q〈`〉 · g′

FlowsToRefl

Γ ` ` v ` @ g

FlowsToTrans
Γ ` `1 v `2 @ g Γ ` `2 v `3 @ g

Γ ` `1 v `3 @ g

214

CRVar
Γ ` CanRead(p, `2) @ g Γ ` `1 v `2 @ g

Γ ` CanRead(p, `1) @ g

CWVar
Γ ` CanWrite(p, `2) @ g Γ ` `2 v `1 @ g

Γ ` CanWrite(p, `1) @ g

215

APPENDIX C

COMPATIBLE SUPERCONTEXTS

CSCRefl

Γ� Γ ` ϕ @ g

CSCUnion
∆1 � Γ ` ϕ @ g ∆2 � Γ ` ϕ @ g

∆1 ∪∆2 � Γ ` ϕ @ g

CSCContraction
∆� Γ, (ϕ @ g), (ϕ @ g) ` ψ @ g′

∆� Γ, ϕ @ g ` ψ @ g′

CSCExchange
∆� Γ, (ϕ @ g1), (ψ @ g2),Γ′ ` χ @ g

∆� Γ, (ψ @ g2), (ϕ @ g1),Γ′ ` χ @ g

CSCAndL
∆� Γ, (ϕ @ g), (ψ @ g) ` χ @ g′

∆� Γ, (ϕ ∧ ψ @ g) ` χ @ g′
CSCAndR1

∆� Γ ` ϕ @ g

∆� Γ ` ϕ ∧ ψ @ g

CSCAndR2
∆� Γ ` ψ @ g

∆� Γ ` ϕ ∧ ψ @ g

CSCOrL1
∆� Γ, ϕ @ g ` χ @ g′

∆� Γ, (ϕ ∨ ψ @ g) ` χ @ g′

CSCOrL2
∆� Γ, ψ @ g ` χ @ g′

∆� Γ, (ϕ ∨ ψ @ g) ` χ @ g′
CSCOrR1

∆� Γ ` ϕ @ g

∆� Γ ` ϕ ∨ ψ @ g

CSCOrR2
∆� Γ ` ψ @ g

∆� Γ ` ϕ ∨ ψ @ g

CSCImpL1
∆� Γ, ψ @ g ` χ @ g′

∆� Γ, (ϕ→ ψ @ g) ` χ @ g′

CSCImpL2
∆� Γ ` ϕ @ 〈〉

∆� Γ, (ϕ→ ψ @ g) ` χ @ g′
CSCImpR

∆� Γ, ϕ @ 〈〉 ` ψ @ g

∆� Γ ` ϕ→ ψ @ g

216

CSCForallL
∆� Γ, ϕ[x 7→ t] @ g ` ψ @ g′

∆� Γ, (∀x :σ. ϕ @ g) ` ψ @ g′

CSCForallR
∆� Γ ` ϕ @ g x /∈ FV(Γ, g)

∆� Γ ` ∀x :σ. ϕ @ g

CSCExistsL
∆� Γ, ϕ @ g ` ψ @ g′ x /∈ FV(Γ, ψ, g, g′)

∆� Γ, (∃x :σ. ϕ @ g) ` ψ @ g′

CSCExistsR
∆� Γ ` ϕ[x 7→ t] @ g

∆� Γ ` ∃x :σ. ϕ @ g

CSCSaysL
∆� Γ, ϕ @ g · p〈`〉 ` ψ @ g′

∆� Γ, p says` ϕ @ g ` ψ @ g′

CSCSaysR
∆� Γ ` ϕ @ g · p〈`〉

∆� Γ ` p says` ϕ @ g

CSCSelfL
∆� Γ, (ϕ @ g · p〈`〉 · g′) ` ψ @ g′′

∆� Γ, (ϕ @ g · p〈`〉 · p〈`〉 · g′) ` ψ @ g′′
====================================== CSCSelfR

∆� Γ ` ϕ @ g · p〈`〉 · g′

∆� Γ ` ϕ @ g · p〈`〉 · p〈`〉 · g′
=============================

CSCVarL

∆� Γ, (ϕ @ g · p〈`′〉 · g′) ` ψ @ g′′

Γ, (ϕ @ g · p〈`〉 · g′) ` ` v `′ @ g · p〈`′〉

∆� Γ, (ϕ @ g · p〈`〉 · g′) ` ψ @ g′′

CSCVarR
∆� Γ ` ϕ @ g · p〈`′〉 · g′ Γ ` `′ v ` @ g · p〈`〉

∆� Γ ` ϕ @ g · p〈`〉 · g′

217

CSCFwdL

∆� Γ, (ϕ @ g · q〈`〉 · g′) ` χ @ g′′

Γ, (ϕ @ g · p〈`〉 · g′) ` CanRead(q, `) @ g · p〈`〉

Γ, (ϕ @ g · p〈`〉 · g′) ` CanWrite(p, `) @ g · q〈`〉

∆� Γ, ϕ @ g · p〈`〉 · g′ ` χ @ g′′

CSCFwdR

∆� Γ ` ϕ @ g · p〈`〉 · g′

Γ ` CanRead(q, `) @ g · p〈`〉 Γ ` CanWrite(p, `) @ g · q〈`〉

∆� Γ ` ϕ @ g · q〈`〉 · g′

218

	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Strict and Lazy Semantics for Effects
	A Simple Language for Exploring Strictness and Laziness
	Consumer Choice and Producer Choice
	Capturing Consumer Choice and Producer Choice
	Effectful Languages and Their Semantics
	Singly-Effectful Languages
	Doubly-Effectful Languages

	Languages with Multiple Inputs and Multiple Outputs
	Giving Semantics to Choice in Comp
	A Language without Consumer or Producer Choice
	Layering Effects

	Belief Semantics of Authorization Logic
	Belief Semantics
	Semantic models
	Semantic validity

	Kripke Semantics
	Modal models
	Semantic validity
	Frame conditions
	Defining Speaksfor

	Semantic Transformation
	Proof System
	Unit and Necessitation
	Soundness

	First-Order Logic for Flow-Limited Authorization
	FLAFOL By Example
	Viewing Pictures on Social Media
	Integrity Tracking to Prevent SQL Injection
	Hospital Bills Calculation and Reinsurance
	Further Adapting FLAFOL

	Using FLAFOL
	Proof System
	Proof Theory
	Consistency
	Signed Subformula Property
	Compatible Supercontexts
	Simulation
	Cut Elimination
	Implications and Communication

	Non-Interference
	Trust in FLAFOL
	Says Statements and Non-Interference
	Implications
	Discovering Trust with Disjunctions
	Formal Non-Interference

	Respect of Permission Beliefs

	Future Work
	Semantics of Effectful Programs
	Probabilistic Game Semantics are Monadic
	Strict and Lazy Semantics for Effect Systems
	Connections with Adjunction Models

	Semantics of Authorization Policies
	Model Theory for FLAFOL
	Secure Checking of FLAFOL proofs
	Temporal Authorization Logic

	Combining Semantics for Programs and Policies
	Producer Effects in Information Flow
	Distributed Modal Type Theory
	A Distributed, Modal, Dependently-Typed Language

	Related Work
	Effects, Monads, and Comonads
	Strictness and Laziness
	Polarization and Focusing

	Linear Logic
	Authorization Logic
	Combining Authorization and Information Security

	Conclusion
	Metatheory for Proc
	Preservation
	Progress
	Termination
	Confluence

	The Full FLAFOL Proof System
	Compatible Supercontexts

