
E F F I C I E N T R U N T I M E S F O R G R A D UA L T Y P I N G

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

fabian muehlboeck (mühlböck)

December 2019

©2019 Fabian Muehlboeck

Some parts of this dissertation (in particular, Chapters 2, 4, 5, and 7) are

based on published work where publishing rights have been transferred to

the Association for Computing Machinery. For those parts, the following

copyright notices are required:

For Chapter 2:

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work

owned by others than the author(s) must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee. Request permissions from

Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

For the other chapters:

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work

owned by others than the author(s) must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee. Request permissions from

permissions@acm.org.

©2017 Copyright held by the owner/author(s). Publication rights licensed to

Association for Computing Machinery.

E F F I C I E N T R U N T I M E S F O R G R A D UA L T Y P I N G

fabian muehlboeck

Cornell University, 2019

This dissertation concerns the design and implementation of

programming languages featuring gradual typing—which is the idea that

some parts of a program may be type-checked dynamically while others

are type-checked statically. This lets programmers trade off between the

costs and benefits of using static type-checking for each individual part of

their program as needed, and even eventually change their decisions

about those trade-offs.

Designing gradually typed languages has its own trade-offs: existing

gradually typed languages had to essentially decide between being

efficient versus behaving in expected and safe ways. Since many of those

languages were just gradually typed variants of existing languages, those

trade-offs were largely forced by the original language design.

Here, we look at the design questions around gradual typing in an

unconstrained scenario—what if we design a new language featuring

gradual typing from the ground up? In particular, we explore these

questions for nominal object-oriented programming languages. Designing

a new language from the ground up lets us co-design the features of the

language and its implementation. Accordingly, in this dissertation, we

tackle a variety of design questions of particular importance to gradual

typing, such as decidable subtyping, as well as questions of

iii

implementation, most importantly efficient casting techniques, which we

evaluate using benchmarks from the literature on efficiency in gradual

typing.

The results presented here show that when gradual typing is co-designed

with the rest of the type system and with an eye towards efficiency, it is

possible to obtain both the desired formal properties proposed so far for

gradual type systems and very low overheads due to gradual typing. This

points the way towards a new generation of programming languages that

can be used to seamlessly transition between personal scripting or rapid

prototyping and large-scale software engineering.

iv

B I O G R A P H I C A L S K E T C H

Fabian Muehlboeck was born in Wels, Austria. He obtained a BSc in Soft-

ware & Information Engineering from TU Wien (Vienna, Austria) and

an MS in Computer Science from Northeastern University (Boston, MA,

United States), where he was a Fulbright Exchange Student. After obtain-

ing his Ph.D. in Computer Science from Cornell, he will be a postdoctoral

researcher at IST Austria.

v

A C K N O W L E D G M E N T S

This dissertation is the culmination of six years in Cornell’s PhD program

and all the things that happened before then in order to get there. There

are so many people to thank for providing all kinds of help and support

on the way. I owe a lot of gratitude to so many friends, colleagues, and

mentors—at Cornell, at Google, at Northeastern, at PBS Logitek, and at

TU Wien. There are far too many of them to name them all here, but a few

people and institutions stand out even more than others:

First and foremost, thanks to my advisor, Ross Tate, who not only shared

my vision of programming language design research that is mindful of

and accessible to programming language designers in industry, but also

had the expertise and patience to guide me along this path.

Thanks to my other committee members, Dexter Kozen and Richard

Miller, who greatly supported me and helped me learn a ton of interesting

things that would have otherwise not been immediately on my path.

Thanks to other co-authors, Ben Greenman and Cosmo Viola, whose

skill and dedication was inspiring and who were a pleasure to work with.

Thanks to Kevin Bierhoff, who gave me a great opportunity to learn

about work in programming languages in industry and in particular to

get lots of practical experience with intermediate code.

Thanks to Matthew Milano, who was not just an amazing roommate

and friend, but also an excellent rubber duck for discussing research, and

who answered an insanely high amount of C++ questions.

vi

Thanks to Becky Stewart, who is an amazing Assistant Director of the

PhD program and has skillfully shepherded many cohorts of PhD students

through the program, including me.

Thanks to the Cornell CS department as a whole, its faculty, staff, and

students; I’ll be forever grateful that I could spend some time with you.

There were many people that helped me get there; thanks in particular to

my Master’s advisor Mitchell Wand and second Master’s Thesis reader

Amal Ahmed at Northeastern University, and to the PhD students in the

Programming Research Lab at Northeastern, in particular Paul Stansifer

and Dionna Amalie Glaze, who helped tremendously with my Master’s

Thesis.

In turn, I only got to study at Northeastern because of the Fulbright

Program—lots of thanks to the citizens of Austria and the United States,

and to the Austrian Fulbright commission, for giving me this opportunity.

Thanks to Franz Puntigam at TU Wien, who showed me how interesting

the field of programming languages is.

Thanks to the National Science Foundation, whose CAREER grant to

my advisor1 funded me for most of my PhD.

Lastly, thanks to my parents, Manuela and Wolfram, and the rest of my

amazing family, whose love and support I have been able to count on since

even before I could count.

1 This material is based upon work supported by the NSF under grant CCF-1350182. Any
opinions, findings, and conclusions or recommendations expressed in this material are
those of the author and do not necessarily reflect the views of the NSF. The same holds for
the Fulbright program and any other people and institutions mentioned in here except for
sometimes my collaborators.

vii

The work in this dissertation itself would be a lot worse or non-existent

were it not for the helpful feedback of my thesis committee, numerous

reviewers at various instances of OOPSLA, POPL, and PLDI, various mem-

bers of the gradual typing research community, and the programming

language research groups at Cornell, Northeastern, TU Wien, and IST

Austria. Thanks in particular to Julia Belyakova, Avik Chaudhuri, Ben-

jamin Chung, Jonathan DiLorenzo, Molly Feldman, Matthias Felleisen,

Ronald Garcia, Ben Greenman, Tom Henzinger, Andrew Hirsch, Basil

Hosmer, Andrew Kent, Dexter Kozen, Stephen Longfield, Tom Magrino,

Richard Miller, Greg Morrisett, Andrew Myers, Francesco Zappa Nardelli,

Max New, Artem Pelenitsyn, Benjamin Pierce, Franz Puntigam, Gregor

Richards, Adrian Sampson, Isaac Sheff, Jeremy Siek, Éric Tanter, Ross

Tate, Ewan Tempero, Laure Thompson, Sam Tobin-Hochstadt, Jan Vitek,

Michael Vitousek, IFIP WG 2.16, the Ceylon Team, and the Kotlin Team.

viii

C O N T E N T S

0 introduction 1

0.1 Gradual Typing . 1

0.2 Gradual Typing in Industry 3

0.3 Sound Gradual Typing . 5

0.4 Use Cases for Gradual Typing 7

0.5 A Roadmap for Practical, Sound, and Efficient Gradual Typing 10

0.5.1 Nominality and Typed Libraries 11

0.5.2 Milestones . 11

0.6 Contributions in this Dissertation 14

I decidable subtyping

1 overview 19

2 decidable subtyping with variant generics 23

2.1 Introduction . 23

2.2 Background . 26

2.3 Materials and Shapes . 29

2.3.1 Materials . 30

2.3.2 Shapes . 32

2.3.3 Separating Materials and Shapes 35

2.4 Industry Compatibility . 36

2.4.1 Methodology . 36

2.4.2 Findings . 37

2.4.3 Ceylon . 39

ix

x contents

2.5 Applications . 40

2.5.1 Decidability of Subtyping 41

2.5.2 Equivalences . 46

2.5.3 Joins . 50

2.5.4 Type Variables and Constraints 54

2.5.5 Higher Kinds . 56

2.6 Future Work . 60

2.6.1 Conditional Inheritance 61

2.6.2 Decidable Intraprocedural Type Inference 62

2.6.3 Virtual Types . 63

2.7 Related Work . 64

2.8 Summary . 66

3 integrated subtyping 67

3.1 Introduction . 67

3.2 Motivation . 71

3.3 Formalizing Traditional Union and Intersection Subtyping . 77

3.3.1 Declarative Subtyping 78

3.3.2 Reductive Subtyping 80

3.3.3 Proof Search as an Algorithm 82

3.3.4 Equivalence of Declarative and Reductive Subtyping 83

3.4 Empowering Unions and Intersections 90

3.4.1 Distributivity . 92

3.4.2 Intersectors . 93

3.4.3 Integrated Subtyping 95

3.4.4 Decidability . 96

3.4.5 Integrating . 97

3.4.6 Equivalence of Extended and Integrated Subtyping . 102

contents xi

3.5 Composability . 106

3.6 Application to Ceylon . 107

3.6.1 Unempowered Ceylon 107

3.6.2 Disjointness . 110

3.6.3 Principal Instantiation 111

3.6.4 Classes with Enumerated Cases 113

3.6.5 Object and Null . 116

3.6.6 Composing Features 117

3.7 Variations, Generalizations, Related Work, and Future Work 118

3.7.1 Miminal Relevant Logic and Relaxing Requirements 119

3.7.2 Integrators: Beyond Union and Intersection Types . . 121

3.7.3 Predicative Higher-Rank Polymorphism and Duality 121

3.7.4 Bounded Type Variables and Well-Formed Kind

Contexts . 122

3.7.5 Julia and Changing Kind Contexts 126

3.7.6 Regular-Coinductive Subtyping 127

3.7.7 Semantic Subtyping 128

3.8 Summary . 130

II implementing gradual typing efficiently

4 overview 135

4.1 Background on Gradual Typing 137

4.1.1 Casting Strategies . 138

4.1.2 Properties of Gradual Type Systems 141

4.1.3 Overhead of Gradual Typing 142

4.1.4 Gradual Typing for Object-Oriented Languages . . . 143

5 exploiting nominality for efficiency 145

xii contents

5.1 Introduction . 145

5.2 Towards Well-Behaved and Efficient Gradual Typing 146

5.2.1 Transparency . 146

5.2.2 Immediate Accountability 147

5.2.3 Run-Time Type Information 147

5.2.4 Discussion . 148

5.3 The Optimistic Perspective . 152

5.4 The Type System . 153

5.4.1 Dispatch Modes . 154

5.4.2 Subtyping . 155

5.4.3 Expression Typing . 157

5.4.4 Class and Interface Validation 157

5.5 The Direct Semantics . 161

5.6 The Cast Semantics . 169

5.7 The Guarantees . 174

5.7.1 Immediacy . 174

5.7.2 Immediate Accountability 176

5.7.3 The Gradual Guarantee 178

5.7.4 Transparency . 181

5.8 Experimental Evaluation . 181

5.8.1 The Experimental Compiler 182

5.8.2 Design of Benchmark Programs 183

5.8.3 Benchmark Results . 185

5.8.4 Validity . 189

5.9 Summary . 191

6 transitioning from structural to nominal code 193

6.1 Introduction . 193

contents xiii

6.2 Motivation . 195

6.3 The Calculus . 198

6.3.1 Hierarchy . 199

6.3.2 Fields and Methods 201

6.3.3 Types . 202

6.3.4 Expressions . 203

6.4 The Type System . 208

6.4.1 Precision, Inheritance, and Subtyping 208

6.4.2 Expressions . 209

6.4.3 Classes and Interfaces 214

6.5 The Transition . 219

6.5.1 Changing the Nominal Hierarchy 220

6.5.2 Changing Method Signatures 223

6.5.3 Changing Expressions 224

6.5.4 The Static Gradual Guarantee 229

6.6 Semantics . 230

6.6.1 Semantic Expressions, Values, and Heaps 230

6.6.2 Implicit Casts . 232

6.6.3 Allocation . 235

6.6.4 Invocation . 236

6.6.5 The Dynamic Gradual Guarantee 238

6.7 Implementation . 239

6.7.1 Primitives . 240

6.7.2 Interlude: Monotonic Casting to Generic Interfaces . 242

6.7.3 Heap Values . 243

6.7.4 V-Tables . 244

6.7.5 The Single-Target-Type Hypothesis 246

xiv contents

6.8 Evaluation . 247

6.8.1 Sieve . 250

6.8.2 Intersort . 251

6.9 Summary . 254

7 discussion 255

7.1 Designing for Performance 255

7.2 Scaling to Industry . 258

7.3 Increasing Expressiveness . 259

7.3.1 Types Affect Execution 259

7.3.2 Generics . 261

III generics

8 towards inferable and gradualizable generics 267

8.1 Introduction . 267

8.2 Overview . 269

8.2.1 The Binary-Method Problem, Declaration-Site Vari-

ance, and Decidability 269

8.2.2 Type-Argument Inference 271

8.2.3 Principal Types . 273

8.2.4 Semantic Coherence 274

8.2.5 Joins and Meets . 275

8.2.6 Ambiguity . 276

8.3 Interfaces and Subtyping . 278

8.3.1 Interfaces . 281

8.3.2 Enforcing Constraints 282

8.3.3 Intersection Types . 283

8.3.4 Joins and Meets . 284

contents xv

8.3.5 Type-Argument Inference 291

8.4 Shapes and Satisfaction . 293

8.4.1 Shapes . 293

8.4.2 Shape Satisfaction . 295

8.4.3 Shape Simplification 297

8.5 Method Signatures and Type-Argument Inferability 302

8.5.1 Method Signatures . 306

8.5.2 Higher-Order Parameters 307

8.5.3 Inferability . 309

8.5.4 Inheritance . 311

8.5.5 Practicality . 313

8.6 Expressions and Type-Checking 317

8.6.1 Method Invocation . 318

8.6.2 Decidable Type-Checking 320

8.7 Semantics and Coherence . 320

8.7.1 Method Invocation . 324

8.7.2 Progress, Preservation, and Semantic Coherence . . . 326

8.8 Gradualizability . 327

8.9 Summary . 328

9 epilogue 329

9.1 Future Work . 329

9.1.1 Generics . 329

9.1.2 Branching based on run-time types 330

9.1.3 Optimizations . 332

9.1.4 Gradualizability . 332

9.2 Conclusion . 333

xvi contents

IV appendices

a shape analysis 337

b more on nom 341

b.1 Inferring Dispatch Modes . 341

b.1.1 Restricting Dispatch Modes 342

b.1.2 Resolving Ambiguities 343

b.1.3 Aggregating Return Types 346

b.2 Proof of Soundness . 347

b.2.1 Progress . 350

b.2.2 Pessimistic-Type Preservation 351

b.2.3 Pessimistic Identification 352

b.3 Proof of Semantic Preservation 353

b.3.1 Translation Irrelevance 353

b.3.2 Translation Existence 355

b.3.3 Pessimistic-Valuation Preservation 357

b.3.4 Optimistic-Valuation Reflection 360

b.4 Proof of Guarantees . 363

b.4.1 Immediacy . 363

b.4.2 Gradual Optimism . 366

b.4.3 Gradual Preservation 367

b.4.4 Gradual Reflection . 369

c more on monnom 375

c.1 Benchmark Result Charts . 375

d more on generics 377

d.1 Corpus Study . 377

d.1.1 C# . 378

contents xvii

d.1.2 Ceylon . 381

d.1.3 Java . 382

d.1.4 Kotlin . 384

d.2 Case Study . 385

d.2.1 Extensions . 385

d.2.2 Library . 388

d.3 Formalization Index . 402

d.4 Term Typing and Equivalence 406

bibliography 413

L I S T O F F I G U R E S

Figure 0.1 Type Annotation Example 1

Figure 2.1 Type Family Example 33

Figure 2.2 Infinite Subtyping Example 42

Figure 2.3 Algorithmic Subtyping Rules 43

Figure 2.4 Termination Measures 45

Figure 2.5 Higher-Kinded Types 55

Figure 2.6 Subtyping for Higher-Kinded Types 57

Figure 2.7 Termination Measure for Higher-Kinded Types . . . 60

Figure 3.1 Declarative Subtyping 78

Figure 3.2 Reductive Subtyping 81

Figure 3.3 Subtyping with Assumptions 87

Figure 3.4 Extended Subtyping 91

Figure 3.5 Definition of DNFc 91

Figure 3.6 Integrated Subtyping 95

Figure 3.7 Definition of dnfφ . 98

Figure 3.8 Subtyping Rules for Ceylon 108

Figure 3.9 Disjointness Extension 111

Figure 3.10 Principal-Instantiation Extension 112

Figure 3.11 Enumerated-Cases Extension 114

Figure 3.12 Object-Null Extension 116

Figure 3.13 Simplified-Ceylon Subtyping System 118

Figure 3.14 Extended Subtyping with Bounded Type Variables 123

xviii

list of figures xix

Figure 3.15 Integrated Subtyping with Bounded Type Variables 124

Figure 3.16 Definition of DNFΘ
u 125

Figure 5.1 Grammar (Nom) . 153

Figure 5.2 Subtyping (Nom) . 155

Figure 5.3 Expression Typing (Nom) 156

Figure 5.4 Class and Interface Validation (Nom) 158

Figure 5.5 Grammar and Terminal Classification (Nom) 159

Figure 5.6 Operational Semantics (Nom) 160

Figure 5.7 Implementation Validation (Nom) 165

Figure 5.8 Cast Semantics (Nom) 170

Figure 5.9 Optimism/Precision Relation (Nom) 179

Figure 5.10 Benchmark Results (Nom/Racket/C#) 186

Figure 5.11 Benchmark Results (Nom/Reticulated Python) . . . 188

Figure 6.1 Grammar of Nominal Hierarchy (MonNom) 199

Figure 6.2 Grammar of Expressions (MonNom) 204

Figure 6.3 Precision, Inheritance, and Subtyping (MonNom) . 210

Figure 6.4 Expression Typing (MonNom) 211

Figure 6.5 Hierarchy Typing (MonNom) 216

Figure 6.6 Hierarchy Precision (MonNom) 221

Figure 6.7 Expression Precision (MonNom) 225

Figure 6.8 Semantics (selected rules) 231

Figure 6.9 Cast and Invocation Semantics 234

Figure 6.10 Sieve Benchmark Results (MonNom) 251

Figure 6.11 Intersort Benchmark Results (MonNom) 253

Figure 8.1 Programs and Hierarchies (Generics) 278

Figure 8.2 Interfaces (Generics) 280

Figure 8.3 Types and Subtyping (Generics) 285

Figure 8.4 Type-Argument Substitution (Generics) 288

Figure 8.5 Shapes (Generics) . 294

Figure 8.6 Conditionally Satisfied Shapes (Generics) 296

Figure 8.7 Shape Satisfaction (Generics) 298

Figure 8.8 Method Signatures (Generics) 303

Figure 8.9 Expressions (Generics) 314

Figure 8.10 Semantics (Generics) 321

Figure 8.11 Program-Argument Substitution 323

Figure A.1 Shapes Found in Shape Analysis 337

Figure A.2 Projects for Shape Analysis 338

Figure A.3 Projects for Shape Analysis (contd.) 339

Figure B.1 Errors without Evaluation Contexts 348

Figure B.2 Reduction Rules without Evaluation Contexts . . . 349

Figure B.3 Program Refinement 354

Figure B.4 Program Translation 356

Figure B.5 Lapses without Reduction 361

Figure C.1 Bar Graph for MonNom Sieve Results 375

Figure C.2 Bar Graph for MonNom Intersort Results 376

Figure D.1 Full Grammar (Generics) 402

Figure D.2 Static-Formalization Index 404

Figure D.3 Term Typing (Generics) 406

Figure D.4 Type Equivalence (Generics) 410

Figure D.5 Term Equivalence (Generics) 411

xx

list of tables xxi

L I S T O F TA B L E S

Table D.1 Type Parameter Inferability (C#) 378

Table D.2 Method Signature Inferability (C#) 379

Table D.3 Type Parameter Inferability (Ceylon) 381

Table D.4 Method Signature Inferability (Ceylon) 382

Table D.5 Type Parameter Inferability (Java) 383

Table D.6 Method Signature Inferability (Java) 383

Table D.7 Type Parameter Inferability (Kotlin) 385

Table D.8 Method Signature Inferability (Kotlin) 385

0
I N T R O D U C T I O N

0.1 gradual typing

“[...] languages that literally
provide static and dynamic
typing in the same program, with
the programmer controlling the
degree of static checking by
annotating function parameters
with types, or not. We use the
term gradual typing for type
systems that provide this
capability.” Siek and Taha [2006]

Gradual typing is the relatively recent idea that programming languages

need not exclusively follow the static or the dynamic typing discipline [Gron-

ski et al., 2006; Matthews and Findler, 2007; Siek and Taha, 2006; Tobin-

Hochstadt and Felleisen, 2008]. Rather, in gradually typed languages,

programmers can trade off the costs and benefits of static and dynamic

type-checking differently in different parts of their programs, and ideally

also change their opinion on those trade-offs later. Usually, the program-

mer indicates their choice of static vs. dynamic type-checking by whether

or not they write down type annotations—having annotations means that

this part of the program should be statically type-checked. For exam-

ple, in Figure 0.1, the version of add on the left would be dynamically

type-checked, and the version of add on the right would be statically

type-checked.

function add(x, y)
{

return x+y;
}

function add(int x, int y) : int
{
return x+y;

}

Figure 0.1: A function without (left) and with (right) type annotations

1

2 introduction

What are the important differences between the two? On the one hand,

the statically typed version on the right is now already documented in a way

that both humans and computers can understand: the function takes two

integer values and produces an integer value. From this, a programmer can

already infer a lot about how they can use the function, and a computer

can use this both to check that the supposed input-output behavior holds

(in this case by checking that in turn, the basic operation “+” produces an

integer when given two integer arguments), and to optimize the code (in

this case by selecting the plain integer addition operation implemented in

the computer’s hardware).

The dynamically typed version on the left has none of these advantages;

in particular, as “+” may also work on other kinds of data, like floating

point numbers or strings, the function cannot be optimized in the same

way as the statically typed version—the decision about what exactly to do

has to be deferred to run time. On the other hand, this also means that

the dynamically checked function is more flexible—it will accept all kinds

of data and try to run “+” on them, and that might just work, like for

the aforementioned floating point numbers and strings. If, during the run

of the program, it turns out that add was given two arguments that “+”

cannot process, then the program crashes and tells the programmer that

there was a problem in the function add.

In contrast, static type checking gives the programmer a guarantee

that the program will never crash in this way, because if add is only ever

given integers, we know that “+” can process them, and the static type

checker will in turn also check that everything that is given to add can be

processed by it (i.e. is an integer), and so on. This is core to how static type

checking works: every single part of the program is checked to make sure

0.2 gradual typing in industry 3

that, whenever it interacts with other parts of the program, it respects the

annotations of those other parts. When every part respects the annotations

of each other part, we can guarantee that an important class of bugs does

not occur when running the program, namely passing the wrong kind of

data to an operation.

0.2 gradual typing in industry

It turns out that the requirement that one can guarantee that all parts

of a program work together perfectly is rather restrictive, in particular

for smaller-scale programming tasks—in order to satisfy it, one might

have to write a bunch of code to handle every possible corner case in

one’s program. This is particularly cumbersome for people who are just

learning how to program, or for code where it is fine to fail if anything

falls outside of the expected parameters, such as scripts, prototypes, or

code for interfacing with databases or other programs.

It is thus no surprise that a large amount of software written today

is written in dynamically typed languages, where one can indeed just

write the code that is supposed to actually run and not care about any

special cases. JavaScript [ECMA, 2019; Guha, Saftoiu, and Krishnamurthi,

2010] is the main language of the world wide web, Python [Politz et al.,

2013; Rossum, 1995], R [Ihaka and Gentleman, 1996], and Matlab [The

MathWorks, Inc., 2019] have widespread use in science and engineering,

and many website backends are still written in PHP [The PHP Group,

2019]. This is the case despite the downsides of those languages, of which

there are two major ones.

4 introduction

First, dynamically typed languages are usually interpreted and orders

of magnitude slower than their typed and compiled counterparts. The

way Python, R, and Matlab are thus applied in the sciences is mostly as

a scripting interface for powerful and highly optimized libraries written

in languages like C and C++. These scripts are written in such a way

that offloads most of the work to those libraries; however, even the more

optimized libraries may take hours or days to process the large quantities

of data many fields have to deal with today. Thus, a sad experience many

scientific programmers endure is that after a long time of processing,

they discover that a small bug—and oftentimes one that a type checker

would have found—made the program crash and potentially obliterated

all the results of all the hard work the program just did. Moreover, many

users of those high-performance libraries do not have any expertise in

the language the libraries were written in and so cannot even make slight

changes to their interfaces or develop small variants—there is a hard

barrier between the scripting language they work in and the libraries that

do the computationally expensive work.

Second, the checks and documentation provided by type annotations

and static type checking are particularly useful for large software projects

where sometimes hundreds of engineers work on the same code base.Part of the Hack announcement:
“Traditionally, dynamically typed

languages allow for rapid
development but sacrifice the

ability to catch errors early and
introspect code quickly,

particularly on larger codebases.
Conversely, statically typed

languages provide more of a
safety net, but often at the cost of

quick iteration.”—Verlaguet and
Menghrajani [2014]

Type annotations help programmers to pass the right kinds of data to

code written by other programmers, and static type checking notifies

them immediately if they get it wrong. For example, Facebook’s codebase

was originally in PHP and JavaScript, but as the codebase grew larger

and larger, they eventually developed Hack [Facebook, 2016], which is

essentially a gradually typed version of PHP, and Flow [Facebook, 2014], a

type checker for a gradually typed version of JavaScript. Flow is not the

0.3 sound gradual typing 5

only gradually typed version of JavaScript—TypeScript [Microsoft, 2012]

also enjoys widespread use. What Hack, Flow, and TypeScript have in

common is that they are gradually typed in the sense that one can mix

dynamically and statically type-checked code, which was necessary to be

able to interact with the large amount of existing code and to be able to

smoothly transition to a more typed code base. However, they are all also

unsound.

0.3 sound gradual typing

Unsoundness means that the type annotations only serve as (unchecked)

documentation; the best a type checker can do with them is find those

annotations that are clearly inconsistent with other annotations. Recall that

static type-checking depends on the global assumption that every single

part of the program is checked to play well with all the others. When even a

tiny part of the program is not subject to static type-checking, it invalidates

this assumption and therefore all guarantees that static type-checking is

supposed to provide. The lack of these guarantees also precludes using

the type information to optimize the code more, as it would be highly

dangerous to rely on faulty type information.

In contrast to the unsound gradual typing employed by the industry

languages mentioned above, there are also a number of sound gradu-

ally typed languages mostly developed in academia, among them Typed

Racket [Tobin-Hochstadt and Felleisen, 2008], Reticulated Python [Vi-

tousek, Kent, et al., 2014], GradualTalk [Allende, Callaú, et al., 2014], and

Safe TypeScript [Swamy et al., 2014]. To avoid the violations of the assump-

6 introduction

tions the static type checker makes, these languages insert run-time checks

to ensure that those assumptions always hold. What that means, for exam-

ple, is that when the “typed” version of add is called from “untyped” code,Technically the distinction is between
“statically type-checked” and

“dynamically type-checked” code, but
in the rest of this dissertation we will
use the more colloquial terms “typed”

and “untyped”.

the arguments are checked at run time to ensure that they are the integers

that the typed version of add expects—if not, an error can be raised right

there, before we enter a region of the program that is supposed to be free

of such errors. There is just one problem with these languages: so far, all

of them either experience significant overheads because of those run-time

checks in programs where typed and untyped code are mixed, or have

extremely inefficient code at either the fully typed or fully untyped end

of the spectrum. Until Takikawa et al. [2016] proposed a systematic way

of measuring the overhead of gradual typing and found huge overheads

for Typed Racket, this had not received too much attention, but since then

there has been a flurry of work to address the efficiency problem [Bauman

et al., 2017; Feltey et al., 2018; Greenman and Felleisen, 2018; Greenman

and Migeed, 2018; Kuhlenschmidt, Almahallawi, and Siek, 2019; Richards,

Arteca, and Turcotte, 2017; Vitousek, Swords, and Siek, 2017], including

work presented in this dissertation, particularly in Part II.

There is yet another kind of gradually typed language out there: C# [Bier-

man, Meijer, and Torgersen, 2010]. Performance-wise, C# does not really

suffer from huge overheads due to gradual typing, mostly because its

implementation of dynamic type-checking is quite slow (for numbers, see

Section 5.8). The problem for C# is that its type system was designed for

static type-checking, and there are a number of problematic interactions

between gradual typing and other type-system features of C#. In short, C#

grossly violates a property called the Gradual Guarantee [Siek, Vitousek,

Cimini, and Boyland, 2015], which roughly states that adding correct type

0.4 use cases for gradual typing 7

annotations to a program should not change the program’s behavior. The

problem is that in C#, types affect the semantics of a program, and so

without type annotations it is not necessarily always clear what the se-

mantics of a program should be if there could be multiple different valid

annotations.

One thing to note about the existing gradually typed languages men-

tioned so far is that almost all of them are based on existing programming

languages that already had large existing code bases, compilers, runtimes,

and other infrastructure. This greatly reduces the room to maneuver when

adding new features, such as gradual typing, which has ramifications for

just about every part of language design. The goal of the work presented

in this dissertation, on the other hand, is to explore the possibilities if one

were to design a new programming language: we can select and design

the type-system features in such a way that they both interact well with

gradual typing and can be implemented efficiently.

0.4 use cases for gradual typing

When designing a programming language feature, a central question

should be what it will be used for. A gradually typed language will be

used to write both typed and untyped code, where programmers trade off

the advantages and disadvantages of each style as already discussed. Not

only will code be written in one of those styles, it may also be transitioned

from one to the other (usually from untyped to typed) at a later point in

the course of maintaining and extending the code base.

8 introduction

Not all programmers will do all of these things; yet gradual typing

may still come in handy, as whatever style they choose, libraries that they

use might be written in the opposite style. In the following, we give an

overview of concrete use cases one might envision for gradual typing.

1. One of the first use cases of research in gradual typing was adding“Most scripting languages are
untyped and have a flexible

semantics that makes programs
concise. Many programmers find

these attributes appealing and use
scripting languages for these

reasons. Programmers are also
beginning to notice, however, that

untyped scripts are difficult to
maintain over the long

run.”—Tobin-Hochstadt and
Felleisen [2008]

types to untyped languages [Allende, Callaú, et al., 2014; Facebook,

2014, 2016; Microsoft, 2012; Swamy et al., 2014; Tobin-Hochstadt

and Felleisen, 2008; Vitousek, Kent, et al., 2014]. In this use case,

programmers may write both typed and untyped code, interact with

libraries both styles, and transition code between one and the other.

2. In programming education, it is useful for students to be able to

experiment. Experimental code is not necessarily complete; having to

satisfy a type checker that a student does not yet really understand

is an obstacle to building the algorithmic intuition they are supposed

to build early on. On the other hand, it is useful to interact with

(typed) standard libraries that are documented with types to state

clearly how they are supposed to be used and to give informative

error messages when they are used in the wrong way. Thus, gradual

typing can be useful in this setting, even though students themselves

might (at first) only write untyped code.

3. Scripts are simple programs that are written with a particular task

in mind. They are usually written by a single programmer with a lot

of specific assumptions about the state of the system and the input

data that a type checker has no way of knowing, and it is completely

acceptable for the script to crash if those assumptions are violated.

Many of the dynamically typed languages mentioned above are

0.4 use cases for gradual typing 9

also called scripting languages because they are well-suited for this

use-case. Like in education, the usefulness of dynamic type-checking

only applies to the actual script; having the core libraries and any

other libraries that are used be typed has the same advantages here

as above. In addition, sometimes scripts grow beyond the narrow

task they were originally written for, in which case the ability to

transition them to typed code is immensely useful.

4. Even relatively simple programs often need to interact with entities

outside of the program, for example the file system, other programs

like databases, or high-performance libraries. The interfaces to those

entities do not generally perfectly match the type system of one’s

programming language, and are usually written as a best possible fit

that works if used correctly. Gradual typing allows those interfaces to

be typed where possible, and untyped where not, while not forcing

the programmer to write extra code and annotations to work around

the type checker. In such situations programmers that normally write

typed code would benefit from being able to write untyped code in

some places.

5. Lastly, and separately from adding types to untyped languages, soft-

ware developers can use gradual typing to greatly enhance their ex-

perience in the software development cycle. Gradual Typing enables

them to rapidly build prototypes in untyped code—if those proto-

types are successful and their code stabilizes, programmers can then

add type annotations to obtain the benefits of static type-checking,

while still using untyped code for experimental new additions to

the code base. This is a benefit of any gradually typed language that

10 introduction

satisfies the major formal properties that researchers have come up

with so far.

Of these use cases, we already mentioned that the first (adding types

to untyped languages) has received ample attention, but also severely

constrains the design choices one can make both in terms of the type

system and the implementation of gradual typing. It is therefore not

the focus of this dissertation, while the other four are the underlying

motivation for the work presented here.

0.5 a roadmap for practical , sound, and efficient gradual

typing

The goal of this dissertation is to inform the design of gradually typed

object-oriented programming languages that apply to the latter four use

cases discussed above. We aim for these languages to be efficient and

“well-behaved”, that is to say:

1. Static type checking is sound: the static type system does provide

actual guarantees about the program that can be used to reason

about and optimize it

2. Type-system features interact well with each other and in particular

gradual typing

3. It is possible for untyped code to be transitioned to typed code with

little effort, usually just by adding the necessary annotations

0.5 a roadmap for practical , sound, and efficient gradual typing 11

To achieve those goals, we will leverage the fact that we are free to pick

and design the language and its type-system features such that they are

compatible with gradual typing and can be implemented efficiently.

0.5.1 Nominality and Typed Libraries

The first design choice is that the core of the language is a nominal, class- Nominal type systems are those
where types are identified by their
names, not their structure. This
makes it such that types can be
represented very compactly, and
type-checking algorithms do not have
to recurse through the structure of
the type, but through relations
between the type names that the
programmer specified, if any.

based type system like the ones found in Java and C#, and that, like in

those languages, the core libraries of the language are going to be typed.

Nominality, as we will see, enables us to have very efficient run-time type

checks, which we need for soundness. The design choice also allows us to

draw from the feature set of major industrial programming languages. Fi-

nally, it is compatible with all the four latter use cases discussed above—in

each of them, typed core libraries will enhance the experience of program-

mers by providing better documentation, checks and guarantees ahead

of running the program, informative error messages when those checks

fail, and much more efficient code; the downside of typed code is usually

more effort to develop those libraries, which is easily justified for the core

libraries of a language.

0.5.2 Milestones

To make a gradually typed, nominal, object-oriented language practical, it

should have type-system features similar to those found in such languages

today. That is, it should feature things like inheritance, generics and

12 introduction

anonymous functions (“lambdas”), and possibly some form of overloading.

None of these are trivial to include.

The form of those features in current major programming languages

was designed for static type checking: checks happen at compile time,

and so do some type-based decisions that have run-time consequences—

type annotations often affect the semantics of a program, for example in

overloading or generic type-argument inference. With (sound) gradual

typing, some checks now may have to be deferred to run time, and some

type annotations may be changed or not exist at all, which affects any type-

based compile-time decisions—in order for gradual typing to support

transitioning from untyped to typed code, adding or changing a type

annotation should not change “what the program does”.

Our goal for any type checks that are deferred to run-time is pretty clear:

they should finish quickly, and, in particular, they should finish at all. The

latter goal is not a given, either: Grigore [2017] showed Java’s type system

to be undecidable, because of subtyping with generics. However, while

compile-time crashes in rare cases may be acceptable, unpredictable crashes

at run time are not. This means that in order to have any hope of making

gradual typing work reasonably with a nominal object-oriented language

with generics, we need subtyping to be decidable for such languages.

Milestone 1 (Decidability). Subtyping and type checking must be decidable.

With practical ways of making type checking decidable, we can work

on adapting type-system features for efficient gradual typing. Besides

efficiency, it is important to satisfy several theoretical properties, the most

important of which is the Gradual Guarantee [Siek, Vitousek, Cimini, and

Boyland, 2015]. It roughly says that different but valid type annotations

0.5 a roadmap for practical , sound, and efficient gradual typing 13

for a program should not change the semantics of the program—this is

important to allow programmers to transition untyped to typed code

without suddenly changing what the program does. With a basic set

of type-system features that work with gradual typing in hand, we can

show that a nominal object-oriented language with these features can have

efficient run-time type checks.

Milestone 2 (Efficiency). Run-time type checking must be efficient.

Once we have a foundation of an efficient gradually typed language,

we can extend it to have more interesting features. Important features

for modern object-oriented programming languages are generics and

lambdas, both of which usually use some form of local type inference to

be practical. For lambdas, that is particularly problematic with respect

to gradual typing, as their type inference depends on type annotations

in their context to determine the types of arguments, based on which

the return type of the lambda is calculated. Gradual typing means that

the relevant type annotations in the context or anywhere in the code of

the lambda may be missing, such that its return type is now unknown.

However, other typed code somewhere in the program may still expect

the function to have a particular type, such as Int→ Int. For an arbitrary

untyped function, it is impossible to immediately prove that it conforms to

this type. A large amount of work in the area of gradual typing has been

spent on finding and classifying ways of dealing with this problem [Chung

et al., 2018; Greenman and Felleisen, 2018; Greenman and Migeed, 2018;

Siek, Vitousek, Cimini, Tobin-Hochstadt, et al., 2015; Tobin-Hochstadt and

Felleisen, 2008; Vitousek, Kent, et al., 2014]. We similarly need to find one

14 introduction

that can be adapted to let lambdas, and ideally even structural records fit

into our otherwise nominal type system.

Milestone 3 (Structural Values). Support for structural values must integrate

with the nominal type system and still be efficient.

Next, the usability of generics is greatly improved by generic type-

argument inference, where generic type parameters are inferred from

the arguments given to a function. The algorithms used for this in major

industry languages right now are rather ad hoc, incomplete, and prone

to change the semantics of programs with slight changes in the type

annotations or just patches to the compiler [Smith and Cartwright, 2008].

To support gradual typing, type-argument inference needs to be more

stable in the face of changing precision of type annotations, and also

ideally be able to deal with structural higher-order values like lambdas.

Milestone 4 (Practical Generics). Generics need to support type-argument

inference that is compatible with gradual typing, and ideally also with structural

values.

For each of these milestones, the work presented in this dissertation

advances the current state of the art. Of course, there is much more to do

even after those milestones are completed—some important aspects left to

future work are discussed at the end in Section 9.1.

0.6 contributions in this dissertation

The concrete major contributions discussed in this dissertation are:

1. A practical restriction to inheritance relations that makes subtying in

nominal object-oriented languages with variant generics decidable,

0.6 contributions in this dissertation 15

using a straightforward subtyping algorithm (Chapter 2, adapted

from [Greenman, Muehlboeck, and Tate, 2014]).

2. A framework for extending type systems with decidable subtyping

algorithms to also feature union and intersection types(Chapter 3,

adapted from [Muehlboeck and Tate, 2018b]).

3. Experimental results showing that sound gradual typing can be

implemented efficiently, at least in a purely nominal type system

(Chapter 5, adapted from [Muehlboeck and Tate, 2017b]).

4. Experimental results indicating that purely nominal type systems

can be extended with lambdas and records in a way that can still

perform efficiently (Chapter 6).

5. New ways of formalizing gradual typing and design insights for vari-

ous type-system features interacting with gradual typing (Chapters 5,

6, and 8).

6. A demonstration that not all languages can be gradualized due to the

influence types often have on semantics in typed industry languages

(Chapter 7)."

7. A formalization for when generic type arguments can be inferred in

a principled and decidable manner, and in a way that avoids known

incompatibilities with gradual typing (Chapter 8).

All in all, this dissertation will hopefully be useful to whoever works

on designing new, gradually typed, object-oriented languages or wants to

add to this line of research.

Part I

D E C I D A B L E S U B T Y P I N G

1
O V E RV I E W

Decidability is often a property that is viewed as nice to have, but not nec-

essarily essential. In fact, many existing statically typed programming lan-

guages that are in widespread use have type systems that are undecidable,

among them Java [Grigore, 2017], Scala [Dürig, 2010], Haskell [McBride,

2002], and, because of their basis in Java, Kotlin [JetBrains, 2019] and

Ceylon [King, 2013]. Moreover, System F≤, the λ-calculus with subtyping

and bounded second-order polymorphism, is undecidable [Pierce, 1992].

For some languages, like C# [Kennedy and Pierce, 2007] and Julia [Zappa

Nardelli et al., 2018], it is not yet known whether their type system is

decidable (though at least for C# it is very likely). For fully statically typed

languages, one may see the type system as “decidable enough in practice”,

meaning that programmers will most likely not encounter the undecidable

corner cases of the type system in actual programs that they write. Even if

they do, the program simply does not compile, as the type checker will

either crash or signal some other error. While this scenario is annoying,

in particular because crashing compilers usually do not give good error

messages that a programmer can use to fix the problem, no end user

of a compiled program will ever be affected by this undecidability. The

problem becomes a lot more acute in the setting of sound gradual typing,

as it relies on run-time type checks, which, if they are not decidable, may

unpredictably crash a program while it is running. So, in addition to the

19

20 overview

side-benefits of enabling better tooling for programmers in statically (and

gradually) typed languages, having a decidable type system is a practical

necessity for soundly gradually typed languages.

The chapters in this part of the dissertation cover two important results

in decidable subtyping: first, in Chapter 2, that there is a practical way of

restricting inheritance definitions and type argument constraints in class-

based object-oriented languages like Java and C# that makes subtyping

decidable, even using a straightforward specification and algorithm. We

call the underlying principle Material-Shape separation, which in short

divides type declarations into those that are used to describe other types in

recursive inheritance declarations or type argument constraints (Shapes),

and those that are used to describe data that is passed around in the

program (Materials). This result is a key foundation for the rest of the

work discussed in this dissertation. Every other chapter assumes Material-

Shape separation to guarantee decidability of subtyping.

The second result discussed in this part (Chapter 3) covers the decid-

ability of more advanced type-system features, in particular in connection

with union- and intersection types. Union- and intersection types are quite

old and powerful concepts, but have until recently not shown up in many

actual programming languages, much less both of them at once. One

reason for that is that the typing and subtyping algorithms that cover

interactions of union and intersection types with each other and other

type-system features are non-trivial, leading to a large number of works on

particular decidable subtyping algorithms for particular type systems in-

volving union and intersection types [Ancona and Corradi, 2016; Castagna

and Xu, 2011; Dardha, Gorla, and Varacca, 2013; Frisch, Castagna, and

Véronique Benzaken, 2002, 2008; Gochet, Gribomont, and Rossetto, 2005;

overview 21

Hosoya and Pierce, 2003; Viganò, 2000]. Chapter 3 describes a machine-

verified framework that allows decidable type systems to add union and

intersection types such that the resulting type system is decidable and

features distributivity between unions and intersections. Futhermore, the

framework allows its users to reason about the interactions of union and

intersection types with other type-system features to provide even more

powerful reasoning (such as disjointness and distributivity over generics

and function types).

Besides becoming a more and more popular feature in programming

languages in general, union and intersection types can be useful for generic

type-argument inference, as it relies on being able to compute meets

and joins, which unions and intersections trivially represent. Chapter 8

discusses a type system where this is exploited, and the results in Chapter 3

show that such a type system can have several advanced features while

still retaining decidability.

2
D E C I D A B L E S U B T Y P I N G W I T H VA R I A N T G E N E R I C S

This chapter is based on a paper presented at PLDI 2014: Getting F-Bounded

Polymorphism into Shape [Greenman, Muehlboeck, and Tate, 2014].

2.1 introduction

Generics were a long-awaited addition to Java and C#. They finally gave in- In the rest of this chapter, we refer to
parametric polymorphism simply as
polymorphism, excluding other
meanings such as subtype
polymorphism.

dustry developers access to the benefits of parametric polymorphism. But

polymorphism was not originally designed for object-oriented languages,

rather it was tried and tested primarily in functional languages [Milner,

1978]. There is one fundamental difference between typical instances of

these language classes: subtyping. The design and algorithms for polymor-

phism were centered around unification [Baader et al., 2001], a technique

that only works smoothly in type systems without subtyping. Yet subtyp-

ing is a key part of Java, C#, Scala, and numerous other object-oriented

languages, and the question of how to combine polymorphism and sub-

typing needs a solution that is capable of expressing the various idioms

used in practice while still providing sound and complete algorithms for

type checking. Here we provide the foundations of such a solution, one

based on reshaping F-bounded polymorphism [Canning et al., 1989] to

properly match how it is used in practice.

23

24 decidable subtyping with variant generics

Plain bounded polymorphism is the ability to specify the range of types

a type variable can represent. Typically this is done with an upper bound,

i.e. a constraint indicating what classes/interfaces instantiations of a type

variable must implement. This allows the programmer to guarantee the

presence of various methods, such as requiring a type variable to extend

Formattable so that the programmer can safely use the format method.

Thus bounded polymorphism enables programmers to impose the same

requirements and guarantees on type arguments that they can impose on

function parameters and returns.

F-bounded polymorphism is the ability to constrain a type variable

by a type expressed in terms of the type variable itself [Canning et al.,

1989]. In other words, F-bounded polymorphism is the ability to use re-

cursive constraints. This subtle addition significantly increases the power

of type-variable constraints. In particular, F-bounded polymorphism ad-

dresses the issue of binary methods, the pattern that operations such as

comparison and addition need both arguments to have the same type.

With F-bounded polymorphism, one can require a type parameter T to

extend Comparable〈T〉, where Comparable〈T〉 has a comparison method

that only accepts arguments of type T. This way types such as Integer

and String can be compared to themselves but not to other types that

happen to also have a comparison method. Java’s equality design does

not adopt this paradigm, instead declaring equality to exist between all

objects. Consequently, the type checker cannot help identify cases where

the wrong types of objects are being compared, and most implementations

of equals have to first cast its parameter to the correct type.

The main drawback of F-bounded polymorphism is that it requires

inheritance to be recursive. For example, the standard class String imple-

2.1 introduction 25

ments Comparable〈String〉, so the inherited type is defined in terms of

the inheriting type itself. On its own, this is a simple feature, but generics

typically also have some form of variance. That is, a List〈String〉1 can

safely be treated as a List〈Object〉, an ability that is rather useful in prac-

tice, and consequently languages such as C# and Scala provide a way for

programmers to declare that List is covariant [Hejlsberg, Torgersen, et al.,

2010; Odersky, Altherr, et al., 2014]. Dually, something that is comparable

to arbitrary objects can safely be compared to integers, making Comparable

contravariant. Unfortunately, the combination of variance and recursive

inheritance greatly complicates many type-checking algorithms. Indeed,

Kennedy and Pierce proved that even just subtyping is undecidable in

languages supporting these two features [Kennedy and Pierce, 2007].

The key insight in this chapter is that we can recover decidability and

algorithmic simplicity by restricting recursive inheritance to how it is

actually used in practice. We call the classes/interfaces used for recursive

inheritance, such as Comparable, shapes because they describe the higher-

level shape of the type using recursive inheritance. What we recognize is

that shapes are used in a very restricted fashion in practice. In particular,

shapes are never used in parameter types, return types, field types, and

type arguments. Instead, we call the classes/interfaces used in those

locations materials, because they are the types actually used for material

exchanges across the components of a program. Our fundamental finding

is that, should one require materials and shapes to be disjoint sets, the

13.5 million lines of generic-Java code we analyzed would be unaffected

except for where the analysis identified flaws in the designs. We call this

observed property Material-Shape Separation.

1 We use List to represent some read-only list interface.

26 decidable subtyping with variant generics

With this understanding of industry code, we are able to formalize a

decidable type system that is backwards compatible with Java as it exists in

practice. The key insight is that most algorithms need only be defined on

materials, since shapes are only ever used as constraints. Because shapes

encapsulate all recursive inheritance, inheritance amongst materials is well

founded, so even naïve strategies are guaranteed to terminate. With this,

previously open problems such as computable joins can be solved with

simple, direct, and efficient machinery.

The rest of the main content of this chapter is organized as follows:

• Anecdotal evidence suggesting that Material-Shape Separation is

already an unrecognized idiom (Section 2.2)

• A type-theoretic formalization of materials and shapes and Material-

Shape Separation (Section 2.3)

• A large survey of industry code demonstrating the compatibility of

Material-Shape Separation with practice (Section 2.4)

• Type-checking algorithms exploiting Material-Shape Separation to

achieve simplicity and decidability (Section 2.5)

• Potential applications of Material-Shape Separation to open type-

checking challenges and new type-system features (Section 2.6)

2.2 background

Polymorphism and subtyping make a powerful combination, and as such

both have been widely adopted by statically-typed major industry lan-

guages. They also make for a troublesome combination, as Kennedy and

2.2 background 27

Pierce [2007] have shown that even subtyping with variant generics is un-

decidable without restriction. Consequently, Kennedy and Pierce provided

various restrictions that ensure decidability, the most notable of which is

banning expansive inheritance, which has been adopted by C# [Hejlsberg,

Torgersen, et al., 2010]. But that solution requires a complicated algorithm,

has poor blame properties, and does not work for more powerful systems

like Java’s wildcards [Torgersen et al., 2004]. Tate, Leung, and Lerner

[2011] proposed an alternative restriction that guarantees decidability for

wildcards and uses a more efficient algorithm, but their restriction is

less accommodating of contravariance. Regardless of which one might

be better, both solutions grew from algorithmic perspectives, recognizing

current practice only insofar as to show backwards compatibility with

existing code. Thus, their acceptability is conditioned on there not being

any compelling counterexamples. However, the following interface is such

a compelling counterexample to both solutions:

interface List〈out E〉
extends Equatable〈List〈Equatable〈E〉〉〉 {}

Here the definition uses the Equatable interface to express type-safe

equality. Equality is a binary method, and so modern object-oriented

practice suggests it be formulated using F-bounded polymorphism and re-

cursive inheritance. Thus the signature guarantees that all lists implement

type-safe equality. Ideally, we would require that lists of E are equatable

only when E extends Equatable〈E〉; however, most modern languages do

not support such conditional inheritance, a feature we will discuss in

more detail in Section 2.6.1. We bypass this limitation by making List〈E〉

be equatable to lists of Equatable〈E〉, which will only exist when E ex-

tends Equatable〈E〉. Also, when E extends Equatable〈E〉, then List〈E〉

28 decidable subtyping with variant generics

will actually be a subtype of Equatable〈List〈E〉〉 due to the covariance

of List (hence the out annotation on the type parameter E) and the con-

travariance of Equatable (typically expressed with an in annotation). Thus,

List〈String〉 will be equatable with itself and so can be used as, say, the

type of keys for hash maps, which require equality to be defined on their

keys. Consequently, this design presents a solution to the important open

problem of type-safe equality on lists. In fact, we know of no alternative

solution to this problem using just the expressiveness of Java’s or C#’s

generics.

This solution is rejected by both of the existing proposals to restrict

generics for decidability. It uses expansive inheritance by having List〈E〉

use List〈Equatable〈E〉〉 in its inherited type, thereby violating Kennedy

and Pierce’s requirement [Kennedy and Pierce, 2007]. It also uses nested

contravariance, with Equatable being used at a non-covariant position in

the inherited type, thereby violating Tate et al.’s requirement [Tate, Leung,

and Lerner, 2011]. Yet this design is being rejected for reasons that industry

developers would view as purely academic. In other words, the common

case is being sacrificed for the corner case. So, to design a more practical

restriction to generics, one must better understand the common case.

To that end we presented this design to our industry collaborators, and

to our surprise they were strongly opposed to it. Despite the lack of any

type-safe alternatives, and even admitting they found it to be a clever

exploitation of features, they rejected it because they felt like it violated

unwritten, and up to that point unrecognized, design principles. In partic-

ular, to them Equatable is only meant to describe types via constraints; it

is not something to be passed around in lists. Using Equatable as a type

argument violates the accepted use of the interface. From this we devel-

2.3 materials and shapes 29

oped the concept of shapes, e.g. Equatable, and materials, e.g. List, and

we designed a type system and typing algorithms based on the separation

of these two concepts, i.e. the Material-Shape Separation.

Using Material-Shape Separation, we are able to develop a simple sound

and complete subtyping algorithm, one capable of incorporating type

equivalence even in invariant types, a problem raised by Tate, Leung, and

Lerner [2011] and not well addressed by any of the existing proposals for

restricting generics. More importantly, we develop a sound and complete

algorithm for computing the join of two types, a problem raised by Smith

and Cartwright [2008] and also not well addressed by any of the existing

proposals. We can even add higher-kinded constrained type variables

and type lambdas with pointwise higher-kinded subtyping [Pierce and

Steffen, 1997] and still maintain decidability of all these features. Finally, to

justify that all this is indeed compatible with widespread industry practice

and not just limited to our collaborators, we surveyed 13.5 million lines

of open-source generic-Java code and found no violations of our design

assumptions. Thus we have a decidable type system, with simple and

efficient algorithms, that matches hitherto-unwritten design principles of

industry practitioners.

2.3 materials and shapes

In this section, we define materials and shapes in full detail. This section

culminates with the formalization of Material-Shape Separation, the key

observation enabling the algorithms presented in Section 2.5. But first, we

must establish the formal setting we are working within.

30 decidable subtyping with variant generics

When discussing generics, variance is an important challenge. In Sec-

tion 2.2, we used declaration-site variance, which is used by C# and

Scala [Hejlsberg, Torgersen, et al., 2010; Odersky, Altherr, et al., 2014].

However, here we will be using use-site variance, a simplification of Java

wildcards [Gosling, Joy, Steele, and Bracha, 2005]. Tate [2013] discusses

the relationships between these systems , but for this chapter one need

only understand that use-site variance is more expressive than declaration-

site variance and discards the implicit constraints of wildcards, since the

complications of implicit constraints far outweigh their usefulness [Tate,

Leung, and Lerner, 2011].

In our simplified formalism, classes/interfaces C have exactly one type

parameter; all the rules, algorithms, and proofs will be extended to arbi-

trary type parameters in Section 2.5.5. More importantly, when supplying

a type argument to a class/interface, one provides both an in bound and

an out bound. In terms of arrays, the in bound is what can be put into the

array, and the out bound is what can be taken out of the array. Formally,

the in bound is the argument to the contravariant portion of the class/in-

terface and the out bound is the argument to the covariant portion of the

class/interface. We also use ⊥ and > as the subtype and supertype of

all types. That way Java’s C〈? extends τ〉 can translate to C〈in ⊥ out τ〉,

and C〈? super τ〉 to C〈in τ out >〉.

2.3.1 Materials

Materials are the classes/interfaces exchanged between separate compo-

nents of a program and stored within the components of a program. More

2.3 materials and shapes 31

formally, they are the classes/interfaces that are used as parameter and

return types for functions/methods/constructors as well as types of fields.

Consequently, most classes/interfaces are materials.

SupposingM is the subset of classes/interfaces C that are materials, we

define the grammar of our parameterized types as follows:

τ̇ ::= ⊥ | > | M〈in τ̇ out τ̇〉 | ·

The · represents the single parameter of the inheriting type; a complete

discussion of type variables appears in Section 2.5.4.

Observe that we make parameterized types τ̇ be comprised of only

materials. However, any class/interface can inherit any other; only the

type arguments are restricted to materials. Thus we formalize inheritance

as a relationship of the following form:

C〈 · 〉 <:: C ′〈τ̇′〉

We do not impose a grammar for specifying inheritance, rather we

leave that to the language and assume it provides one. Consequently,

we demand the following three properties in order to accurately model

inheritance:

transitivity

C〈 · 〉 <:: C ′〈τ̇′〉 ∧ C ′〈 · 〉 <:: C ′′〈τ̇′′〉

⇓

C〈 · 〉 <:: C ′′〈τ̇′′[· 7→ τ̇′]〉

finiteness For all classes/interfaces C and C ′, the set of parameterized

types τ̇′ such that C〈 · 〉 <:: C ′〈τ̇′〉 holds is finite.

acyclicity There is no C and τ̇′ such that C〈 · 〉 <:: C〈τ̇′〉 holds.

32 decidable subtyping with variant generics

Typically this relationship will be derived from some simpler one via

transitive closure, but we require transitivity in order to simplify many of

our formalisms. Nonetheless, with a little care one can easily reformulate

our system for a non-transitive inheritance relationship. On a related note,

we will use ≤:: to denote the reflexive closure of <::.

2.3.2 Shapes

Shapes capture the recursive aspects of inheritance and are the reason

we need F-bounded polymorphism [Canning et al., 1989] rather than

just plain bounded polymorphism. For example, the common Java inter-

face Comparable is a shape because classes such as Integer implement

Comparable〈Integer〉, a type defined in terms of the class/interface inher-

iting it. In current practice, only a few classes/interfaces are shapes, but

those classes/interfaces are often used widely throughout the project.

From our observations, shapes arise in practice for two main reasons.

The primary one is to encode a form of self types [Bruce, Odersky, and

Wadler, 1998]. That is, the type parameter of the shape is meant to represent

the type implementing that shape. This is useful for binary methods, such

as comparisons and equalities, as well as algebraic operations, such as

addition, negation, and multiplication. Negation is an important example

because it illustrates that self types are not just used for binary methods.

The second use of shapes is type families [Ernst, 2001]. A type family is

a codependent group of classes/interfaces. A classic example is graphs,

edges, and vertices. A graph consists of edges and vertices; edges connect

vertices and reside within a graph; and vertices have connecting edges

2.3 materials and shapes 33

interface Graph〈G extends Graph〈G, E, V〉
E extends Edge〈G, E, V〉,
V extends Vertex〈G, E, V〉〉 {

List〈V〉 getVertices();
}
interface Edge〈G extends Graph〈G, E, V〉,

E extends Edge〈G, E, V〉,
V extends Vertex〈G, E, V〉〉 {

G getGraph();
V getSource();
V getTarget();

}
interface Vertex〈G extends Graph〈G, E, V〉,

E extends Edge〈G, E, V〉,
V extends Vertex〈G, E, V〉〉 {

G getGraph();
List〈E〉 getIncoming();
List〈E〉 getOutgoing();

}

class Map extends Graph〈Map, Road, City〉 {...}
class Road extends Edge〈Map, Road, City〉 {...}
class City extends Vertex〈Map, Road, City〉 {...}

Figure 2.1: A type family for graphs, edges, and vertices

and reside within a graph. The challenge is designing this group such that

when one extends it, say with mutability, then all components can refer

to the other components and know they are also mutable. To accomplish

this with shapes, each interface takes three type parameters, one for

graphs, one for edges, and one for vertices, and all bounded to indicate so.

Extensions of the type family then impose additional constraints on the

type parameters to indicate the guaranteed additional functionality. We

illustrate this design pattern in Figure 2.1.

34 decidable subtyping with variant generics

To formalize the recursive nature of inheritance with shapes, we first

define a labeled graph describing how classes/interfaces are used in

inheritance:

C〈 · 〉 <:: C ′〈τ̇′〉

C → C ′

C〈 · 〉 <:: C ′〈τ̇′〉 C ′′ occurs in τ̇′

C C
′
−→ C ′′

If one were to require classes/interfaces to inherit only types that are al-

ready defined, then this usage graph would be acyclic, and subtyping can

be proven decidable by using a topological ordering of the classes/inter-

faces. However, in a system with recursive inheritance, such a topological

ordering does not exist. Shapes S are the classes/interfaces such that ifA common misconception, partly
based on the common examples for
them, is that shapes are interfaces

and materials are classes. It is worth
stressing that both can be either, and
whether something must be a shape

or not is solely determined by how it
is used in the inheritance hierarchy.

the edges labeled with shapes were removed from the usage graph then it

would be acyclic. Thus shapes are the classes/interfaces preventing the

topological ordering that would make subtyping easily decidable.

As an example, consider the following class declarations.

interface Comparable〈E〉 {}
class Vector〈E〉 {}
class Matrix〈E extends Comparable〈E〉〉

extends Vector〈Vector〈E〉〉{}
class Float extends Comparable〈Float〉 {}

These result in the following usage graph.

Vector Matrix Float

Comparable

Vector Comparable

The unlabeled edge from Matrix to Vector is due to the direct exten-

sion class Matrix extends Vector〈...〉 and the labeled edge is due to

2.3 materials and shapes 35

Vector〈X〉 being the type argument to Vector〈...〉 in that extension. The

Float class has a self loop labeled Comparable, creating a cycle in the usage

graph containing Comparable, indicating that Comparable is a shape. Note

that the constraint on Matrix’s parameter E has no effect on this graph; we

discuss the role of type variables in Section 2.5.4.

2.3.3 Separating Materials and Shapes

While it is theoretically possible to have a class/interface be used as both

a material and a shape, our aforementioned interaction with developers

suggests there is a natural tendency to keep these two patterns separate.

Here we formalize that assumption.

Material-Shape Separation. LetM be all classes/interfaces used as type argu-

ments. For some set S of classes/interfaces such that removing all edges labeled

with an element of S from the usage graph results in an acyclic graph,M and S

are disjoint.

Although this formalization does not need M and S to cover C, it is

convenient to simply define M as all non-shapes. In this way, unless a

programmer explicitly declares a class/interface to be a shape, they are free

to use that class/interface without restriction outside the class/interface

hierarchy.

Under this design, our List example is still rejected, but for more intu-

itive reasons. First, the designer would specify that Equatable is a shape.

Then, when defining List, our system would indicate that Equatable

cannot be used as an argument to List due to being a shape. Hence the

cause and effect are clear to the designer, who can then focus on finding a

36 decidable subtyping with variant generics

type-safe alternative. Regrettably, this leaves our problem with Equatable

unsolved, which we defer to future work as discussed in Section 2.6, but it

prevents programmers from creating unconventional designs, assuming

that such designs are indeed unconventional, which we verify in the next

section.

2.4 industry compatibility

To support our claim that Material-Shape Separation captures an industry-

wide idiom, we present the findings of our scientific inquiry into current

practices. Over 13.5 million lines of generic-Java code across a total of

62 open-source projects, taken primarily from the Qualitas Corpus [Tem-

pero et al., 2010], show no alarming cases where separation was broken. A

table of all projects we analyzed and some relevant statistics we collected

can be found in Figure A.2 in Appendix A. Projects ranged in scale and

function from the jFin finance library to the massive NetBeans IDE, the

median size being approximately 60,000 lines of code. As such, our sample

set contains a wide range of styles and design principles. Nevertheless,

the projects conformed to our system, suggesting that one can enforce

Material-Shape Separation in existing languages, as well as in new ones,

without breaking compatibility with existing code bases.

2.4.1 Methodology

After forming our collection of projects, we modified the source code of

openjdk to generate the usage graphs of Section 2.3.2 from the classes/in-

2.4 industry compatibility 37

terfaces of each project. From these graphs, we extracted the labels of the

edges constituting simple cycles. These labels formed our set of shapes S ,

and all other classes/interfaces formed our set of materialsM. Another

compiler pass then searched for occurrences, if any, of shapes being used

as materials, thereby violating Material-Shape Separation.

2.4.2 Findings

Barring a few caveats discussed below, the entire body of 62 projects never

violated Material-Shape Separation. In fact, every shape we encountered

was either an encoding of self types or type families, as we had expected.

The type family we encountered happened to be precisely for representing

graphs. In the findbugs project, interfaces GraphVertex and GraphEdge,

and classes AbstractVertex and AbstractEdge, constituted type families

at the interface level, and at the class level, similar to the design in Fig-

ure 2.1. Some custom shapes, hadoop’s WritableComparable as well as

findbugs’s AnnotationEnumeration, are simple extensions of Comparable.

In fact, WritableComparable is actually just an encoding of an intersection

type, which will be discussed in Section 2.5.2. As for self types, Comparable

and Enum are the two incorporated into Java’s libraries and are the most

widely used. Moreover, the remaining nine remaining shapes were all

custom applications of self types. All counted, there were 17 shapes in

total, listed in Figure A.1 in Appendix A, none of which were used as

materials.

38 decidable subtyping with variant generics

Caveats

The above statements make a few simplifications, namely eliding technical-

ities caused by programmer errors and Java limitations. First, there were

uses of the shapes outside of inheritance and type-variable constraints.

However, all these uses were in the form of raw types (except in one case

where the type argument was simply an unconstrained wildcard, thereby

not utilizing the type argument). That is, the programmers used shapes as

materials only when bypassing Java’s type system, sacrificing type safety.

These were either results of poor utilization of generics (e.g. failing to use

F-bounded polymorphism in order to ensure type safety) or involved cast-

ing wherein Java can only enforce raw types due to type erasure [Gosling,

Joy, Steele, and Bracha, 2005].

Because none of these uses of shapes as materials actually used their

type argument, it is still possible to incorporate them into our system. For

each shape, we can associate a new parameterless material inherited by

the shape. This material is not inherited recursively, so it is not a shape.

We can substitute all the above raw (or wildcarded) misuses of the shape

with the new parameterless material inherited by that shape. Thus, since

the arguments of shapes are never used in the code bases, through this

encoding they still all satisfy Material-Shape Separation. Regardless, it is

better to view these few instances as abuses of the type system rather than

as reflective of design principles.

The second caveat is due to the following class in openjdk:

public class Env〈A〉 implements Iterable〈Env〈A〉〉 {}

Because of this one class, we originally inferred Iterable to be a shape,

even though this inheritance clause is never actually made use of by the

2.4 industry compatibility 39

code base nor exposed by the API and so should not have been present.

Iterable is used widely as a material, so this inference caused many false

alarms, demonstrating the danger of inferring shapes rather than having

them be explicitly identified by the programmer.

2.4.3 Ceylon

One might be surprised by how few shapes we discovered in use: roughly

one shape per million lines of code. However, every shape had a key and

distinct role in its respective architecture design. We simply have recog-

nized these as special cases and classified their distinction. Nonetheless,

one might worry that our observations may not persist over more designs

given the limited sample we draw our conclusions from here. Similarly,

our observations might only apply to Java because of the burden Java

imposes upon using generics. To address this issue, we have adapted our

analysis to Ceylon, a language recently designed and released by Red

Hat that fully embraces generics. Self types and type families are directly

supported by Ceylon, and Ceylon uses shapes to support features such

as operator polymorphism [King, 2013]. Thus, shapes appear much more

frequently in Ceylon than in Java, providing a denser sample.

We presented Material-Shape Separation and our corresponding results

to the Ceylon team. They found the analysis and applications compelling

and simple enough that within a day they had implemented a branch

of their compiler that enforced Material-Shape Separation. They decided

to treat precisely the self types and type families as shapes instead of

using our inference technique. They used the modified compiler on all

40 decidable subtyping with variant generics

the committed code that had been developed in the language, either by

the designers implementing core modules or by contributors adding new

modules to the open-source project, and found only one counterexample to

Material-Shape Separation. This counterexample was a labeled-tree design

similar to the problematic Tree example to be discussed in Section 2.5.1.

It was a quickly-drafted practical implementation of a JSON API, and its

design was already in contention at the time. Furthermore, this instance

is easily resolved by adding a children attribute to the class in place of

the extension clause, similar to the example we include in Section 2.6. The

designers have continued to confirm that unconstrained programmers still

naturally adhere to Material-Shape Separation even with their more ex-

pressive type system. Their current stance is that they will likely integrate

Material-Shape Separation into Ceylon 2.0.

2.5 applications

Having introduced the formal definitions of materials and shapes and

demonstrated their compatibility with existing code bases, we now de-

scribe how we can exploit our newfound Material-Shape Separation to

design simple, sound, and complete type-checking algorithms. This section

presents five results immediately realizable through shapes: the decid-

ability of subtyping, the support for non-syntactic type equivalence, the

existence of joins, the ability to constrain type variables, and the incorpo-

ration of higher-kinded types. In Section 2.6, we will discuss additional

existing challenges and new features we hope to address in future work

by extending the techniques we present here.

2.5 applications 41

2.5.1 Decidability of Subtyping

Recall the example List design:

interface List〈out E〉
extends Equatable〈List〈Equatable〈E〉〉〉 {}

javac2 handles most uses of this design correctly. However, this design

violates both Kennedy and Pierce’s and Tate et al.’s restrictions on gener-

ics [Kennedy and Pierce, 2007; Tate, Leung, and Lerner, 2011], and conse-

quently we can use it to cause javac to stack overflow.

Consider the following use of the List design:

class Tree extends ArrayList〈Tree〉 {}

In one line, it implements a mutable unlabeled tree. Furthermore, since

ArrayList implements List, we also get the correct equality implementa-

tion for trees with no additional effort. But upon actually equating two

trees, javac throws a StackOverflowError.

Understanding why the type checker fails is crucial to understanding

the surprising challenges behind generics. To check a use of the equality

operation, the type checker needs to verify that the left type implements

Equatable of the right type. Here this reduces to checking that Tree is a

subtype of Equatable〈Tree〉. This simple question evolves into the infinite

progression of subtyping reductions shown in Figure 2.2.

Note that the final state of the above is the same as the initial state,

forming a loop that causes the infinite digression. What is surprising is that

this infinite digression corresponds to a valid infinite proof of subtyping

(refer to Tate et al. for more details [Tate, Leung, and Lerner, 2011]). These

2 When we refer to javac we mean the OpenJDK 1.7.0_25 type checker.

42 decidable subtyping with variant generics

Tree <: Equatable〈Tree〉
⇓ (inheritance)

ArrayList〈Tree〉 <: Equatable〈Tree〉
⇓ (inheritance)

List〈Tree〉 <: Equatable〈Tree〉
⇓ (inheritance)

Equatable〈List〈Equatable〈Tree〉〉〉 <: Equatable〈Tree〉
⇓ (contravariance)

Tree <: List〈Equatable〈Tree〉〉
⇓ (inheritance)

ArrayList〈Tree〉 <: List〈Equatable〈Tree〉〉
⇓ (inheritance)

List〈Tree〉 <: List〈Equatable〈Tree〉〉
⇓ (covariance)

Tree <: Equatable〈Tree〉
...

Figure 2.2: Infinite Progression of Subtyping Reductions

infinite proofs are what make subtyping so difficult to decide, since they

imply that an algorithm can in fact make good progress in each step but

still never be able to finish. However, with Material-Shape Separation, all

proofs of subtyping are finite, so any such algorithm is guaranteed to

terminate.

To demonstrate this, we first formalize extended types σ. Extended types

are not used in practice, but we can guarantee decidable subtyping even

for extended types, so we present them here to provide more informed

options for language designers.

σ := ⊥ | > | C〈in σ out σ〉

2.5 applications 43

τ̇ τ̇[· 7→ σi; σo]

⊥ ⊥
> >
· σo

M〈in τ̇i out τ̇o〉 M〈in τ̇i[· 7→σo; σi] out τ̇o[· 7→σi; σo]〉

Subtyping ` σ <: σ

` ⊥ <: σ ` σ <: >

C〈 · 〉 ≤:: C’〈τ̇′〉 ` σ′i <: τ̇′[· 7→ σo; σi] ` τ̇′[· 7→ σi; σo] <: σ′o
` C〈in σi out σo〉 <: C’〈in σ′i out σ′o〉

Figure 2.3: Algorithmic subtyping rules

The primary difference between σ and τ̇ is that σ allows arbitrary class-

es/interfaces C rather than just materials M. Consequently, extended

types may use shapes, even as type arguments. The intuition behind this

is that, for subtyping, our separation of materials and shapes need only be

imposed upon the class/interface hierarchy and not on types elsewhere in

the program. The second difference is that σ is not parameterized; we will

address the issue of type variables shortly in Section 2.5.4.

Figure Figure 2.3 formalizes subtyping on extended types. The rule for

subtyping classes/interfaces combines inheritance and use-site variance

into one step. The subtlety here is substitution, described in the table in

Figure Figure 2.3 above the subtyping rules, which has to deal with the

fact that there are two type arguments for a single type parameter. This

substitution replaces all contravariant uses of the type parameter with the

in argument, and all covariant uses with the out argument. This technique

combines the subtyping and tight-approximation algorithms of Tate [2013]

into one rule.

44 decidable subtyping with variant generics

The subtyping rules are syntax directed and so specify a sound and

complete decision algorithm provided we can guarantee the process termi-

nates. Our finiteness assumption on <:: prevents infinite branching at any

point. Consequently, the only remaining source of non-termination is the

potential for infinite proofs, much like in our example earlier. This brings

us to our main theorem.

Theorem 2.1. Under Material-Shape Separation, all proofs of subtyping as

specified in Figure 2.3 are finite.

Proof. The major insight is that Material-Shape Separation implies that

new uses of shapes are never introduced when applying inheritance in

subtyping since shapes can never occur in the type arguments of inherited

classes/interfaces. Thus we can define a well-founded two-part measure

on extended types σ.

The first part, bσc formalized in Figure 2.4, is the maximum layering

depth of shapes in the extended type, where a layer is a shape occurring

syntactically inside a type argument to another shape. This part of the

measure is completely agnostic to the inheritance hierarchy, since we

know that inheritance cannot introduce new layers of shapes so long as it

satisfies Material-Shape Separation. Thus recursion in inheritance causes

no problems.

The second part, |σ| formalized in Figure 2.4, specifies the maximum

number of proof steps that can be taken from any situation where σ is

on either side of a subtyping judgement until reaching a shape at the top

level (thereby next reducing the first part of the measure) or terminating.

The challenge is to prove that this measure is well defined; in other words,

the calculation |σ| must terminate. This is clear by structural induction

2.5 applications 45

σ bσc : N

⊥ 0
> 0
M〈in σi out σo〉 max(bσic, bσoc)
S〈in σi out σo〉 1 + max(bσic, bσoc)

σ/τ̇ |σ/τ̇| : N/Ṅ

· ·
⊥ 0
> 0
M〈in σi/τ̇i out σo/τ̇o〉 1 + MM[· 7→ max(|σi/τ̇i| , |σo/τ̇o|)]
S〈in σi/τ̇i out σo/τ̇o〉 0

MM = max(· , max
M〈 · 〉<::M’〈τ̇〉

MM′ [· 7→ |τ̇|])

We implicitly lift max and 1+ to parameterized integers.

Figure 2.4: Measures for extended/parameterized types

provided each parameterized measure MM is well defined. The parame-

terized measure MM is a function on measures indicating how applying

inheritance affects the measure of aM type. The key observation is that

MM only uses the parameterized measures of inherited materials. Due

to Material-Shape Separation, well foundedness of material inheritance

enables us to assume that those parameterized measures are already well

defined, thereby making MM well defined.

This two-part measure on types can be adapted into a measure on

subtyping judgements. We define the measure of a judgement ` σ <: σ′

as the lexicographic ordering (bσc+ bσ′c) followed by (|σ|+ |σ′|). One

can easily verify that for each rule the measure of the premises is always

strictly less than the measure of the conclusion, thereby guaranteeing that

any proof will be finite even if infinite proofs were permitted.

46 decidable subtyping with variant generics

Corollary 2.1. Under Material-Shape Separation, subtyping as specified in

Figure 2.3 is decidable.

What is remarkable about this result is that our subtyping algorithm is

more naïve than prior solutions and yet is still both sound and complete

under Material-Shape Separation. For example, Kennedy and Pierce’s

prohibition against expansive inheritance does not prevent infinite proofs;

it only ensures all infinite proofs eventually cycle thanks to results from

Viroli [2000]. Therefore, their algorithm requires keeping a list of all the

subtyping judgements that arose earlier in the recursion stack and checking

them against the current judgement for syntactic identity before proceed-

ing to process the judgement as usual in order to determine if they are in

an infinite cyclic proof [Kennedy and Pierce, 2007]. While not as computa-

tionally difficult, Tate, Leung, and Lerner [2011] prevent infinite recursion

by treating invariant types as a special case using syntactic unification.

Notice that both these approaches rely on syntactic identity, whereas we

only use recursion, which brings us to our next contribution.

2.5.2 Equivalences

Syntactic identity of types can be troublesome for type systems in which

there are multiple ways to express the same type. In practice, this has

not been a large problem because many existing type systems have the

property that all equivalent types are syntactically identical. However,

newer and more expressive languages cannot rely on syntactic identity.

Tate, Leung, and Lerner [2011] presented some issues with this flawed

assumption in Java, illustrating that semantically equivalent types can be

2.5 applications 47

written differently and that consequently javac rejects programs due to

such shallow syntactic differences. Tate, Leung, and Lerner [2011]’s own

algorithm actually also relies on syntactic identity, so they describe a com-

plex multipass process for canonicalizing types. Ideally such complications

would not be necessary because they can be rather brittle and sensitive to

changes in the language design. Our system has no such problem. Syntac-

tic identity is never used in our subtyping algorithm, so type equivalences

are already incorporated and decidable.

To describe the circumstances more formally, let us suppose we make

the following extension to our types:

τ̇ ::= · · · | M〈!τ̇〉

σ ::= · · · | C〈!σ〉

The ! annotation indicates an invariant usage of the type argument. In

many systems, this is the default. We previously used only the in and

out arguments because ! represents the special case where both argu-

ments are the same; however, existing type systems are more accurately

formalized with an ! annotation.

In such systems, subtyping is specified with the following additional

rules:

C〈 · 〉 ≤:: C ′〈τ̇′〉 ` σ′i <: τ̇′[· 7→ σ] ` τ̇′[· 7→ σ] <: σ′o

` C〈!σ〉 <: C’〈in σ′i out σ′o〉

C〈 · 〉 ≤:: C’〈τ̇′〉 τ̇′[· 7→ σ] = σ′

` C〈!σ〉 <: C’〈!σ′〉

48 decidable subtyping with variant generics

The second rule uses syntactic identity. This is the status quo in many

type systems and algorithms, but it does not interact well with other type

features.

To demonstrate the problem, suppose we were to add intersection types.

To do so, we would make the following extensions to our system:

τ̇ ::= · · · | τ̇ ∩ τ̇

σ ::= · · · | σ ∩ σ

` σi <: σ′

` σ1 ∩ σ2 <: σ′

` σ <: σ′1 ` σ <: σ′2

` σ <: σ′1 ∩ σ′2

With intersection types one can require a field to be both iterable and

serializable using the type Iterable〈T〉&Serializable. Such a type is not

expressible in Java, and consequently programmers often opt to leave the

Serializable requirement implicit and manually cast when necessary,

somewhat defeating the purpose of a static type system.

Given such a feature, one might eventually obtain an object of type

Array〈Iterable〈T〉&Serializable〉, where Array is an invariant type (we

have slipped to declaration-site variance for sake of clarity). Similarly, a

function might need an object of type Array〈Serializable&Iterable〈T〉〉.

The question is whether the former can be used for the latter. The answer

seems to be obviously yes, since ∩ is a commutative operator, but the

type systems and algorithms using syntactic identity would reject such

a coercion since the two intersections are written differently. At first this

might seem easy to fix, but the problem is subtler than it appears. In

particular, Serializable and Iterable have no direct connection to each

2.5 applications 49

other, making this is an easy example. But we could also have the type

Iterable〈T〉&List〈T〉〈,〉 in which case the left is a supertype of the right

and therefore redundant. That is, Iterable〈T〉&List〈T〉〈i〉s equivalent to

List〈T〉. Thus determining equivalences of intersections relies on subtyp-

ing, and determining proper subtyping relies on determining equivalences,

producing a circularity.

This troublesome circularity is best illustrated with the following class

definition:

class Foo extends Array〈Foo&Array〈Foo〉〉 {}

Now consider whether Foo is a subtype of Array〈Foo〉. The subtyping

holds iff Foo&Array〈Foo〉〈i〉s equivalent to Foo, and that equivalence holds

iff Foo is a subtype of Array〈Foo〉. Thus we have a circular dependency,

so we can answer yes to both or no to both and in either case we have a

consistent system. This situation is due to the problematic infinite proofs

we discussed earlier.

Fortunately, having observed Material-Shape Separation, we recognize

that the above example is impractical and need not be addressed. Moreover,

our encoding of invariant types replaces the rule using syntactic identity

with the following rule:

C〈 · 〉 ≤:: C’〈τ̇′〉 ` σ′ <: τ̇′[· 7→ σ] ` τ̇′[· 7→ σ] <: σ

` C〈!σ〉 <: C’〈!σ′〉

Hence our system already uses type equivalence rather than syntactic

identity. Plus, our strategy for guaranteeing all proofs are finite easily

extends to incorporate intersections. Put together, these properties give a

50 decidable subtyping with variant generics

sound and complete subtyping algorithm with intersections that uses type

equivalence rather than syntactic identity.

2.5.3 Joins

Whereas our subtyping results applied to extended types, our remaining

findings only apply to non-extended types τ:

τ ::= ⊥ | > | M〈in τ out τ〉

Given a pair of types τ1 and τ2, their join τ1 t τ2 is their most-precise

common supertype. Joins are useful for the type checker, particularly in

operations that combine expressions. For example, consider the following

program:

〈T extends Comparable〈in T〉〉
void separate(T middle,

Iterable〈out T〉 elems,

ArrayList〈in T〉 smaller,

ArrayList〈in T〉 bigger) {

foreach (T elem in elems)

(elem < middle ? smaller : bigger).add(elem);

}

Each element of the list is added to smaller or bigger depending on

how it compares with middle. To type check ? :, though, one needs to

combine the types of smaller and bigger into a common supertype. If the

most precise such common supertype is computed, then the subsequent

method call .add(elem) is rejected only if the program is invalid.

In this case, such a most-precise common supertype seems easy to

determine since the types being joined are in fact the same. However,

2.5 applications 51

we chose this example because it both arose from practice and broke

javac. The program, once translated into Java’s syntax, is valid but javac

incorrectly rejects it.

The reason is that javac uses an imprecise join algorithm that discards

any uses of ? super (i.e. in) in the types being joined. It does so because

Java’s type system does not have joins, and even when they exist they

can be difficult to determine. For this reason, Smith and Cartright pro-

posed simply adding union types [Smith and Cartwright, 2008], trivially

guaranteeing joins because the rules for union types actually define them

as the join of the types being unioned together. However, such a fix is

shallow, since then one needs to extend all other type-checking rules to

handle union types. For example, Tate et al. demonstrate that Smith and

Cartwright’s approach does not address capture conversion [Tate, Leung,

and Lerner, 2011], an important feature for using wildcards with generic

methods [Torgersen et al., 2004]. Tate et al. instead use lazy existential

types as a regrettably complex solution.

As an example of the intricacies of this problems, suppose we need to

join together the two simple types Integer and Float. To simplify mat-

ters, further suppose that Integer only implements Summable〈Integer〉

and Float only implements Summable〈Float〉. One common supertype of

Integer and Float is Summable〈?〉, but so is Summable〈out Summable〈?〉〉

and Summable〈out Summable〈out Summable〈?〉〉〉, and each is more precise

than the one before it. In fact, we can continue this chain forever, demon-

strating that there is no most-precise common supertype for this simple

practical example. That is, the join of Integer and Float does not exist.

Now we apply Material-Shape Separation to this problem. Notice that

Summable is a shape; it appears in two cases of recursive inheritance.

52 decidable subtyping with variant generics

Consequently, Summable〈?〉 is not a valid type τ in our system because

Summable is not a material. In fact, none of the above common supertypes

are valid types in our system. Summable is only permitted in inheritance

and type-variable constraints, not as the type of an expression. Thus in our

system the join of Integer and Float is simply >. The following proof

demonstrates that all joins are similarly easy to compute in our system,

provided we have intersection types.

Theorem 2.2. Under Material-Shape Separation, our type system extended with

intersection types has computable joins for all types τ1 and τ2 with respect to

other types τ.

Proof. The algorithm is the following: (1) if either τj is ⊥, then the join is

τk where j 6= k; (2) if either τj is >, then the join is >; (3) if either τj is

τ ∩ τ′, then the join is (τ t τk) ∩ (τ′ t τk) where j 6= k; (4) otherwise, each

τj must be of the formMj〈in τ
j
i out τ

j
o〉, and the join is

⋂
M1〈 · 〉≤::M′〈τ̇′1〉,

M2〈 · 〉≤::M′〈τ̇′2〉

M′

〈
in τ̇′1[· 7→ τ1

o ; τ1
i]∩ τ̇′2[· 7→ τ2

o ; τ2
i]

out τ̇′1[· 7→ τ1
i ; τ1

o]t τ̇′2[· 7→ τ2
i ; τ2

o]

〉

This algorithm can easily be shown to terminate reusing the second com-

ponent of the measure used for subtyping. Once again, well-foundedness

of material inheritance is the critical feature. Note that the large intersec-

tion only ranges over inherited materials rather than all classes/interfaces,

which is safe to do because other types τ are only comprised of materials.

This is how we avoid the issue of recursive inheritance via shapes.

2.5 applications 53

The key step for proving the algorithm correct is proving that joins

distribute through intersections. Ignoring ⊥ and > at the moment for

simplicity, any type τ is essentially of the form
⋂

i τi where each τi is an

instantiation of some material and i ranges over some finite number. Given

two such types
⋂

i τi and
⋂

k τ′′k , it is easy to prove that
⋂

i τi <:
⋂

k τ′′k can

only hold if for all k there exists some i such that τi is a subtype of τ′′k . So,

if
⋂

k τ′′k is a common supertype of
⋂

i τi and
⋂

j τ′j , then for each k there

exists some i and some j such that τ′′k is a common supertype of τi and τ′j .

Thus
⋂

k τ′′k is a common supertype of
⋂

i,j τi t τ′j , from which the result

follows.

The reader might take issue with our use of intersection types, which

allowed us to avoid computing the meet, or least-precise common subtype

of two types. Indeed, many languages impose restrictions on multiple

inheritance, and unrestricted intersection types can be used to violate

invariants that would otherwise hold such as single-instantiation inheri-

tance for arbitrary types. Additional subtleties surrounding intersection

types include uninhabitable intersections, which a precise type system

would replace with ⊥. These issues are rather specific to details of a given

language design, so their discussion lies outside the scope of this chapter,

but we have found Material-Shape Separation to be useful in these settings.

Here we used unrestricted intersection types because they are necessary

for handling arbitrary multiple inheritance.

Note that, although in the case of subtyping we only provided an

alternative to existing approaches to guaranteeing decidability, in the case

of joins none of those existing approaches guarantee the existence, let

54 decidable subtyping with variant generics

alone the computability, of joins. Even the simple example before with

Integer and Float proved problematic in those systems.

2.5.4 Type Variables and Constraints

So far we have managed to avoid the issue of type variables, a rather

important concept given the topic of F-bounded polymorphism. We did so

because we can view type variables simply as abstract classes/interfaces.

Upper-bound constraints on type variables translate to inheritance clauses

on these type variables. There is a technical issue with the use of top-level

use-site variance permitted in constraints but not in inheritance clauses,

but this is purely grammatical and easy to accommodate. Lower-bound

constraints on type variables can sometimes translate to locally adding

inheritance clauses to the constraining class/interface.

To illustrate our perspective, recall the code from Section 2.3.2:

interface Comparable〈E〉 {}
class Vector〈E〉 {}
class Matrix〈E extends Comparable〈E〉〉

extends Vector〈Vector〈E〉〉 {}
class Float extends Comparable〈Float〉 {}

Inside the body of Matrix, the type variable E is in scope. Various types

will reference E, and subtyping will need to take its constraint into account.

To integrate this into our formalism, note that if E were a class/interface C

with the inheritance clause E <:: Comparable〈E〉 then Material-Shape Sep-

aration would still hold. Thus, subtyping will still be decidable. If E had a

lower bound such as Integer, then subtyping would still be decidable since

2.5 applications 55

κ ::= ∗ | 〈κ〉 → κ

τ ::= ⊥ | > | X | M | τ〈in τ out τ〉 | λX.τ
Θ ::= X : κ

Type Validity Θ ` τ : κ

Θ ` ⊥ : ∗ Θ ` > : ∗
X : κ ∈ Θ
Θ ` X : κ

M : 〈κ〉 → ∗
Θ ` M : 〈κ〉 → ∗

Θ, X : κ ` τ : κ′

Θ ` λX.τ : 〈κ〉 → κ′

Θ ` τ : 〈κ〉 → κ′ Θ ` τi : κ Θ ` τo : κ

Θ ` τ〈in τi out τo〉 : κ′

Figure 2.5: Higher-kinded types

adding the inheritance clauses Integer <:: E and (transitively required)

Integer <:: Comparable〈E〉 still satisfies Material-Shape Separation.

Note that a lower bound such as Vector〈Integer〉 cannot be translated

like above into our formalization of inheritance, so our current proof

does not extend to such lower bounds. However, our formalism could be

extended to handle such lower bounds by treating them like inheritance

clauses when generating the usage graph (extending the definition of

Material-Shape Separation) and when defining the measure of variables

(extending our proof strategy). The one caveat is that shapes cannot be

used in lower bounds for this strategy to work. Indeed, if Foo inherited

Shape〈Foo〉 and X had lower bound Shape〈out X〉, then there would be an

infinite proof that Foo is a subtype of X.

56 decidable subtyping with variant generics

2.5.5 Higher Kinds

With this strategy of viewing type variables as abstract classes/interfaces,

we can extend type variables to having higher kinds since class/interface

names are essentially higher-kinded types. One could declare a param-

eterized type variable C〈X〉 and require it to extend Iterable〈X〉 so that

C represents some iterable generic class/interface. One could even fur-

ther constrain CX〈t〉o extend Equatable〈C〈X〉〉 so as to ensure this kind

of collection comes with a semantics and decision algorithm for equality.

One only needs to prove that higher-kinded subtyping [Pierce and Steffen,

1997] is decidable.

Unfortunately, higher-kinded subtyping is not decidable with extended

types. To understand why, consider the following definitions (using

declaration-site variance for the sake of convenience):

shape Shape〈in P : *〉 {}
material Mayhem〈Q : * → *〉

extends Shape〈Q〈Mayhem〈Q〉〉〉 {}

Note that Shape itself has kind ∗ → ∗, so Mayhem〈Shape〉 is a valid

type of kind ∗. Consider, then, whether Mayhem〈Shape〉 is a subtype

2.5 applications 57

Type Application τ ; τ

(λX.τ)〈in τi out τo〉; τ[X 7→ τi; τo]

τ ; τ′

τ〈in τi out τo〉; τ′〈in τi out τo〉

Higher-Kinded Subtyping
Θ ` τ <: τ : κ

Θ ` τ <: S〈in τ out τ〉 : ∗

Θ ` ⊥ <: τ : ∗ Θ ` τ <: > : ∗

X : 〈κ〉 → ∗ ∈ Θ Θ ` τ′i <: τi : κ Θ ` τo <: τ′o : κ

Θ ` X 〈in τi out τo〉 <: X 〈in τ′i out τ′o〉 : ∗

M : 〈κ〉 → ∗ C : 〈κ〉 → ∗ M〈X〉 ≤:: C〈τ〉
Θ ` τ′i <: τ[X 7→ τo; τi] : κ Θ ` τ[X 7→ τi; τo] <: τ′o : κ

Θ ` M〈in τi out τo〉 <: C〈in τ′i out τ′o〉 : ∗

τ ; τ̂ Θ ` τ̂ <: τ′ : ∗
Θ ` τ <: τ′ : ∗

τ′ ; τ̂′ Θ ` τ <: τ̂′ : ∗
Θ ` τ <: τ′ : ∗

Θ, X : κ ` τ〈in X out X〉 <: τ′〈in X out X〉 : κ′

Θ ` τ <: τ′ : 〈κ〉 → κ′

Figure 2.6: Subtyping rules for higher-kinded types

58 decidable subtyping with variant generics

of Shape〈Mayhem〈Shape〉〉. We can prove this with the following infinite

derivation (making intermediate steps explicit):

Mayhem〈Shape〉 <: Shape〈Mayhem〈Shape〉〉

⇓ (inheritance)

Shape〈Shape〈Mayhem〈Shape〉〉〉 <: Shape〈Mayhem〈Shape〉〉

⇓ (contravariance)

Mayhem〈Shape〉 <: Shape〈Mayhem〈Shape〉〉

...

This example exploits the fact that Shape can be used as an argument to

a higher-kinded parameter that can be used without restriction in order

to violate our invariant that shapes are never introduced by expanding

inheritance.

Fortunately, due to Material-Shape Separation we can adapt our earlier

proof strategy to a higher-kinded type system without nested shapes. We

formalize this higher-kinded type system in Figure 2.5 and its subtyping

rules in Figure 2.6. For the sake of algorithmic simplicity, we present

the minimal form of type-level computation necessary for the system to

work as expected; this minimality is not necessary for our proof strategy

below. We use to indicate “some number of”, being consistent with that

unknown number across multiple uses of within a rule, and similarly

for . For example, in the rule for variables, represents the number of

applications to the variable X, and represents the number of arguments in

each of those applications. The premises indicate that each corresponding

pair of in (or out) arguments of each corresponding pair of applications

must be supertypes (or subtypes).

2.5 applications 59

Theorem 2.3. Under Material-Shape Separation, all proofs of subtyping as

specified in Figure 2.6 are finite.

Proof. As before, our strategy is to identify a measure for types such that

the sum of the measures of the types being compared always decreases as

the syntax-directed algorithm progresses. We no longer need to consider

nested uses of shapes, but now we must consider higher-kinded types.

To do so, we assign a type τ of kind κ a measure |τ| of type κ[∗ 7→ N].

For example, a type τ̂ of kind 〈∗, ∗〉 → ∗ is assigned a measure |τ̂| of

type N×N → N. The intuition is that if τ̂ were applied to types with

measures m and n then |τ̂| (m, n) is the measure of the applied type.

We define this measure in Figure 2.7 (reusing type-variable names as

measure-variable names). The challenge is to prove that this measure is

well defined. To do so, observe that the definition of the measure func-

tion MM for a material constructorM only references measure functions

for materials used in the inheritance clauses ofM. Due to Material-Shape

Separation, we can assume that those material functions are terminating,

thereby making MM a terminating function as well. Structural induction

then easily demonstrates that the measure is well defined on all types.

This measure on types can be adapted into a measure on sub-

typing judgements. We define the measure of a subtyping judge-

ment X : κ ` τ <: τ′ : ∗ to be (|τ|+ |τ′|)[X 7→ 0]. Note that we only define

this measure for subtyping judgements of kind ∗. This is because we view

the only rule applicable to other kinds as intermediate since by structural

induction on the kind it simply introduces fresh variables until the types

being compared have kind ∗.

Finally, one can easily verify that for each rule the measure of the

premises (after processing the rule for introducing fresh variables) is al-

60 decidable subtyping with variant generics

τ : κ |τ| : κ[∗ 7→N]

⊥ 0
> 0
X X
M MM
τ〈in τi out τo〉 1 + |τ| (max(|τi| , |τo|))
λX.τ λX.|τ|

MM:〈κ〉→∗ = λX. max

(
max(ζκ(X)), max

M〈X〉<::M′〈τ〉
MM′(|τ|)

)
where ζ∗(m) = m ζ〈κ〉→κ′(m) = ζκ′(m)(0)

We implicitly lift max, 1+, and 0 when applied to functions.

Figure 2.7: Measure for higher-kinded types

ways strictly less than the measure of the conclusion, thereby guaranteeing

that any proof must be finite even if infinite proofs were permitted.

The proof for computable joins extends similarly. Thus, by separating

materials and shapes we are able to add a powerful, fully functional feature

to our type system with minimal effort.

2.6 future work

In this chapter, we have shown that the separation of materials and shapes

is practical, with a broad survey demonstrating its compatibility with

existing code and with anecdotes offering insight into why this pattern

arises. We have also shown that this separation simplifies and improves

various core typing algorithms even in the presence of intersection types

and higher-kinded type variables. Now we present new type features that

may be made possible by the results of this chapter.

2.6 future work 61

2.6.1 Conditional Inheritance

Although Material-Shape Separation solves a number of open type-

checking problems, our initial motivating use case remains unsolved.

Recall that we wanted a type-safe way to make Lists have equality when-

ever their elements have equality. We believe we could apply our findings

to conditional inheritance to produce an effective solution. Here is how

our example might look like using conditional inheritance:

interface List〈out T〉 {...}

extends Equatable〈List〈T〉〉

given T extends Equatable〈T〉 {...}

This seems ideal, something akin to Haskell’s type classes [Wadler and

Blott, 1989], but now consider our Tree specification once again. The ques-

tion again is whether Tree extends Equatable〈Tree〉. Since Tree extends

List〈Tree〉, this holds provided List〈Tree〉 extends Equatable〈Tree〉. By

the above specification, List〈Tree〉 extends Equatable〈List〈Tree〉〉 (a sub-

type of Equatable〈Tree〉) provided Tree extends Equatable〈Tree〉. And

now we are back where we started. Once again we are building a valid,

yet infinite proof.

cJ and JavaGI have already made an effort to incorporate conditional

inheritance [Huang, Zook, and Smaragdakis, 2007; Wehr, Lämmel, and

Thiemann, 2007]. However, cJ has no proof for decidable type checking

(and appears to be undecidable), and the above example causes the JavaGI

compiler to stack overflow even though the language has a proof of

decidability. Most likely this is because a decision algorithm for the above

would at least need to track all entailments and subtypings currently being

62 decidable subtyping with variant generics

processed and continually check these for repeats in order to identify

when inside a cyclic infinite proof, a rather expensive and complicated

process. Even if implemented correctly, this approach is most likely brittle

and may not be able to extend to systems where type equivalence does

not imply syntactic identity.

We believe conditional inheritance would be decidable in our system. In

particular, we disallow the problematic recursive specification of Tree in

Section 2.5.1, instead encouraging the following:

class Tree extends Equatable〈Tree〉 {
List〈Tree〉 children() {...}

Boolean equals(Tree that) {

return children().equals(that.children());

}

}

This implementation provides predictable, understandable behavior. Fur-

thermore, in the case of shapes, we believe it would be possible to override

a default implementation locally without ever producing any semantic

inconsistency via variance and subtyping, since shapes may not occur as

type arguments. Nonetheless, there are many subtleties to explore both in

terms of type checking and in terms of run-time implementation, so we

defer detailed investigation to future work.

2.6.2 Decidable Intraprocedural Type Inference

With computable joins, we have the beginnings of decidable intraproce-

dural type inference. Ideally one would be able to take a function whose

context is well established, including types for parameters and an explicit

return type, and determine whether it type checks without needing any

2.6 future work 63

type annotations in its body. There are two major challenges we foresee

for completing this goal. First, one must design an object-oriented type

system with principal types, which requires addressing practical issues

such as overloading, as well as theoretical issues such as type-argument in-

ference (see Chapter 8). Second, one must infer the types of loop variables

whenever typeable. This latter challenge may prove very difficult since,

even given Material-Shape Separation, subtyping is still not well founded

despite all proofs being finite. For example, Array〈in Object〉 is a subtype

of Array〈in Array〈in Array〈in Object〉〉〉, which is only the beginning of

an infinite progression. Nonetheless, Material-Shape Separation drastically

simplifies the forms that subtyping constraints can take, so we believe it

may be a first step towards decidable intraprocedural type inference for

object-oriented languages. Such a feature would not only make program-

ming in statically-typed languages more convenient, but also enable easier

optimizations in gradual typing: it may enable us to try to type-check

untyped functions when they are cast at run time to see if we can optimize

them based on their inferred types.

2.6.3 Virtual Types

Virtual types are, in summary, the idea that objects can have types as

members [Kristensen et al., 1983; Madsen and Møller-Pedersen, 1989]. For

example, each graph object could have a member V indicating the type

of its own vertices. Self types are a special form of virtual types, and

type families are a means to approximate virtual types with F-bounded

polymorphism.

64 decidable subtyping with variant generics

There are many ways to implement the concept of virtual types within a

type system [Bruce, Odersky, and Wadler, 1998; Igarashi and Pierce, 1999;

Odersky and Zenger, 2005; Thorup, 1997; Thorup and Torgersen, 1999;

Torgersen, 1998]3. For example, with significant effort one can encode

virtual types using the implicit constraints [Tate, Leung, and Lerner, 2011]

of Java’s wildcards combined with wildcard capture [Torgersen et al., 2004],

or much more simply one can use Scala’s path-dependent types [Odersky

and Zenger, 2005]. Regardless of the specifics, any encoding of virtual types

must address their many subtleties, such as those relating to wildcards

as described by Tate et al. [Tate, Leung, and Lerner, 2011]. We posit that

Material-Shape Separation may alleviate these subtleties. For example, by

incorporating the constraints on the virtual types of a class/interface into

the usage graph and measure, we might be able to extend the definition of

Material-Shape Separation and the proof of decidable subtyping to virtual

types. With further investigation, one might be able to support constrained

virtual types without sacrificing principles such as decidability.

2.7 related work

Previous work in this area has focused primarily on algorithmic issues.

Kennedy and Pierce mapped the boundary of decidable subtyping, giving

three forms of restrictions each of which would guarantee decidabil-

ity [Kennedy and Pierce, 2007]. These provided subsequent works, ours

included, a firm basis for future explorations.

3 Since the underlying paper was published, Zhang, Loring, et al. [2015] separated shapes
and materials more clearly by distinguishing contraints and class definitions syntactically.
Their follow-on work on family polymorphism [Zhang and Myers, 2017] implements
a powerful version of virtual types, and posits decidability based on Material-Shape
Separation, though without proof.

2.7 related work 65

Wehr et al. built JavaGI, adding conditional inheritance to the type

system [Wehr, Lämmel, and Thiemann, 2007], and incorporating Kennedy

and Pierece’s results to achieve the decidability missing from cJ [Huang,

Zook, and Smaragdakis, 2007]. However, probably due to the complexity

of the underlying algorithms, the implementation of their type checker

does not match the specification. Our results suggest that acknowledging

the separation between materials and shapes might help to repair and

simplify their implementation.

Smith and Cartwright identified problems specific to type-argument

inference in Java and proposed an extension to the type system with

corresponding algorithms [Smith and Cartwright, 2008]. In particular, Java

wildcards do not admit joins, so Smith and Cartwright proposed adding

union types to Java’s type system, though these introduce complications

elsewhere in the type system [Tate, Leung, and Lerner, 2011]. Our finding

is that, by not allowing shapes as type arguments, we admit and can

compute joins without the need for union types. This change could be

incorporated into Smith and Cartwright’s algorithms.

Most recently, Tate et al. identified nested contravariance as a source of

complications [Tate, Leung, and Lerner, 2011]. Removing it, they found,

would make subtyping decidable in a manner compatible with existing

code bases. Yet their restrictions significantly restrict contravariance and

are strongly influenced by corner cases. Like Smith and Cartwright, Tate

et al.’s proposal does not admit joins, nor does it extend to the many

features we have addressed in this chapter.

66 decidable subtyping with variant generics

2.8 summary

This chapter explained a key insight about how programmers use F-

bounded polymorphism, and how to use this insight to prove that the

straightforward subtyping algorithm for Java terminates (so long as

Material-Shape separation is observed). This result is a key foundation to

the rest of the work discussed in this dissertation; as we discussed earlier,

it is important for gradual typing that run-time type checks – which in

our case are subtyping checks – terminate and are reasonably efficient.

The computability of joins is also important, as meets and joins become

relevant in type-argument inference, something that will come up again in

Chapter 8.

On top of that, the system is simple to understand, implement, and

extend. The barrier for adopting the separation of materials and shapes is

very low, especially when contrasted with the gains in both decidability

and simplicity, we believe that it can easily be incorporated into new

and existing statically-typed object-oriented languages. As evidence, the

designers of Ceylon have already taken interest in this design, and are

likely to integrate Material-Shape Separation into Ceylon 2.0.

In the next chapter, we show how a decidable algorithm like the one

presented here can be extended to extend to union and intersection types

and many kinds of interactions between the two and other type-system

features.

3
I N T E G R AT E D S U B T Y P I N G

This chapter is based on a paper presented at OOPSLA 2018: Empowering

Union and Intersection Types with Integrated Subtyping [Muehlboeck and

Tate, 2018b]. It comes with a Coq formalization that can be found in the

supplementary materials of this dissertation and on the ACM website

[Muehlboeck and Tate, 2018a]. This formalization is an implementation of

the framework discussed here and can be used as a library to plug in your

own type system definitions just as discussed in the rest of this chapter.

3.1 introduction

In many languages, types can be interpreted as sets of values. In a language This chapter is phrased completely
independently of gradual typing, as
its results are a lot more widely and
immediately applicable elsewhere. As
mentioned before, the main
motivation from a gradual typing
point of view is that decidable
subtyping for intersections and
unions means trivially obtainable
meets and joins, which may become
useful for generic type-argument
inference, see also Part III.

with subtyping, subtypes can often be interpreted as subsets, and union

and intersection types—which can be interpreted as unions and intersec-

tions of sets—are an easy way to obtain joins and meets in the subtyping

hierarchy. Thus union and intersection types have often been used in

tasks like type inference [Gosling, Joy, Steele, and Bracha, 2005] and static

analysis [Palsberg and Pavlopoulou, 1998; Wells et al., 2002]. However,

until recently they have rarely been exposed directly to programmers.

Part of the problem is that the set-based model suggests certain inter-

actions of union and intersection types with each other and the rest of

the type system, but these interactions have established themselves to be

67

68 integrated subtyping

difficult to implement in ways that are both decidable and extensible. For

example, one would expect unions and intersections to be distributive, but

the standard syntax-directed subtyping rules for union and intersection

types cannot recognize the following subtyping:

τ ∩ (τ1 ∪ τ2) <: (τ ∩ τ1) ∪ (τ ∩ τ2)

Pierce [1991] explored combining union and intersection types in the

context of the Forsythe programming language [Reynolds, 1988, 1997].

He gave rules for distributivity of intersections over both unions and

functions, but he also relied on an explicit transitivity rule and thus had no

clear decidable algorithm for subtyping, leaving this goal for future work.

Decidability in this particular setting has been established in work on

minimal relevant logic [Gochet, Gribomont, and Rossetto, 2005; Routley and

Meyer, 1972; Viganò, 2000] and on semantic subtyping [Frisch, Castagna,

and Véronique Benzaken, 2002]. However, the algorithms and proofs of

these works are not easy to generalize and adapt into even slight extensions

of the type systems. As an example, for nearly a decade the Scala team has

investigated adding true union types to the language but has yet to make

such an addition. The Dotty prototype in development for Scala does

support union types [Rompf and Amin, 2016; The Dotty Development

Team, 2015], but not in decidable manner, and it will probably be some

more years until it matures to the point of supporting union types with

“enough” decidability for practical purposes. Flow [Facebook, 2014] and

Pony [Clebsch et al., 2015] do have union and intersection types, but

with very limited reasoning that is unable to recognize aspects such as

distributivity. Typed Racket [Tobin-Hochstadt and Felleisen, 2008], on

3.1 introduction 69

the other hand, can recognize distributivity, but cannot recognize deeper

properties such as the fact that a pair of union types is equivalent to a

union of pair types. Julia only has union types but is capable of such deeper

reasoning [Bezanson et al., 2017; Zappa Nardelli et al., 2018]. However, it

is unknown whether Julia subtyping is decidable or even transitive, which

are particularly important questions for Julia since subtyping is heavily

used in its operational semantics, and which we discuss in more detail near

the end of this chapter. TypeScript [Bierman, Abadi, and Torgersen, 2014;

Microsoft, 2012] is best situated to take advantage of prior research due to

its heavy use of structural subtyping, which has been the focus of semantic

subtyping [Ancona and Corradi, 2016; Castagna and Xu, 2011; Frisch,

Castagna, and Véronique Benzaken, 2002, 2008; Hosoya and Pierce, 2003].

However, in order to accept common patterns in the JavaScript community,

TypeScript chose to make its subtyping system intentionally unsound and

intentionally intransitive [Microsoft, 2018, Type Compatibility]. Lack of

soundness means TypeScript can be optimistically aggressive with how it

reasons about union and intersection types. Lack of transitivity means this

aggressive reasoning can be inconsistent and hard to predict. For example,

TypeScript will recognize that a particular value f belongs to a particular

function type (x : τi) ⇒ τo but then reject an invocation of f with an

argument of type τi even when the required reasoning can be soundly

conducted using the conservative techniques we describe here. Thus, even

with the recent rise of union and intersection types in industry, there is still

significant room for improvement, especially along the front of principled

subtyping algorithms.

In this chapter, we show how to extend reasoning about intersection

types in a decidable and extensible manner. The resulting technique has

70 integrated subtyping

already been adopted by Ceylon [King, 2013], which, based on this work,

was able to implement several type-system features on top of union and

intersection types (Section 3.2). For example, Ceylon’s type-checker can

recognize that an intersection like String∩ Int is equivalent to the bottom

type Nothing, as String and Int have no common instances, and even

uses this to implement pattern matching.

The key idea presented in this chapter is that modifying the subtyping

algorithm for naïve union and intersection types to integrate types as it

recurses can significantly improve its ability to recognize desirable sub-

typing relationships (Section 3.4). Furthermore, provided this integration

operation on types satisfies various requirements, this improved subtyping

algorithm is mechanically verified in Coq [The Coq Development Team,

1984] to be sound and complete with respect to an extended subtyping sys-

tem for union and intersection types, one in which union and intersection

types are empowered with useful interactions with other aspects of the

type system. And by composing integration operators, we can repeatedly

extend the system with more and more reasoning capabilities (Section 3.5).

With this toolkit, we were able to apply our framework to the Ceylon pro-

gramming language, which opted to fully integrate union and intersection

types into its design due to the expressiveness and guarantees we were

able to provide them with (Section 3.6).

While we motivate the framework with challenges posed by the Ceylon

team, it is language independent. In fact, as we detail the context of our

framework (Section 3.3), we will use Forsythe’s function types as our

running example. Furthermore, as union and intersection types provide

a simple way to obtain joins and meets in a type system, they can be

useful in generic type-argument inference, as discussed in Chapter 8,

3.2 motivation 71

provided, of course, that they integrate well with subtyping, which we

establish here. We close the chapter with a broader discussion of the

generality of the framework and its connections to other research and

languages (Section 3.7).

3.2 motivation

Before discussing how our framework works, we first illustrate what our

framework makes possible. We do so by demonstrating the impact it had

on the Ceylon programming language. All of the features discussed in

this section were features the Ceylon design team wanted to provide,

but were only willing to do so if the features could be implemented

in a simple and reliable manner. In each case, we realized the feature

could naturally be encoded with union and intersections types provided

union and intersection subtyping could be made sufficiently intelligent,

and by encoding them all into subtyping we could make the features

interact in a principled manner. Unfortunately the required intelligence

was significantly beyond what the state of the art in union and intersection

subtyping could achieve. Thus we created our framework to provide

a unified algorithm for all of these features, enabling predictable, well-

defined, and powerful interactions between them, by empowering union

and intersection subtyping for Ceylon.

principal types The Ceylon team wanted every expression to have

a type that best describes it, a concept known as principal types (which

should not be confused with principal type schemes [Damas and Milner,

72 integrated subtyping

1982]) or as minimal types [Curien and Ghelli, 1992]. This property makes

it much easier to provide tooling for the language, such as efficient IDE

support. However, principal types are not easy to ensure in a language

with both subtype polymorphism and parametric polymorphism.

To see why, consider the following generic method:

Iterable〈E〉 concat〈E〉(Iterable〈E〉 first, Iterable〈E〉 second)

It is safe to call this with an Iterable〈Int〉 and an Iterable〈Float〉 as the

first and second arguments. The reason is that Iterable is covariant, so

both types are subtypes of Iterable〈Number〉. The problem is that deriving

this common supertype, Number, is not always easy, especially since one

needs the least common-supertype in order to provide the principal type.

For example, in Java the least common-supertype of Int and Float is actu-

ally an infinite type because both classes are Comparable with themselves.

And to make matters worse, similar examples with contravariant generic

classes and interfaces require computing the greatest common-subtype of

two types.

Union and intersection types seem to make this problem trivial: the

union type Int∪ Float is by definition the least common-supertype of Int

and Float, and the intersection of two types is by definition their greatest

common-subtype. But while union and intersection types do easily solve

the original problem, they introduce whole new problems.

To see why, suppose we have two type variables A and B. Consider

what the resulting type of passing an Iterable〈A〉 ∩ Iterable〈B〉 to the

following generic method should be:

E first〈E〉(Iterable〈E〉 elems)

3.2 motivation 73

One valid type is A, since Iterable〈A〉 ∩ Iterable〈B〉 is by definition at

least an Iterable〈A〉. But for that same reason, another valid type is B.

Unfortunately, neither valid type is more precise than the other, so they

both fail to be principal types.

The only possible principal type for this example is A ∩ B. But one

must be careful. In C#, this would be unsound because C# permits

multiple-instantiation inheritance. This means a class Foo can implement

Iterable〈Int〉 using one set of methods and Iterable〈Float〉 using an-

other set. Consequently, a call to first with a Foo argument will necessar-

ily pick one of the two implementations of Iterable and return a value

that is either an Int or a Float but not both.

On the other hand, Java and Ceylon both disallow multiple-instantiation

inheritance. And due to their restrictions on inheritance, they each can

safely admit the following subtyping rules:

C〈τ〉 ∩ C〈τ′〉 <: C〈τ ∩ τ′〉 when C is covariant

C〈τ〉 ∩ C〈τ′〉 <: C〈τ ∪ τ′〉 when C is contravariant

By using the first of these rules, one can show that A ∩ B is in fact the

principal type of the expression in question. In general, these extensions to

subtyping can be used to easily deduce principal types for many uses of

generic methods (though not all, since such principal types do not always

exist).

disjointness and null-safety Another feature Ceylon wanted

to provide was the ability to recognize when intersections are uninhab-

74 integrated subtyping

itable. For example, String and Int have no common instances, so the

intersection String∩ Int is uninhabitable. More precisely, it is semanti-

cally equivalent to the bottom type Nothing. In Java, this type, if it existed,

would be inhabited by null. Ceylon is null-safe, meaning types explicitly

indicate whether or not they can be inhabited by null, so Nothing is in

fact uninhabitable.

The utility of this feature is actually best demonstrated by its interaction

with null-safety. In Ceylon, one uses the type String? to represent values

that are either strings or null. This ? operator is just a shorthand, and in

fact String? simply represents the union type String∪ Null.

Now suppose you have a list of String? and you want to fetch the

non-null elements of the list. Ideally you could do so polymorphically

using a generic method whose type argument can always be inferred, and

in Ceylon this is achieved by the following generic method:

Iterable〈E∩ Object〉 filterNulls〈E〉(Iterable〈E〉 elems)

Note that the return type is Iterable〈E∩ Object〉. If we provide this

method with a list of String?, the instantiation of the return type in full

will be Iterable〈(String∪ Null)∩Object〉. Since Ceylon is null-safe, ev-

ery value of Object is necessarily not null, and every String is already

an Object, so the type system should ideally be able to recognize that

this type is equivalently just an Iterable〈String〉. It can do so by recog-

nizing distributivity of intersections over unions as well as the following

subtyping rule that is sound in any language with single-class inheritance:

C ∩ C′ <: ⊥ when C and C′ are classes and neither inherits the other

3.2 motivation 75

exhaustive pattern matching The Ceylon team wanted to sup-

port algebraic data types with exhaustive pattern matching. They also

wanted to support being able to branch based on the run-time type of a

value. And ideally these related concepts could be handled uniformly.

The following is an example of how such a uniform treatment can be

utilized:

switch (nums) { // nums has type Int∪LinkedList〈Int〉
case (is Int) { return nums; }

case (is Nil) { return 0; }

case (is Cons) { return nums.head; }

} // expected return type is Int

Here nums is either an integer or a linked list of integers. The LinkedList

class is declared with a clause “of Nil, Cons” that restricts it to have

only two subclasses: Nil and Cons. Consequently, the type system should

ideally be able to deduce that this pattern match is in fact exhaustive.

Rather than require a separate set of rules for exhaustiveness, our frame-

work was able to make subtyping powerful enough to answer this question

with a simple subtyping check. In particular, we just have to check if the

type of nums is a subtype of the union of all the cases. In this example,

we can prove this subtyping so long as we can recognize the following

subtyping rule:

C〈τ〉 <: C1〈τ〉 ∪ · · · ∪ Cn〈τ〉 when C of C1, . . . , Cn

flow-sensitivity Lastly, the Ceylon design team wanted the lan-

guage to be flow-sensitive. This would avoid the tedious and unreli-

able pattern of instanceof checks followed by casts. Naïvely, one could

achieve this by simply changing the type of the variable to the type in the

76 integrated subtyping

instanceof (or is) check. However, this loses all other information about

the variable that might have been in the context. So a better technique is

to intersect the type of the variable with the type in the check.

The last case of the above pattern match illustrates how this typing rule,

in combination with an improved subtyping system, successfully unifies

the features we have discussed. In this case, the type of nums is refined to

be

(Int∪ LinkedList〈Int〉) ∩ Cons〈∗〉

where * indicates the type argument is unknown since it was not checked

in the cast. By distributivity, this is a subtype of

(Int∩ Cons〈∗〉) ∪ (LinkedList〈Int〉 ∩ Cons〈∗〉)

By disjointness, the left intersection is a subtype of ⊥, which effectively

eliminates this case of the union, leaving us with

LinkedList〈Int〉 ∩ Cons〈∗〉

Since LinkedList has an of clause, the left type is a subtype of the union

of its cases, resulting in

(Nil〈Int〉 ∪ Cons〈Int〉) ∩ Cons〈∗〉

And by distributivity and disjointness again, we can eliminate the Nil case,

leaving us with only the Cons〈Int〉 case. Consequently, we can determine

that nums is specifically a Cons〈Int〉, informing us that it indeed has a head

field with the expected return type Int.

3.3 formalizing traditional union and intersection subtyping 77

The framework we developed is able to address each of these problems

in a principled manner. Furthermore, the framework prescribes how to

compose each of the individual solutions together into one coherent sub-

typing algorithm simultaneously supporting all the extensions, as needed

by the above example. Next we describe when in general our framework

can be applied, and how it achieves these results. As our running example,

we will use the much simpler concept of function types and our applica-

tion to Forsythe. But afterwards, we will revisit the above more elaborate

collection of features desired by Ceylon.

3.3 formalizing traditional union and intersection sub-

typing

Our goal is to empower subtyping in type systems with union and inter-

section types. Thus we are looking at type systems where types have the

following general form:

τ ::= ⊥ | > | τ ∪ τ | τ ∩ τ | `

The special types ⊥ and > form the bottom and top of the subtyping

hierarchy, respectively, while unions ∪ and intersections ∩ form joins and

meets, respectively. Last, literals ` are the rest of the types in the particular

type system at hand. For example, in an overly simplified functional

language, literals would be defined mutually recursively with types τ as

`Fun ::= τ � τ.

Subtyping systems for union and intersection types follow certain pat-

terns, both in how they are declaratively specified and in how they are

78 integrated subtyping

Declarative Subtyping τ <: τ

τ <: τ

τ1 <: τ2 τ2 <: τ3

τ1 <: τ3

τ <: > ⊥ <: τ

r ∈ D ∀〈τ�, τ�〉 ∈ Pr. τ� <: τ�

`�r <: `�r

τi <: τ1 ∪ τ2 τ1 ∩ τ2 <: τi

τ1 <: τ τ2 <: τ

τ1 ∪ τ2 <: τ

τ <: τ1 τ <: τ2

τ <: τ1 ∩ τ2

Figure 3.1: Declarative Subtyping

algorithmically decided. Even the proofs that the algorithm is sound and

complete with respect to the specification exhibit common reductive pat-

terns. In order to improve these preexisting subtyping systems, we need

to understand these patterns. In the following, we illustrate these patterns,

and at the same time we formalize them so that we may formally describe

the requirements and guarantees of our framework.

3.3.1 Declarative Subtyping

Traditionally, subtyping with union and intersection types is specified as in

Figure 3.1. In the start of the first row, subtyping is specified to be reflexive

and transitive. In the second row are the declarative subtyping rules

for union and intersection types modeling their set-theoretic intuitions.

Lastly, at the end of the first row is the subtyping rule for literals. It is

formalized abstractly by assuming a (usually infinite) set of declarative

literal subtyping rules D. For each rule r ∈ D, there is a left literal `�r (the

subtype), a right literal `�r (the supertype), and a set of premises Pr ⊆ τ× τ.

3.3 formalizing traditional union and intersection subtyping 79

Each premise has two types that must be subtypes for the rule to be

applicable. The literal subtyping rule in Figure 3.1 indicates that two

literals are subtypes if there is a rule in D that concludes with those two

literals and for which subtyping can be shown to hold for every premise.

As an example, consider our toy functional language whose literals `Fun

are function types. Subtyping on functions is contravariant with respect to

the parameter type and covariant with respect to the return type. Since

there are an infinite number of potential parameter and return types, there

are an infinite number of rules formulating variance of function types.

However, this can be expressed concisely by just two rule schemata using

metavariables, with rules resulting from instantiating the metavariables. It

is common to conflate rules and rule schemata, and we ourselves do so in

this chapter for the sake of simplicity, letting the reader apply context and

intuition to disambiguate where necessary rather than constantly over-

whelm the reader with disambiguations. As such the two rules (technically

rule schemata) for variance of function types are the following:

τ′i <: τi

τi � τo <: τ′i � τo

τo <: τ′o

τi � τo <: τi � τ′o

We can encode these rules in our framework by defining DFun to be

comprised of two cases parametrized by the possible instantiations of the

relevant metavariables:

DFun ::= Contra(τi, τ′i , τo) | Co(τi, τo, τ′o)

80 integrated subtyping

The components of these rules are then defined as follows:

r ∈ DFun `�r `�r Pr

Contra(τi, τ′i , τo) τi → τo τ′i → τo {〈τ′i , τi〉}

Co(τi, τo, τ′o) τi → τo τi → τ′o {〈τo, τ′o〉}

Thus, DFun is the infinite set of all possible instantiations of the two rule

schemata given above, and the metafunctions `→, `←, and P access the

relevant parts of these instantiations.

Encodings aside, the advantage of the declarative subtyping rules is that

one can quickly assess that they correctly capture the intended features.

For one, subtyping is transitive by definition. But this same transitivity

rule is often also the greatest problem with the declarative subtyping

rules. The reason is that it is not syntax-directed. In trying to determine

whether one type is a subtype of another, there are an infinite number of

possible middle types that could be used to exploit transitivity. This means

one cannot effectively search through the space of possible declarative

subtyping proofs as a subtyping algorithm. Next we discuss the standard

solution to this problem: design a new set of subtyping rules that are

syntax-directed, and then prove this syntax-directed subtyping system to

be equivalent to the declarative subtyping system.

3.3.2 Reductive Subtyping

There are many ways to develop subtyping algorithms and prove them

correct. For reasons that should become clear once we discuss the proof of

correctness, we use the term reductive to refer to the particularly common—

3.3 formalizing traditional union and intersection subtyping 81

Reductive Subtyping τ ≤ τ

r ∈ R ∀〈τ�, τ�〉 ∈ Pr. τ� ≤ τ�

`�r ≤ `�r τ ≤ > ⊥ ≤ τ

τ ≤ τi

τ ≤ τ1 ∪ τ2

τi ≤ τ

τ1 ∩ τ2 ≤ τ

τ1 ≤ τ τ2 ≤ τ

τ1 ∪ τ2 ≤ τ

τ ≤ τ1 τ ≤ τ2

τ ≤ τ1 ∩ τ2

Figure 3.2: Reductive Subtyping

even textbook [Pierce, 2002]—technique we formalize here. The syntax-

directed reductive subtyping rules for union and intersection types are

shown in Figure 3.2. The rules for reflexivity and transitivity have been

removed, and a number of the rules specific to union and intersection

types have been adjusted to conceptually directly incorporate the removed

rules. And as before, the rest of subtyping consists of rules concerning

specifically literals. However, in order to incorporate the removed rules

into the literal rules, the abstract literal rule ranges over a different set R

of reductive rules for literals.

For example, for our toy functional language, there is only one reductive

subtyping rule on functions, combining the two declarative subtyping

rules into one:

R
u

l
e τ′i ≤ τiτo ≤ τ′o

τi � τo ≤ τ′i � τ′o

En
c

o
d

i
n

g

r ∈ RFun `�r `�r Pr

Fun(τi, τ′i , τo, τ′o) τi → τo τ′i → τ′o {〈τ′i , τi〉, 〈τo, τ′o〉}

82 integrated subtyping

3.3.3 Proof Search as an Algorithm

The intent is to derive an algorithm from this new set of rules. Given a

potential subtyping, proof search considers each rule that could conclude

with that subtyping and recursively checks whether the premises of the

rule hold. However, for this process to terminate, the reductive rules must

satisfy two important properties.

3.3.3.1 Syntax-Directedness

Proof search must consider every rule that can apply to the potential

subtyping at hand. For this to be possible, there must be a finite number

of such rules. Furthermore, the process must consider every premise of

the rules, so there must be a finite number of premises for each rule. These

properties together are what make a system syntax-directed. Clearly they

hold for the standard reductive subtyping rules, i.e. the non-literal rules

for unions and intersections. Thus one only needs to show they also hold

for the custom reductive literal rules.

Requirement 3.1 (Syntax-Directedness) For every literal pair `� and `�, the

set of applicable reductive literal subtyping rules {r ∈ R | `�r = `� ∧ `�r = `�}

must be computable and finite. For every reductive literal subtyping rule r in R,

the set of premises Pr must be computable and finite.

3.3.3.2 Well-Foundedness

Proof search is recursive, and so one must ensure that this recursion

terminates. For the standard reductive rules, one can easily see that the

combined syntactic height of the two types being investigated always

3.3 formalizing traditional union and intersection subtyping 83

decreases. Consequently, every path of recursion is guaranteed to always

eventually reach a point in which the two types being compared are both

literals. So once again termination comes down to a property of the custom

reductive literal rules.

Requirement 3.2 (Well-Foundedness) There exists a function m from pairs

of types to some set M with a well-founded relation ≺ satisfying the following

inequalities:

∀τ�1 , τ�1 , τ�2 , τ�2 . τ�1 � τ�2 ∧ τ�1 � τ�2 =⇒ m(τ�1 , τ�1) � m(τ�2 , τ�2)

∀τ�, τ�, r ∈ R. 〈τ�, τ�〉 ∈ Pr =⇒ m(τ�, τ�) ≺ m(`�r , `�r)

where� is the weakest reflexive relation satisfying

∀i, τ1, τ2. τi � τ1 ∩ τ2 ∧ τi � τ1 ∪ τ2

Typically the ordering � has joins and a bottom element, which are

then used to define m on union and intersection types. So the only aspect

of the measure function m that is actually interesting is its definition on

pairs of literals. This is the case for our toy functional language, where the

measure space is N with <. In this case, m is defined on literals as follows:

m(τ�i → τ�o , τ�i → τ�o) = 1 + max(m(τ�i , τ�i), m(τ�o , τ�o))

3.3.4 Equivalence of Declarative and Reductive Subtyping

Syntax-directedness and well-foundedness of the reductive rules ensure

that proof search prescribes a proper algorithm. However, that algorithm

84 integrated subtyping

is only guaranteed to be sound and complete with respect to reductive

subtyping, whereas the goal is to have a sound and complete algorithm

for declarative subtyping. The standard is to bridge this gap by proving

that the two subtyping systems are in fact equivalent, making a decision

procedure for one also a decision procedure for the other. This proof is

typically comprised of three main components.

3.3.4.1 Reflexivity

The first and easiest step is to prove that reductive subtyping is reflexive,

since it has no rule declaring it as such. Interestingly, although well-

foundedness was originally intended to guarantee termination of proof

search, one can repurpose it to simplify our proof of reflexivity. In short,

if for every τ one can apply reductive rules to the goal τ ≤ τ in order to

reduce the problem to other goals of the form τ′ ≤ τ′, well-foundedness

informs us that recursively applying this goal-reduction procedure is

guaranteed to terminate.

As an example, suppose τ is of the form τ1 ∩ τ2. Then the following

shows how one can reduce the goal of proving τ1 ∩ τ2 ≤ τ1 ∩ τ2 to the

goals τ1 ≤ τ1 and τ2 ≤ τ2:

τ1 ≤ τ1

τ1 ∩ τ2 ≤ τ1

τ2 ≤ τ2

τ1 ∩ τ2 ≤ τ2

τ1 ∩ τ2 ≤ τ1 ∩ τ2

Similar reductions can be done for ⊥, >, and unions, leaving only reflex-

ivity of literals:

3.3 formalizing traditional union and intersection subtyping 85

Requirement 3.3 (Literal Reflexivity)

∀`. ∃r ∈ R. `�r = ` = `�r ∧ ∀〈τ�, τ�〉 ∈ Pr. τ� = τ�

For our toy functional language, the reflexivity rule for the literal τi → τo

is Fun(τi, τi, τo, τo).

3.3.4.2 Rule Conversion

Besides reflexivity, which we just discussed, and transitivity, which we

will discuss next, there is a tight correspondence between the declarative

rules and the reductive rules. The second step of the equivalence proof is

to demonstrate this correspondence by converting each rule of one system

into a combination of the rules of the other system.

For example, consider the reductive rule and its conversion (R-to-D)

into declarative rules below:

τ ≤ τi

τ ≤ τ1 ∪ τ2

R-to-D7−−−→
τ <: τi τi <: τ1 ∪ τ2

τ <: τ1 ∪ τ2

Note that whereas the reductive rule had one premise of the form τ ≤ τi,

the declarative proof has one assumption of the form τ <: τi.

To formalize this correspondence between premises in the rule and

assumptions in the converted proof, Figure 3.3 defines proofs of declarative

subtyping with assumptions.

86 integrated subtyping

Using this new definition, we can formalize the above conversion as

follows:

τ ≤ τi

τ ≤ τ1 ∪ τ2

R-to-D7−−−→

〈τ, τi〉 ∈ {〈τ, τi〉}

{〈τ, τi〉} ` τ <: τi {〈τ, τi〉} ` τi <: τ1 ∪ τ2

{〈τ, τi〉} ` τ <: τ1 ∪ τ2

One can derive similar conversions for the remaining standard reductive

rules as well. All that remains are the custom reductive literal rules.

Requirement 3.4 (Reductive-to-Declarative Literal Conversion)

∀r ∈ R. Pr ` `�r <: `�r

For our functional language, the conversion for the rule Fun(τi, τ′i , τo, τ′o)

is the following:

τ′i ≤ τi τo ≤ τ′o

τi → τo ≤ τ′i → τ′o

R-to-D7−−−→

τ′i <: τi

τi → τo <: τ′i → τo

τo <: τ′o

τ′i → τo <: τ′i → τ′o

τi → τo <: τ′i → τ′o

These conversions enable us to inductively translate proofs of reductive

subtyping into proofs of declarative subtyping. For the other direction, one

needs the following, using proofs of reductive subtyping with assumptions

as defined in Figure 3.3:

Requirement 3.5 (Declarative-to-Reductive Literal Conversion)

∀r ∈ D. Pr ` `�r ≤ `�r

3.3 formalizing traditional union and intersection subtyping 87

Declarative Subtyping with Assumptions P ` τ� <: τ�

All rules in Figure 3.1,
replacing τ� <: τ�

with P ` τ� <: τ�

 〈τ�, τ�〉 ∈ P
P ` τ� <: τ�

Reductive Subtyping with Assumptions P ` τ� ≤ τ�

All rules in Figure 3.2,
replacing τ� ≤ τ�

with P ` τ� ≤ τ�

 〈τ�, τ�〉 ∈ P
P ` τ� ≤ τ�

Figure 3.3: Subtyping with Assumptions

With this and reflexivity, one can inductively translate proofs of declara-

tive subtyping into reductive subtyping provided one can show reductive

subtyping is transitive.

3.3.4.3 Transitivity

The last step to proving equivalence is transitivity, and also the most

difficult step. Fortunately, one can once again repurpose well-foundedness

to prove transitivity by reducing goals, just as was done for reflexivity.

But whereas before goals were always of the form τ ≤ τ, now they are of

the form τ ≤ τ′′ where we have a proof of τ ≤ τ′ and a proof of τ′ ≤ τ′′

for some τ′. The key is to do a case analysis on the two proofs, taking

advantage of the fact that τ′ occurs in the conclusions of both proofs in

order to eliminate a number of combinations of cases.

88 integrated subtyping

As an example, suppose the last steps of the two proofs are respectively

as follows:

Left

τ ≤ τ′1 τ ≤ τ′2

τ ≤ τ′1 ∩ τ′2

τ′1 ≤ τ′′

τ′1 ∩ τ′2 ≤ τ′′
Right

Then this implies we have a proof of τ ≤ τ′1 and a proof of τ′1 ≤ τ′′. One

can recursively reduce these two smaller proofs to get a proof of τ ≤ τ′′.

One can develop similar reductions for all the other possible cases in

which either one of the last steps of the proofs is a standard reductive rule.

And in every recursive reduction, the size of the proofs being reduced is

strictly smaller. This ensures that reduction always eventually arrives at the

case where both of the last steps are custom reductive literal rules. Here

one can use well-foundedness to guarantee termination provided one can

find a custom reductive literal rule to apply. Thus the largest step typically

involved in proving equivalence is showing the following property.

Requirement 3.6 (Literal Transitivity) For every pair of rules r� and r�

in R such that `�r� = `�r� , there exists a rule r in R such that `�r = `�r� and

`�r = `�r� and the following holds:

∀〈τ�, τ�〉 ∈ Pr. ∃τ.

(Pr� ` τ� ≤ τ ∧ Pr� ` τ ≤ τ�) ∨ (Pr� ` τ� ≤ τ ∧ Pr� ` τ ≤ τ�)

The disjunction in the above requirement corresponds to the notion of

variance in subtyping. Conceptually, a covariant premise of a rule is one

in which the above will be proven using the left case of the disjunction,

whereas a contraviariant premise uses the right case. The only difference

is which assumptions the left-hand and right-hand subtyping proofs can

make. In the covariant case, the proof of the left/right-hand subtyping can

3.3 formalizing traditional union and intersection subtyping 89

assume the premises of the same-handed rule, whereas in the contravariant

case the proof of the left/right-hand subtyping can assume the properties

of the opposite-handed rule. This is best illustrated by our toy functional

language.

Suppose r� is Fun(τi, τ′i , τo, τ′o) and r� is Fun(τ′i , τ′′i , τ′o, τ′′o), in combi-

nation concluding with τi → τo ≤ τ′i → τ′o ≤ τ′′i → τ′′o . Then r is the rule

Fun(τi, τ′′i , τo, τ′′o), concluding with τi → τo ≤ τ′′i → τ′′o as required. The

following shows how the premises of r are proven with appropriate as-

sumptions:

〈τ′′i , τ′i 〉 ∈ Pr�

Pr� ` τ′′i ≤ τ′i ∧

〈τ′i , τi〉 ∈ Pr�

Pr� ` τ′i ≤ τi

〈τo, τ′o〉 ∈ Pr�

Pr� ` τo ≤ τ′o ∧

〈τ′o, τ′′o 〉 ∈ Pr�

Pr� ` τ′o ≤ τ′′o

Notice that the left-hand subtyping proof for input types uses the assump-

tions of the right-hand rule, whereas the left-hand subtyping proof for

output types uses the assumptions of the left-hand rule. That is, the premise

for input types is proven contravariantly, whereas the premise for output

types is proven covariantly, which reflects the fact that function types are

contravariant with respect to their input types and covariant with respect

to their output types.

With this final requirement, one can prove that reductive subtyping

is transitive. This was the final gap between declarative subtyping and

reductive subtyping. Consequently, one finally knows that declarative

subtyping and reductive subtyping are equivalent, and that proof search

for reductive subtyping is a sound and complete algorithm for declarative

subtyping. We formalize this general pattern in developing algorithms for

subtyping systems with the following theorem.

90 integrated subtyping

Theorem 3.3.1 (Decidability of Declarative Subtyping). For every set of

literals `, set of declarative rules D, and set of reductive rules R satisfying

Requirements 3.1 through 3.6, proof search for reductive subtyping as defined

in Figure 3.2 is a decision procedure for declarative subtyping as defined in

Figure 3.1.

Proof. Mechanically proved in Coq as outlined above [Muehlboeck and

Tate, 2018a].

3.4 empowering unions and intersections

The previous section discussed typical decidable type systems with union

and intersection types. Unfortunately, these typical systems fail to recog-

nize many useful subtyping relations. Distributivity is one example, but

more interesting are the relations specific to the particular literals at hand.

For example, consider our toy functional language. Suppose we have

determined that a particular expression always produces a value of type τ1

when given an integer. Suppose we have also determined that that same

expression always produces a value of type τ2 when given an integer. For

the λ-calculus, Pierce recognized that, in this situation, that expression

will always output values belonging to both τ1 and τ2 when given an

integer. Thus, for Forsythe [Reynolds, 1988, 1997] he proposed adding the

following axiom to the subtyping rules [Pierce, 1989]:

(τ → τ′1) ∩ (τ → τ′2) <: τ → (τ′1 ∩ τ′2)

3.4 empowering unions and intersections 91

Extended Subtyping τ <:E τ

All rules in Figure 3.1,
replacing τ� <: τ�

with τ� <:E τ�

 τ ∩ (τ1 ∪ τ2) <:E (τ ∩ τ1) ∪ (τ ∩ τ2)

〈τ�, τ�〉 ∈ E
τ� <:E τ�

Figure 3.4: Extended Subtyping

τ DNFc(τ) where c : ~̀ → τ

⊥ ⊥
τ1 ∪ τ2 DNFc(τ1) ∪DNFc(τ2)

> c([])
τ1 ∩ τ2 DNF

λ~̀ 1. DNF
λ~̀2.c(~̀1 ++~̀2)

(τ2)
(τ1)

` c([`])

Figure 3.5: Definition of DNFc

The goal of our framework is to develop decision procedures for declar-

ative subtyping systems empowered with such axioms (and distributivity).

That is, given a set E ⊆ τ × τ, we aim to provide a decision procedure

for extended subtyping as defined in Figure 3.4. Furthermore, since the

declarative subtyping system being extended had already been proven

decidable, we want to reuse as much of that algorithm and proof work as

possible, only requiring the designer to do the work specific to the exten-

sions at hand. Since distributivity is an extension of arbitrary union and

intersection types, we tackle that extension first. Afterwards, we will con-

sider extensions incorporating literals, such as the extension EOut defined

as {〈(τ → τ′1) ∩ (τ → τ′2), τ → (τ′1 ∩ τ′2)〉 | τ, τ′1, τ′2}, which corresponds to

the above extension to Forsythe proposed by Pierce.

92 integrated subtyping

3.4.1 Distributivity

Observe that the right-hand type of the distributivity axiom in Figure 3.4

is simply the result of distributing the intersection in the left-hand type

over the union in the left-hand type. That is, there is an operation we

can apply to the left-hand type to arrive at the right-hand type. The high-

level strategy of our integrated-subtyping technique is to transform the

left-hand type in order to integrate the axiom into the type itself. In the

case of distributivity, this integrating operator simply maps a type to

its disjunctive normal form, effectively distributing all its intersections

over its unions. Prior works have employed a similar strategy [Aiken

and Wimmers, 1993; Ancona and Corradi, 2016; Frisch, Castagna, and

Véronique Benzaken, 2008; Peyton Jones et al., 2007; Pierce, 1991; Reynolds,

1988], but here we demonstrate that this can be employed in both a

principled and extensible manner.

We formalize this operator in Figure 3.5 using a continuation-style

implementation. The intermediate continuations effectively collect the

literals to be intersected together, calling the original continuation c after

all the literals have been collected. By instantiating c with the operator
⋂

that simply intersects the literals together, DNF∩ maps each type to its

disjunctive normal form.

The operator DNF∩ exhibits three important properties. First, DNF∩(τ ∩

(τ1 ∪ τ2)) is declaratively/reductively a subtype of (τ ∩ τ1)∪ (τ ∩ τ2). This

illustrates that DNF∩ integrates the distributivity axiom into the left-

hand type, which will ensure that integrated subtyping is distributive.

Second, DNF∩(τ) is declaratively/reductively a subtype of τ, which will

3.4 empowering unions and intersections 93

ensure that integrated subtyping is still reflexive. Third, whenever τ is

in disjunctive normal form, say by being in the image of DNF∩, one can

show that τ is declaratively/reductively a subtype of DNF∩(τ′) whenever

τ is declaratively/reductively a subtype of τ′, which will ensure that

integrated subtyping is still transitive. As a consequence of these properties,

integrated subtyping will be equivalent to extended subtyping. But before

we properly define integrated subtyping, we want to consider how to

integrate extensions beyond distributivity as well.

3.4.2 Intersectors

As we distribute intersections over unions, we have the opportunity to

do more with the resulting union of intersections. In particular, DNF

accepts any operator mapping a list of literals to a type. Instead of simply

intersecting the literals together, this operator could incorporate domain-

specific reasoning about the literals. For example, the operator could check

whether two literals in the list are disjoint classes, in which case it could

simply return ⊥. This provides a means to integrate more extensions into

the type as we transform it.

We call such an operator an intersector, and we denote intersectors us-

ing
d

. One simple case is where the intersector is simply
⋂

, which has

the effect of only adding distributivity. But since the truly interesting

expressivity comes from the domain-specific extensions E , we use the fol-

lowing requirement to formalize the intent that the intersector
d

combines

with DNF to form an integrator DNFu that integrates those extensions into

the types.

94 integrated subtyping

Requirement 3.7 (Intersector Completeness) ∀〈τ�, τ�〉 ∈

E . DNFu(τ�) <: τ�

One easy way to integrate all extensions into an intersector is simply to

define the intersector so that it always outputs ⊥. Such an intersector is

clearly undesirable because it conceptually is doing too much; that is, it

is integrating more information into the type than can be deduced from

the extensions. As such, we also impose the following requirement that

ensures the intersector integrates nothing more than what the extensions

can deduce.

Requirement 3.8 (Intersector Soundness) ∀~̀ .
⋂~̀ <:E

d~̀

As an example, consider the following intersector
d

Out for our running

Forsythe extension EOut:

l

Out

~̀ =
⋂

∅⊂L⊆~̀

(⋂
(τi→τo)∈L

τi

)
→
(⋂

(τi→τo)∈L
τo

)

To see why this works, consider the case in which there are two function-

type literals τi → τo and τ′i → τ′o. In this case, the result of
d

Out is

(τi → τo) ∩ (τ′i → τ′o) ∩ (τi ∩ τ′i → τo ∩ τ′o). If τi equals τ′i so that we can

refer to both as, say, τ, then the last component of this intersection is

clearly equivalent to τ → (τo ∩ τ′o), thereby integrating the extension EOut.

Note that variance of function types makes
d

Out still sound with respect

to EOut even when τi does not equal τ′i .

3.4 empowering unions and intersections 95

Integrated Subtyping τ ≤u τ τ ≤u τ(
All rules in Figure 3.2 except literal subtyping,

replacing τ� ≤ τ� with τ� ≤u τ�

)
DNFu(τ) ≤u τ′

τ ≤u τ′
r ∈ R ∀〈τ�, τ�〉 ∈ Pr. DNFu(τ�) ≤u τ�

`←r ≤u `→r

Figure 3.6: Integrated Subtyping

3.4.3 Integrated Subtyping

Now that we have an intersector of literals
d

that corresponds to the in-

tended extension E , we define our integrated subtyping rules in Figure 3.6,

incorporating the intersector by integrating left-hand types using DNFu.

The integrated subtyping rules essentially describe the same algorithm

as the reductive subtyping rules with just two small changes. The first

is that integrated subtyping ≤u starts by integrating the left-hand type

and then calling the recursive procedure described by ≤u. The second is

that, when this procedure recurses in the case of literals, it again integrates

the left-hand type. The effect of this is that the left-hand type is always

integrated at critical points where the procedure recurses, meaning it is

essentially in the image of DNFu.

Lemma 1 (Integrated Soundness) Assuming hitherto requirements:

∀τ�, τ�. τ� ≤u τ� =⇒ τ� <:E τ�

Soundness of integrated subtyping with respect to extended subtyping

follows from simply adapting the proof of soundness of reductive typing to

incorporate Requirement 3.8 whenever integrated subtyping integrates the

96 integrated subtyping

left-hand type. Completeness, on the other hand, is much more challenging

to achieve. Requirement 3.7 is just one of many steps to this effect. In the

following, we first ensure that integrated subtyping is still decidable, and

then the remainder of the section establishes completeness so that we

can use the decision procedure for integrated subtyping as a decision

procedure for extended subtyping. As our running example, we will

demonstrate that these steps produce a decision procedure for our toy

functional language extended with EOut.

3.4.4 Decidability

Integrated subtyping is syntax-directed for the same reason as reductive

subtyping. Thus we can decide integrated subtyping by recursively search-

ing the proof space provided we can guarantee its recursion terminates. We

already have a well-founded measure for reductive subtyping, and we can

repurpose it to prove termination of integrated subtyping provided the

intersector preserves it.

Requirement 3.9 (Measure Preservation) ∀τ�, τ�. m(DNFu(τ�), τ�) �

m(τ�, τ�)

In the common case where m is defined on unions and intersections

using joins, this amounts to only ensuring that m(
d~̀ , τ�) is always less

than or equal to m(
⋂~̀ , τ�). For

d
Out this holds because the measures of

both sides are in fact always equal. That is,
d

Out preserves termination for

our toy functional language because it does not increase the nesting depth

of function types.

3.4 empowering unions and intersections 97

Lemma 2 (Integrated Decidability) Assuming hitherto requirements, the

relation ≤u is decidable.

3.4.5 Integrating

Clearly the literal intersector
d

and the corresponding type integra-

tor DNFu are the key new components of integrated subtyping. The

high-level intuition of how they work is that the integrator DNFu forms

a comonad on subtyping. Integrated subtyping then is conceptually akin

to the Kleisli category of this comonad. However, integrated subtyping

recursively integrates the comonad into its rules and its corresponding

proof-search algorithm. As such, we cannot simply reuse standard the-

orems from category theory to achieve our results, and much of the

challenge lies in addressing this recursive integration of DNFu into the

subtyping system. But we can still use these theorems as inspiration in

establishing the equivalence of integrated and extended subtyping.

3.4.5.1 Dereliction

Intuitively, the intersector
d

makes the type more precise. That is,
d

should

add information to the type, not remove information, as formalized by the

following requirement.

Requirement 3.10 (Literal Dereliction) ∀~̀ .
d~̀ ≤ ⋂~̀

This trivially holds for
d

Out since the resulting intersection always

contains the input literals.

98 integrated subtyping

τ dnfφ(τ) where φ ⊆ ~̀ dnf∩φ (τ) where φ ⊆ ~̀

⊥ true false
τ1 ∪ τ2 dnfφ(τ1) ∧ dnfφ(τ2) false
> dnf∩φ (>) φ([])

τ1 ∩ τ2 dnf∩φ (τ1 ∩ τ2) dnf∩
λ~̀ 1. dnf∩

λ~̀2.φ(~̀1 ++~̀2)
(τ2)

(τ1)

` dnf∩φ (`) φ([`])

Figure 3.7: Definition of dnfφ

Lemma 3 (Dereliction) Assuming hitherto requirements:

∀τ�, τ�. τ� ≤ τ� =⇒ DNFu(τ�) ≤ τ�

3.4.5.2 Intersected

Just like DNF∩ produces types in disjunctive normal form, we need some

property that describes the key trait of the image of the intersector
d

.

Let φ be some such property of lists of literals. We say a list of literals is

intersected if it satisfies φ. We extend this predicate to arbitrary types using

the dnfφ predicate defined in Figure 3.7, which informally states that a

type is integrated if it is a union of intersections of intersected lists of literals.

Just like the goal of DNF∩ is to produce types that are in disjunctive

normal form, the goal of DNFu is to produce integrated types. This is

ensured by the following requirement.

Requirement 3.11 (Intersector Integrated) ∀~̀ . dnfφ(
d~̀)

For our running example, we can define φOut to hold for a list of function-

type literals when, given any two function types τ1 → τ′1 and τ2 → τ′2 in

the list, the combined function-type literal (τ1 ∩ τ2) → (τ′1 ∩ τ′2) is also

in the list up to syntactic equivalence, meaning the only differences are

3.4 empowering unions and intersections 99

resolved by associativity, commutativity, and idempotence of intersection

types.

Lemma 4 (Integrator Integrated) Assuming hitherto requirements:

∀τ. dnfφ(DNFu(τ))

3.4.5.3 Promotion

For our purposes, the critical property of disjunctive normal form is

that, whenever a type τ is in disjunctive normal form and is a declar-

ative/reductive subtype of some other type τ′, then τ is furthermore a

declarative/reductive subtype of DNF∩(τ′). This property further sub-

stantiates the intuition that disjunctive normal form and DNF∩ integrate

distributivity directly into types. We want there to be a similar relation-

ship between integrated types and the integrator DNFu. This relationship

should extend from a similar relationship between intersected literals and

the intersector
d

. The following requirement formalizes that relationship.

Requirement 3.12 (Literal Promotion) For every two lists of literals ~̀

and ~̀ ′ and list of reductive literal subtyping rules~r ⊆ R such that

∀`′ ∈ ~̀ ′. ∃r ∈~r. `�r = `′ ∧ ∀r ∈~r. `�r ∈ ~̀

if φ(~̀) holds then there exists a list of reductive literal subtyping rules~ru ⊆ R

such that
d~̀ ′ is of the form · · · ∪

(⋂
ru∈~ru `

�
ru

)
∪ . . . and for all reductive literal

subtyping rules ru in~ru

`�ru ∈ ~̀ ∧ ∀〈τ�, τ�〉 ∈ Pru .
(⋃

r∈~r Pr

)
` τ� ≤ τ�

100 integrated subtyping

The premise of Requirement 3.12 indicates we have some list of rules (~r)

that can be used to prove that one intersection of literals (
⋂~̀) is a sub-

type of another (
⋂~̀ ′). The requirement, then, is essentially that if ~̀ is

furthermore intersected (i.e. φ(~̀) holds) then it should be possible to prove

from the combined premises of~r that
⋂~̀ is furthermore a subtype of

d~̀ ′.

More specifically, the requirement is that there is a list of rules (~ru) that

proves that
⋂~̀ is a subtype of

d~̀ ′ and whose premises can be proven

from the premises of~r. In a sense, Requirement 3.12 states that there is a

proof-theoretic analog to intersectors
d

in that the list of rules~ru is the

“promoted” analog of~r.

For our running example, suppose the list of rules~r consists of the rules

r1 and r2, which are Fun(τ1
i , τ1′

i , τ1
o , τ1′

o) and Fun(τ2
i , τ2′

i , τ2
o , τ2′

o) respectively.

This means the list of literals ~̀ ′ is τ1′
i → τ1′

o and τ2′
i → τ2′

o , and it means

the list of literals ~̀ contains at least τ1
i → τ1

o and τ2
i → τ2

o . The result of

applying the intersector
d

Out to ~̀ ′ is then

(τ1′
i → τ1′

o) ∩ (τ2′
i → τ2′

o) ∩ (τ1′
i ∩ τ2′

i → τ1′
o ∩ τ2′

o)

This intersection is comprised of three literals, which means we need

three “promoted” rules ~ru. In this case the first two rules are simply

r1 and r2, whose premises are trivially provable from the premises of~r.

For the last rule, we need a rule that proves that some literal in ~̀ is a

subtype of τ1′
i ∩ τ2′

i → τ1′
o ∩ τ2′

o . In general, such a rule does not necessarily

exist, but here we are allowed to assume that ~̀ is intersected, meaning

it satisfies φOut. Since we know ~̀ contains at least τ1
i → τ1

o and τ2
i →

τ2
o , by the definition of φOut we know ~̀ must also contain the literal

(τ1
i ∩ τ2

i) → (τ1
o ∩ τ2

o) (or something syntactically equivalent). Thus we

3.4 empowering unions and intersections 101

can use Fun(τ1
i ∩ τ2

i , τ1′
i ∩ τ2′

i , τ1
o ∩ τ2

o , τ1′
o ∩ τ2′

o) (or something syntactically

equivalent) as our final “promoted” rule, since the fact that τ1′
i ∩ τ2′

i is a

subtype of τ1
i ∩ τ2

i and that τ1
o ∩ τ2

o is a subtype of τ1′
o ∩ τ2′

o is easily proven

from the combined premises of~r (which are 〈τ1′
i , τ1

i 〉, 〈τ1
o , τ1′

o 〉, 〈τ2′
i , τ2

i 〉, and

〈τ2
o , τ2′

o 〉).

Lemma 5 (Promotion) Assuming hitherto requirements:

∀τ�, τ�. dnfφ(τ
�) ∧ τ� ≤ τ� =⇒ τ� ≤ DNFu(τ�)

Promotion for reductive subtyping is easily proven by induction. How-

ever, promotion for integrated subtyping is not nearly so simple. The

problem is that literal promotion makes use of reductive proofs with

assumptions. While such proofs can easily be converted into reductive

subtyping (without assumptions) when reductive subtyping holds for each

of the assumptions, the same is not true for integrated subtyping because

its subtyping rule for literals differs. In order to bridge this difference, one

first needs to prove that integrated subtyping is monotonic with respect

to reductive subtyping, and the proof of this involves a complex mix of

transitivity reduction, promotion of reductive subtyping, and “big-step”

well-founded coinduction alternating with “small-step” induction. Fortu-

nately, our framework abstracts away all this complex proof machinery

from the concerns of its users, providing the following convenient lemmas.

Lemma 6 (Integrated Monotonicity) Assuming hitherto requirements:

∀τ1, τ2, τ3, τ4. τ1 ≤ τ2 ∧ τ2 ≤u τ3 ∧ τ3 ≤ τ4 =⇒ τ1 ≤u τ4

102 integrated subtyping

Lemma 7 (Integrated Assumptions) Assuming hitherto requirements:

∀P , τ�, τ�. P ` τ� ≤ τ� =⇒
(
∀〈τ�p , τ�p 〉 ∈ P . τ�p ≤u τ�p

)
=⇒ τ� ≤u τ�

Lemma 8 (Integrated Promotion) Assuming hitherto requirements:

∀τ�, τ�. τ� ≤u τ� =⇒ τ� ≤u DNFu(τ�)

3.4.6 Equivalence of Extended and Integrated Subtyping

We have now established the essential comonad-like properties of DNFu.

Now we move on to utilizing these properties to prove that integrated

subtyping admits the rules of extended subtyping that were removed to

achieve decidability.

3.4.6.1 Reflexivity

Reflexivity is a corollary of the prior lemmas. In particular, a reductive

proof with assumptions in which the assumption set P is empty directly

corresponds to reductive subtyping, so Lemma 7 indicates that reductive

subtyping implies integrated subtyping. As a consequence, reflexivity of

reductive subtyping implies reflexivity of integrated subtyping.

Lemma 9 (Integrated Reflexivity) Assuming hitherto requirements:

∀τ. τ ≤u τ

3.4 empowering unions and intersections 103

3.4.6.2 Rule Conversion

Integrated subtyping relies upon the reductive literal subtyping rules R,

whereas extended subtyping relies upon the declarative literal subtyping

rules D. For our proof of equivalence of declarative and reductive sub-

typing, we already required a conversion of declarative literal rules into

reductive subtyping proofs with assumptions (Requirement 3.5), and for

our proof of integrated promotion, we already demonstrated that reduc-

tive proofs with assumptions can be converted into integrated subtypings

under appropriate assumptions (Lemma 7). As a consequence, we can sim-

ply reuse the required conversions of literal rules to prove that integrated

subtyping also admits the declarative literal rules.

Lemma 10 (Declarative-to-Integrated Literal Conversion) Assuming

hitherto requirements:

∀r ∈ D. (∀〈τ�, τ�〉 ∈ Pr. τ� ≤u τ�) =⇒ `�r ≤u `�r

3.4.6.3 Transitivity

The final step is to prove transitivity of subtyping. As with reductive

subtyping, conceptually this is done by recursively reducing the left-

hand proof and right-hand proof, eventually making progress towards a

combined subtyping proof, which in turn ensures termination due to well-

foundedness of integrated subtyping. However, there is a key difference

here that arises when reducing applications of literal rules, which we

illustrate using our running example.

104 integrated subtyping

Suppose the left-hand proof is an application of Fun(τi, τ′i , τo, τ′o) and

the right-hand proof is an application of Fun(τ′i , τ′′i , τ′o, τ′′o), meaning the

integrated proofs being reduced appear as follows:

...

DNFu(τ′i) ≤u τi

...

DNFu(τo) ≤u τ′o

τi → τ′i ≤u τo → τ′o

...

DNFu(τ′′i) ≤u τ′i

...

DNFu(τ′o) ≤u τ′′o

τ′i → τ′′i ≤u τ′o → τ′′o

Notice there is a mismatch between the conclusions of the subproofs: the

left-hand types are integrated but the right-hand types are not. But we

can resolve this mismatch by promoting the appropriate proofs so that

we can recursively reduce the transitive pairs of proofs for i and for o.

Thus we can make progress towards proving τi → τ′′i ≤u τo → τ′′o by

applying Fun(τi, τ′′i , τo, τ′′o).

While this intuition is the essence of how transitivity is proven, the

actual proof once again involves a complex mix of transitivity reduction,

promotion of integrated subtyping, and “big-step” well-founded coin-

duction alternating with “small-step” induction. In particular, integrated

subtyping is not itself reductive—transitivity is not simply achieved by

showing that each cutpoint reduces. While that is a step of the proof, the

much more challenging step is recursively incorporating the integrator

into transitivity, with promotion essentially integrating the intended ax-

ioms into the subtyping proofs themselves just like the integrator does

3.4 empowering unions and intersections 105

with types. Thus integrated subtyping is proof-theoretically more pow-

erful than reductive subtyping, making it likely necessary for these more

advanced subtyping systems. Fortunately, our framework abstracts away

this complex proof machinery, providing the following convenient lemmas

and the main theorem of this chapter.

Lemma 11 (Integrated Transitivity) Assuming hitherto requirements:

∀τ1, τ2, τ3. τ1 ≤u τ2 ∧ τ2 ≤u τ3 =⇒ τ1 ≤u τ3

Lemma 12 (Integrated Completeness) Assuming hitherto requirements:

∀τ�, τ�. τ� <:E τ� =⇒ τ� ≤u τ�

Theorem 3.4.1 (Decidability of Extended Subtyping). For every set of

literals `, set of declarative rules D, set of reductive rules R, set of exten-

sions E , intersector of literals
d

, and intersected predicate φ satisfying Require-

ments 3.1 through 3.12, proof search for integrated subtyping as defined in

Figure 3.6 is a decision procedure for extended subtyping as defined in Figure 3.4.

Proof. Mechanically proved in Coq [Muehlboeck and Tate, 2018a], along

with a proof that the proof search can be safely optimized by using a

rule “prioritization”. This means that when proof search encounters a

situation in which multiple rules are applicable, it does not need to search

the rules that have lower “priority” than some other applicable rule. In

this case, the high-priority rules are the left union and bottom rules, the

mid-priority rules are all the right rules, and the low-priority rules are the

left intersection rules and the custom literal rules.

106 integrated subtyping

Thus, since we already illustrated that
d

Out satisfies the requirements

with respect to EOut, this means proof search for ≤d
Out

is a decision pro-

cedure for <:EOut
. But EOut is only one of the extensions Pierce consid-

ered for Forsythe, one that he already proved decidable (without union

types) [Pierce, 1989]. Rather than redo this work each time one considers

another extension, next we discuss how one can develop each extension

separately and then easily compose the extensions together with just one

more simple proof. We will be illustrating composability with our main

application, Ceylon, rather than our toy functional language.

3.5 composability

So far, we have had only a relatively simple integrator as an example. As

we discussed in Section 3.2, Ceylon uses union and intersection types to

build several type-system features, which requires more involved type

integrators. We would like to be able to specify them separately and then

only later compose them into a single master type integrator. In this section,

we discuss how to do this.

Suppose one has developed two intersectors
d

1 and
d

2 and respective

intersected predicates φ1 and φ2 on the same set of literals ` and literal

subtyping rules R. One can compose them as follows:

d~̀ ::= DNFu2(
d

1
~̀) φ(~̀) ::= φ1(~̀) ∧ φ2(~̀)

The only thing one needs to show for this composition to work as

expected is that
d

2 preserves φ1.

Requirement 3.13 (Intersected Preservation) ∀~̀ . φ1(~̀)⇒ dnfφ1(
d

2
~̀)

3.6 application to ceylon 107

Theorem 3.5.1 (Intersector Composability). For every set of literals `, set of

declarative rules D, set of reductive rules R, and sets of extensions E1 and E2

with corresponding intersectors of literals
d

1 and
d

2 and intersected predi-

cates φ1 and φ2 each satisfying Requirements 3.1 through 3.12, satisfying Require-

ment 3.13 implies the composed intersector
d~̀ = DNFu2(

d
1
~̀) and intersected

predicate φ(~̀) = φ1(~̀) ∧ φ2(~̀) satisfy Requirements 3.1 through 3.12 with re-

spect to the extension E1 ∪ E2.

Proof. Mechanically proved in Coq as outlined above [Muehlboeck and

Tate, 2018a].

3.6 application to ceylon

We have been using a toy language as our running illustrative example. In

this section, we will show how to use integrated subtyping to uniformly

implement various aspects of an industry language, namely the Ceylon

language [King, 2013] and its features that we discussed in Section 3.2.

3.6.1 Unempowered Ceylon

Ceylon is an object-oriented language, and its literals are class types. More

specifically, Ceylon uses generics with declaration-site variance, so its

class types are parameterized with some number of arguments, some of

which are covariant and some of which are contravariant. For the sake

of concision, we approximate this expressiveness with single-parameter

class types employing use-site variance. As such, our literals will be of

the form C〈in τi out τo〉, with the in argument being the contravariant

108 integrated subtyping

Ceylon Subtyping τ <: τ τ ≤ τ C〈·〉 <:: C〈τ̇〉

τ′i <: τi τo <: τ′o
C〈in τi out τo〉 <: C〈in τ′i out τ′o〉

C〈·〉 <:: C′〈τ̇〉
C〈in τi out τo〉 <: C′〈in τ̇[in τo out τi] out τ̇[in τi out τo]〉

C〈·〉 ≤:: C〈·〉

C〈·〉 <:: C′〈τ̇〉
C′〈·〉 ≤:: C′′〈τ̇′〉

C〈·〉 ≤:: C′′〈τ̇′[τ̇]〉

C〈·〉 ≤:: C′〈τ̇〉
τ′i ≤ τ̇[in τo out τi]
τ̇[in τi out τo] ≤ τ′o

C〈in τi out τo〉 ≤ C′〈in τ′i out τ′o〉

τ̇ τ̇[in τi out τo]

· τo

⊥ ⊥
τ̇1 ∪ τ̇2 τ̇1[in τi out τo] ∪ τ̇2[in τi out τo]

> >
τ̇1 ∩ τ̇2 τ̇1[in τi out τo] ∩ τ̇2[in τi out τo]

C〈in τ̇i out τ̇o〉 C〈in τ̇i[in τo out τi] out τ̇o[in τi out τo]〉

Figure 3.8: Declarative and Reductive Literal Subtyping Rules for Ceylon (assum-
ing Material-Shape Separation)

argument to the parameter, and the out argument being the covariant

argument (see also Section 2.3). As an example, the literal

MutableList〈in Integer〈in ⊥ out >〉 out Number〈in ⊥ out >〉〉

represents a mutable list that one can put integers into and get numbers out

of. The classes Integer and Number make no use of their type parameter,

so in such cases we will use C〈〉 as shorthand for C〈in ⊥ out >〉. Thus the

example literal will be written as MutableList〈in Integer〈〉 out Number〈〉〉.

Figure 3.8 shows the declarative and reductive literal subtyping rules for

Ceylon. They assume a given relation C〈·〉 <:: C′〈τ̇〉 indicating that class C

3.6 application to ceylon 109

with type parameter · directly inherits class C′ with type argument τ̇,

where the grammar for parameterized types τ̇ is the same as for types τ

with a single additional case · representing the type parameter. Because

use-site variance supplies two type arguments to each type parameter,

substitution τ̇[in τi out τo] substitutes all occurrences of · in τ̇ with τi

in contravariant positions and τo in covariant positions. We show the

subtyping rules in inference-rule format above for readability, but of

course these presentations could be reformatted as collections of literal

subtyping rules DCeylon and RCeylon.

Similar to how subtyping for functions worked in our toy functional

language, we had to merge the two rules for inheritance and variance

into a single rule for reductive subtyping. The reductive literal subtyping

rule is clearly syntax-directed. Its use of the reflexive-transitive closure ≤::

of the inheritance relation <:: makes it satisfy the literal reflexivity and

transitivity requirements. The declarative and reductive rules admit each

other, leaving only the well-foundedness requirement, which we solve by

adopting Material-Shape Separation as discussed in Chapter 2. All of this

implies that declarative and reductive subtyping for Ceylon are equivalent

and decidable by the Decidability of Declarative Subtyping Theorem.

But declarative and reductive subtyping are incapable of the reasoning

needed to support the various features of Ceylon discussed in Section 3.2.

The remainder of this section illustrates how to extend subtyping with the

necessary new functionality. We first discuss each feature independently,

then show to use our Intersector Composability Theorem to unify all

110 integrated subtyping

these features into one coherent and principled subtyping system. As we

proceed, we make use of the following shorthands:

ClassOf(C〈in τi out τo〉) = C C〈〉 = C〈in ⊥ out >〉

C〈·〉 <:: C′〈τ̇〉

C <:: C′

C〈·〉 ≤:: C′〈τ̇〉

C ≤:: C′

3.6.2 Disjointness

Ceylon reasons about when intersections of two types are uninhabitable.

We can add disjointness reasoning to a nominal type system using the

extension in Figure 3.9. First, we assume we are given a decidable and

sound, but not necessarily complete, relation between classes indicating

when two classes are disjoint. We further assume this relation is symmetric

and respects inheritance. Second, we extend subtyping to say that, when-

ever two classes are disjoint, any intersection of their instantiations is a

subtype of ⊥. Third, we say that a list of literals is intersected if it does not

contain any disjoint classes, and we define our intersector to replace any

list of literals containing disjoint classes with ⊥. Lastly, we prove that this

definition satisfies the requirements outlined in Section 3.4. These proofs

are straightforward, so we omit them here and throughout this section.

3.6 application to ceylon 111

Given a decidable
relation C dsj C′ Extended Subtyping

C dsj C′

C′ dsj C

C <:: C′

C′ dsj C′′

C dsj C′′
C dsj C′

C〈in τi out τo〉 ∩ C′〈in τ′i out τ′o〉 <: ⊥

Integrated Subtyping

φdsj(~̀) = @`, `′ ∈ ~̀ . ClassOf(`) dsj ClassOf(`′)

d
dsj
~̀ =


⋂~̀ if φdsj(~̀)

⊥ otherwise

Figure 3.9: Disjointness Extension

3.6.3 Principal Instantiation

Given an intersection C〈in τi out τo〉 ∩C〈in τ′i out τ′o〉, Ceylon can combine

the covariant and contravariant type arguments to generate the principal

instantiation C〈in τi ∪ τ′i out τo ∩ τ′o〉 of class C for that intersection.

Figure 3.10 formalizes this extension. The formalization actually as-

sumes a hierarchy satisfying single-instantiation inheritance, but this is

only because our simplification lacks the declaration-site variance neces-

sary to express the more flexible concept of principal-instantiation inheri-

tance [King, 2013]. In either case, the extension to subtyping is the same:

contravariant type arguments are combined with unions, and covariant

type arguments are combined with intersections. Integrating, on the other

hand, is much more complicated, though most of the complexity is just

tedium. The intersector needs to scale to arbitrary-sized lists of literals,

and more importantly it must deal with the fact that inheritance can make

112 integrated subtyping

Given

C〈·〉 ≤:: C′〈τ̇〉 C〈·〉 ≤:: C′〈τ̇′〉
τ̇ = τ̇′

Extended Subtyping

C〈in τi out τo〉 ∩ C〈in τ′i out τ′o〉 <: C〈in τi ∪ τ′i out τo ∩ τ′o〉

Integrated Subtyping

PMeetC(τ, τ′) =



> if τ = τ′ = >

τ if τ′ = >

τ′ if τ = >

C〈in τi ∪ τ′i out τo ∩ τ′o〉 if
∧ τ = C〈in τi out τo〉

τ′ = C〈in τ′i out τ′o〉

PInstC(τ) =



> if τ = >
PMeetC(PInstC(`),PInstC(

⋂~̀)) if τ = ` ∩⋂~̀
C〈in τ̇ out τ̇〉[in τi out τo] if

∧ τ = C′〈in τi out τo〉
C′〈·〉 ≤:: C〈τ̇〉

> otherwise

Cover(~̀) =
⋃
C⊆{ClassOf(`)|`∈~̀} LCA<::(C)

(where LCA<:: is least common-ancestors w.r.t. <::)

φPInst(~̀) = ∀C.
⋂~̀ ≤ PInstC(

⋂~̀)
d

PInst
~̀ =

⋂
C∈Cover(~̀) PInstC(

⋂~̀)
Figure 3.10: Principal-Instantiation Extension

3.6 application to ceylon 113

the contributors to a principal instantiation arise indirectly1. The Cover

function is used to identify the set of classes that can have such an indirect

contribution. In Ceylon, Cover needs to be more advanced to address other

features of the language, but for our simplified language we can just use

least common-ancestors.

We should remark that this feature can also be applied to plain function

types with the following:

l
(τi → τo, τ′i → τ′o) = (τi ∪ τ′i)→ (τo ∩ τ′o)

Such an extension is actually strictly more expressive than that of Forsythe.

However, while this this extension is sound for Ceylon due to Ceylon’s

nominal nature, it is in fact unsound for Forsythe due to Forsythe’s struc-

tural nature. Thus it is interesting and important that our framework

can express both Ceylon’s permissive extension and Forsythe’s restrictive

extension precisely.

3.6.4 Classes with Enumerated Cases

Ceylon provides algebraic data types by allowing classes to explicitly

enumerate all permitted subclasses if desired. For example, the Nat data

type could be defined as follows:

1 For example, if C`〈·〉 <:: C〈·〉 and Cr〈·〉 <:: C〈·〉, then the type C`〈in τi out τo〉 ∩
Cr〈in τ′i out τ′o〉 must be a subtype of C’s principal instantiation C〈in τi ∪ τ′i out τo ∩ τ′o〉
despite not directly mentioning class C.

114 integrated subtyping

Given an operator cases(C) that, if defined,
specifies a finite and computable set of classes

C′ ∈ cases(C)
C′ <:: C ∧ cases(C′) undefined

cases(C) defined C′〈·〉 <:: C〈τ̇〉
C′ ∈ cases(C) ∧ τ̇ = ·

Extended Subtyping

cases(C) defined

C〈in τi out τo〉 <:
⋃

C′∈cases(C)
C′〈in τi out τo〉

Integrated Subtyping

expand(C〈in τi out τo〉) =


⋃

C′∈cases(C)
C′〈in τi out τo〉 cases(C) defined

C〈in τi out τo〉 otherwise

φcases(~̀) = 6 ∃` ∈ ~̀ . cases(ClassOf(`)) defined
d

cases
~̀ = DNF∩

(⋂
`∈~̀ expand(`)

)
Figure 3.11: Enumerated-Cases Extension (assuming Material-Shape Separation

for cases)

abstract class Nat of Zero, Succ〈Nat〉 { . . . }

class Zero extends Nat { . . . }

class Succ〈out N extends Nat〉 extends Nat { . . . }

Because an enumeration is provided, Ceylon makes Nat〈〉 a subtype of

Zero〈〉 ∪ Succ〈Nat〈〉〉. The same could be done for a LinkedList class with

Nil and Cons cases. This is particularly useful in the context of switch

statements because it unifies the reasoning for union types and sum types.

We formalize this extension in Figure 3.11. Here, a class C is a class with

enumerated cases if the function cases(C) is defined. If defined, this func-

3.6 application to ceylon 115

tion returns a finite set of classes. Any class in that set must directly inherit

from C and not itself be a class with enumerated cases (as a simplification

to avoid reasoning about chains of expansions). Conversely, if a class has

enumerated cases, then any class that directly inherits from it must be

in the set of cases and must not change the type arguments (in order to

avoid the complexities of generalized algebraic data types). Again, this for-

malization is overly restrictive due to the lack of declaration-site variance,

bounded type parameters, and limited arity, but it still captures the key

components. Note that the intersector needs to apply DNF∩ because the

expansions of cases could introduce a union inside the intersection. This is

fine, though, because one can easily show that DNF∩ will not reintroduce

unintegrated intersections.

Lastly, we chose the particular example of Nat for a reason. Note that in

our example Nat〈〉 gets expanded to Zero〈〉 ∪ Succ〈Nat〈〉〉, which in turn

contains Nat〈〉. Although not supported by the simplification presented

here, this example illustrates another reason why it is important to in-

tegrate
d

into the recursive algorithm itself, rather than eagerly expand

a type recursively, since an eager of expansion of Nat〈〉 would continue

forever. However, with integration comes the problem that the termina-

tion measure might increase. In the case of this extension, we convert

class literals to literals of subclasses, which may have a higher termination

measure, as is the case for the measure that we used in Chapter 2. We

address this by assuming Material-Shape Separation for cases. By this we

mean that all of the declared superclasses (besides C) of the cases of a

class C are well-defined class types prior to the declaration of C. This

enables the measure of C to incorporate the measures of its cases so that

replacing C with the union of its cases does not increase the measure.

116 integrated subtyping

Ceylon can furthermore adapt the “swap” measure from Tate, Leung,

and Lerner [2011], which intuitively measures how often types can “swap

sides” due to contravariance as subtyping recurses. One can easily show

that material-shape separation ensures that this “swap” measure is also

a well-founded measure for reductive subtyping. The effect of using the

“swap” measure instead is that the intersector need only ensure that it does

not introduce new forms of contravariance in order to ensure decidability

of integrated subtyping. For example, because the class Succ is covariant,

the type Nat〈〉 can be expanded to Zero〈〉 ∪ Succ〈Nat〈〉〉 even though the

expanded type again refers to Nat〈〉.

3.6.5 Object and Null

Given

C ≤:: Object ∨ C ≤:: Null

Extended Subtyping

> <: Object〈〉 ∪ Null〈〉

Integrated Subtyping

φObjNull(~̀) = ∃C〈in τi out τo〉 ∈ ~̀

d
ObjNull

~̀ =


⋂~̀ if φObjNull(~̀)

(Object〈〉⋂~̀) ∪ (Null〈〉⋂~̀) otherwise

Figure 3.12: Object-Null Extension

In Ceylon, every value belongs to either Object or Null. Consequently,

Object and Null are essentially the enumerated cases of >. Even though >

is not itself a class, we can still express this using an integrator, as shown in

3.6 application to ceylon 117

Figure 3.12. For this, a list of literals is intersected if it contains a class literal.

In our simplified calculus, this is equivalent to saying the intersection is

nonempty, but in Ceylon literals might also be type variables (which will

be discussed in Section 3.7.4). The intersector, then, checks this condition

and, if it fails to hold, simply distributes the intersection of literals through

the union Object〈〉 ∪ Null〈〉. Thus in particular the empty intersection >

becomes Object〈〉 ∪ Null〈〉. Interestingly, the Ceylon team actually avoided

adding this feature because > is essentially everywhere and it was not

clear that the original informal reasoning behind our technique safely

applied to such an omnipresent type. But now our formalized reasoning

and mechanical verification confidently illustrate that this is in fact the

easiest extension to verify. 8

3.6.6 Composing Features

Lastly, we compose the extensions together to develop the subtyping sys-

tem and decision procedure for our simplified Ceylon in Figure 3.13. This

composition assumes we have made an explicit separation of classes and

interfaces. With this separation in place, we enforce single inheritance of

classes, which we then employ to provide a specific disjointness relation

for the disjointness extension. Furthermore, because we also assume only

classes can have enumerated cases, we can prove that different cases are

disjoint from each other. This is used to prove that principal instantiation

does not reintroduce classes with enumerated cases into non-disjoint inter-

sections. Consequently, the intersector for each extension can be shown

to preserve the fact that intersections are intersected according to all the

118 integrated subtyping

Given a decidable predicate class(C)

C <:: C1 C <:: C2
class(C1) class(C2)

class(C) ∧ C1 = C2

cases(C) defined
class(C)

C ≤:: Null ≤:: C′

C = C′

Definition of Disjointness

C 6= Null

C dsj Null

C 6= Null

Null dsj C

class(C) class(C′)
¬ C ≤:: C′ ¬ C′ ≤:: C

C dsj C′

Integrated Subtyping

l

Ceylon

=
l

cases

;
l

dsj

;
l

PInst

;
l

ObjNull

where (
d

1 ;
d

2)
~̀ = DNFd

2

(d
1
~̀
)

Figure 3.13: Simplified-Ceylon Subtyping System (using the extensions in Fig-
ures 3.9 through 3.12)

previously applied extensions, thereby satisfying Requirement 3.13 (In-

tersected Preservation). We chose to apply the extensions in the given

order so as to ensure this property. Thus we have compositionally built a

decidable subtyping system for Ceylon, with most of our proof effort fo-

cused specifically on the extensions rather than the previously established

features of generics with variance due to our Decidability of Extended

Subtyping Theorem.

3.7 variations , generalizations , related work , and future

work

The technique we have presented is actually a specialization to union and

intersection types [Coppo and Dezani-Ciancaglini, 1978; Coppo, Dezani-

3.7 variations , generalizations , related work , and future work 119

Ciancaglini, and Sallé, 1979; Pottinger, 1980; Wijngaarden et al., 1975] of

a more general framework we developed that is independent of union

and intersection types. We chose to present this particular specialization

because it abstracts away much of the complex underlying proof theory,

making the technique more accessible while still being applicable to the

original language the framework was invented for. Nonetheless it is im-

portant to convey some sense of the more general framework, especially

as it pertains to existing research and languages.

3.7.1 Miminal Relevant Logic and Relaxing Requirements

Bakel, Dezani-Ciancaglini, de’Liguoro, and Motohama [2000] discovered

that the propositions-as-types interpretation of B+ [Routley and Meyer,

1972], a logic known as minimal relevant logic, corresponds to a call-

by-value λ-calculus with subtyping, union, and intersection types. In

particular, it corresponds to our toy functional language extended with EOut

along with the following extension EIn that was also postulated by Pierce

[1991] for Forsythe:

(τ1 → τ′) ∩ (τ2 → τ′) <: (τ1 ∪ τ2)→ τ′

Minimal relevant logic is known to be decidable [Gochet, Gribomont,

and Rossetto, 2005; Viganò, 2000], which provides a subtyping algorithm

for our toy functional language with both EOut and EIn extensions. A slight

120 integrated subtyping

variant of our technique can also implement this extension using the

following intersector:

l

InOut

~̀ =
⋂

∅⊂L⊆{L|∅⊂L⊆~̀}

(⋂
L∈L

⋃
(τi→τo)∈L

τi

)
→
(⋃

L∈δ(L)

⋂
(τi→τo)∈L

τo

)
where δ(L) = {{σ(L) | L ∈ L} | σ is a function from L to L}

The necessary variations are two parts. First, minimal relevant logic has

no ⊥ type, so we have to remove that from the type system entirely. Second,

because of the order in which the lemmas in Section 3.4.5.3 are proven,

Requirement 3.12 (Literal Promotion) can be relaxed a bit. In particular,

the required proofs with assumptions demonstrating literal promotion can

actually be proofs with assumptions and monotonicity, meaning they can

use the following rule in addition to all the rules in Figure 3.3 (replacing

P ` τ� ≤ τ� with P `≤ τ� ≤ τ�):

τ1 ≤ τ2 P `≤ τ2 ≤ τ3 τ3 ≤ τ4

P `≤ τ1 ≤ τ4

With these two variations, one can easily (in a relative sense) show that
d

InOut satisfies the requirements of our framework relative to the EOut

and EIn extensions, and as such integrated subtyping ≤d
InOut

provides a

decision procedure for extended subtyping <:EOut∪EIn .

Furthermore, essentially the same proof of the requirements applies

to the variant of
d

InOut in which L is allowed to be empty. This variant

implements the additional extension > <: > → >, which was postu-

lated by Barbanera, Dezani-Ciancaglini, and de’Liguoro [1995], and which

Liquori and Stolze [2017] recently proved decidable. Thus in all of the

3.7 variations , generalizations , related work , and future work 121

above variations on extensions, subtyping has already been proven decid-

able. However, each proof used a new algorithm and a customized proof

technique. Our technique can handle them all in a unified manner, and at

the same time the proof is easy to adapt to even further extensions.

3.7.2 Integrators: Beyond Union and Intersection Types

On that point, our generalized framework extends even beyond union and

intersection types. In place of DNFu and dnfu, one can use an arbitrary

type integrator
∫

and integrated predicate. In place of union and intersec-

tion subtyping rules, one can abstractly formulate all the subtyping rules

much like we did for literal rules. This generalized framework soundly

and completely extends subtyping algorithms with the ability to recognize

additional axioms. The technique we presented is a specialization of that

framework to distributive union and intersection types. Interestingly, by

specializing we were able to relax some of the requirements imposed by

our general framework, and we are working on integrating these insights

back into the generalized framework.

3.7.3 Predicative Higher-Rank Polymorphism and Duality

Our framework can even be dualized, with the right-hand type being

cointegrated rather than the left-hand type being integrated, and this

dual variant also has prior applications. In predicative higher-rank poly-

morphism, Peyton Jones, Vytiniotis, Weirich, and Shields [2007] trans-

formed right-hand types into weak-prenex form in order to address

122 integrated subtyping

a problem in earlier work by Odersky and Läufer [1996] that did not

recognize the following distributivity law described by Mitchell [1988]:

∀α. τ1 → τ2 <: τ1 → ∀α. τ2 (when α is not free in τ1). Reynolds’ own al-

gorithm for Forsythe (without unions) transforms the types on both sides

into intersections of “simple types” [Reynolds, 1988, 1997]. But the type

transformer satisfies the requirements of a cointegrator, and so our frame-

work indicates the algorithm could be optimized to only transform the

right-hand type.

3.7.4 Bounded Type Variables and Well-Formed Kind Contexts

Another aspect of subtyping we have not yet discussed is contexts. For

example, languages with subtyping typically also have a kind context

of bounded type variables. Ceylon itself is an example of such a lan-

guage. We have proven that our technique extends to languages with

type variables that can be both lower- and upper-bounded, assuming the

variable-constraint hierarchy is well-founded in accordance with Material-

Shape Separation (Chapter 2).

Although this has been only proven by hand, we present the extension

of our framework to bounded type variables here both for completeness

with respect to our primary application, Ceylon, and to illustrate an

interesting subtlety in this extension. The grammar of types τ is extended

with type variables α. Kind contexts Θ are simply lists of type-variable

constraints τ < α < τ. However, in order to ensure decidability, we must

restrict these type-variable constraints in accordance with Material-Shape

Separation (Chapter 2). That is, the upper- and lower-bounds of a type

3.7 variations , generalizations , related work , and future work 123

Extended Kind Context Validity `u Θ

`E ·
Θ `<:E τ` Θ `<:E τu `E Θ Θ ` τ` <:E τu

`E Θ, τl < α < τu

Extended Subtyping
with Bounded Type Variables

Θ ` τ <:E τ

All rules in Figure 3.1,
replacing τ� <: τ�

with Θ ` τ� <: τ�

 τ` < α < τu ∈ Θ
Θ ` τ` <:E α

τ` < α < τu ∈ Θ
Θ ` α <:E τu

Figure 3.14: Extended Subtyping with Bounded Type Variables

variable α must not themselves refer to α. In order to formalize this, we use

a type-validity judgement Θ `S τ that is defined in the obvious manner

from a literal-validity judgement Θ `S ` specified by the particular type

system at hand to indicate when all the free type variables in a literal `

are declared in Θ (where S is a parameter representing the subtyping

relation).

Extended subtyping with bounded type variables is formalized in Fig-

ure 3.14. On the left, we define kind-context validity. There are two key

aspects to note here. First, when adding a new constrained type variable α

to a kind context Θ, one checks that the bounds are valid under Θ with-

out α. This captures Material-Shape Separation as applied to type variables

(although we do not assume the literals here represent classes). Second,

one checks that the lower bound is already a subtype of the upper bound

under Θ without the new constraint. This ensures that the new constraint

does not indirectly introduce any subtypings between types that do not

reference α. For example, under the kind context > < α < ⊥, transitivity

124 integrated subtyping

Integrated Kind Context Validity `u Θ

`u ·
Θ `≤u τ` Θ `≤u τu `u Θ Θ ` τ` ≤u τu

`u Θ, τl < α < τu

Integrated Subtyping
with Bounded Type Variables

Θ ` τ ≤u τ

Θ ` τ ≤u τ

Θ ` DNFΘ
u (τ) ≤u τ′

Θ ` τ ≤u τ′

All rules in Figure 3.2 except
literal subtyping, replacing

τ� ≤ τ� with Θ ` τ� ≤u τ�


τ` < α < τu ∈ Θ

Θ ` τ ≤u τ`

Θ ` τ ≤u α Θ ` α ≤u α

r ∈ R
∀〈τ, τ′〉 ∈ Pr. Θ ` DNFΘ

u (τ) ≤u τ′

Θ ` `←r ≤u `→r

Figure 3.15: Integrated Subtyping with Bounded Type Variables

would imply that all types are subtypes of each other, even if none of the

types involved mention α. On the right, we define extended subtyping

with the standard declarative rules for bounded type variables.

Integrated subtyping with bounded type variables is formalized in

Figure 3.15. It adds two of the standard reductive subtyping rules for

bounded type variables. However, surprisingly, it is missing the rule for

upper bounds of type variables. This is because we discovered that upper

bounds were actually best achieved by using the integrator rather than a

rule. The reason is that the integrator already needs to recurse through the

upper bounds of type variables in order to fulfill its responsibilities. For

example, while the type α ∩ Null〈〉 might appear to be already integrated,

if α has Object〈〉 as its upper bound then the integrator needs to replace

the entire type with ⊥ in order to properly implement disjointness. Thus

the definition of DNFΘ
c , shown in Figure 3.16, recurses into the upper

3.7 variations , generalizations , related work , and future work 125

DNFΘ
u (τ) = DNFΘ

λ~̀ ,~α. DNF
λ~̀ ′ .(⋂~̀ ′)∩(⋂~α)(d~̀)

(τ)

τ DNFΘ
c (τ) where c : ~̀ ×~α→ τ

⊥ ⊥
τ1 ∪ τ2 DNFΘ

c (τ1) ∪DNFΘ
c (τ2)

> c([], [])
τ1 ∩ τ2 DNFΘ

λ~̀ 1,~α1. DNFΘ
λ~̀2,~α2.c(~̀1 ++~̀2,~α1 ++~α2)

(τ2)
(τ1)

` c([`], [])
α DNFΘ

λ~̀ ,~α.c(~̀ ,[α] ++~α)
(τu)

where τ` < α < τu ∈ Θ

Figure 3.16: Definition of DNFΘ
u

bounds of variables, collecting the list of literals and type variables that

need to be intersected together. Finally, DNFΘ
u takes the collected literals,

passes them to the intersector, and then adds the collected type variables

to each intersection in the resulting sum of products. The consequence

of this is that the upper bound of a type variable is already incorporated

into the result of the integrator, making the upper-bound rule for type

variables unnecessary.

With a few requirements formulating standard expectations about the

literal-validity judgement Θ `S `, one can prove that integrated subtyping

with bounded type variables is both decidable and equivalent to extended

subtyping with bounded type variables. However, we have yet to mechani-

cally prove these facts. As for the more general framework, we have an

abstract formulation of contexts for which kind contexts of bounded type

variables are simply a special case.

126 integrated subtyping

3.7.5 Julia and Changing Kind Contexts

An even greater challenge we have yet to approach, though, is contexts

that change as the algorithm recurses. For example, Julia [Bezanson et al.,

2017] has a UnionAll type constructor that is essentially upper-and-lower-

bounded existential quantification [Zappa Nardelli et al., 2018]. As the

algorithm recurses, it unpacks these existential types when they are on

the left-hand side, adding their type variables and respective bounds to

the kind context. To make matters even more difficult, in order to deter-

mine how to pack existential types when they are on the right-hand side,

the algorithm returns inferred constraints on the to-be-instantiated type

variables. If extended to handle these issues, our framework could likely

solve an important open problem for Julia. In particular, Julia subtyping at-

tempts to support essentially the following axioms regarding its covariant

tuple types:

(τ1 ∪ τ′1)× τ2 <: (τ1 × τ2) ∪ (τ′1 × τ2)

(∃τ` 4 α 4 τu. τ1)× τ2 <: ∃τ` 4 α 4 τu. (τ1 × τ2)

However, largely due to these axioms, it is not yet known whether Julia

subtyping is decidable or even transitive. Both those properties are espe-

cially important for Julia because Julia uses subtyping checks to resolve

multimethod invocations, so decidability would ensure these run-time

decisions would behave as expected, and transitivity would enable Julia to

optimize its resolution strategies. These axioms can be implemented by

integrating the left-hand type to pull unions and existentials out of tuples,

3.7 variations , generalizations , related work , and future work 127

so extending our framework to this setting of changing input and output

contexts would enable us to prove for certain that Julia subtyping is both

decidable and transitive.

3.7.6 Regular-Coinductive Subtyping

Another way changing input contexts are used in subtyping is to track

which subtyping goals are currently in progress. This is useful for regular

subtyping systems [Bonchi and Pous, 2013; Brandt and Henglein, 1997;

Gesbert, Genevès, and Layaïda, 2015; Hosoya, Vouillon, and Pierce, 2000;

Kozen, Palsberg, and Schwartzbach, 1995], which are particularly com-

mon in domain-specific languages [Acay and Pfenning, 2017; Ancona and

Corradi, 2016; C. J. Anderson et al., 2014; Henglein and Nielsen, 2011;

Jeannin, Kozen, and Silva, 2017] and are also used in C# [Hejlsberg, Wilta-

muth, and Golde, 2005; Kennedy and Pierce, 2007; Viroli, 2000]. Whereas

well-founded subtyping rules ensure recursive proof search terminates,

regular subtyping rules ensure the recursion eventually repeats itself. Thus

tracking in-progress goals enables the recursive search to identify infinite

loops, which are the only form of infinite recursion in regular systems, and

terminate accordingly. Since our proofs for the most part simply rely on

the recursion principle of proof search, it seems likely we could extend our

framework to this setting. Ancona and Corradi [2016] recently achieved

decidability for their subtyping system by transforming the types on both

sides, and extending our framework might ensure that they could achieve

decidability more efficiently by transforming only the left-hand type.

128 integrated subtyping

3.7.7 Semantic Subtyping

The work by Ancona and Corradi [2016] mentioned above has another

important quality: it is an example of semantic subtyping [Frisch, Castagna,

and Véronique Benzaken, 2002; Hosoya and Pierce, 2003]. In semantic sub-

typing one constructs a set-theoretic model and an interpretation of types

as sets in that model; two types are then considered to be subtypes when-

ever their corresponding sets in the model are subsets. The challenge, then,

is to show that this subtype relation derived from the model is decidable

for the type system at hand, and there has been impressive work achiev-

ing this for various type systems [Ancona and Corradi, 2016; Castagna

and Xu, 2011; Dardha, Gorla, and Varacca, 2013; Frisch, Castagna, and

Véronique Benzaken, 2002, 2008; Hosoya and Pierce, 2003]. In particular,

the work on semantic subtyping provides powerful reasoning for union

and intersection types due to their obvious correspondence to unions and

intersections of sets, and is able to recognize subtypings such as the above

example regarding Julia’s union and covariant tuple types. In fact, the

work on semantic subtyping can even reason about negative types [Aiken

and Wimmers, 1993; Frisch, Castagna, and Véronique Benzaken, 2002],

where the type ¬τ represents the set of values not represented by τ. How-

ever, we found that semantic subtyping was ill-suited to our setting for

both methodological and technological reasons.

On the methodological side, semantic subtyping is fundamentally tied

to a model. But in a setting such as Ceylon, that model is constantly

changing. It changes because the exact design of the Ceylon language

changes (especially in the early stages). It changes because the exact

3.7 variations , generalizations , related work , and future work 129

design of various Ceylon libraries change, with fields and methods of

classes and interfaces regularly being added, removed, or modified as

projects evolve. So with semantic subtyping, the set of programs that

are accepted would change with each of these changes. This is to be

expected—the problem, though, is in how this set of programs changes.

For example, adding new functionality to the language can cause once-

valid programs to become invalid because the new functionality happens

to change the model in such a way that types whose interpretations

in the model used to coincide no longer do. Similarly, adding a new

method to a class can make that class no longer equivalent to another

class and consequently programs whose validity unwittingly relied on that

equivalence unexpectedly become invalid. And unfortunately one cannot

simply limit the reasoning provided by semantic subtyping because the

proofs that the derived subtype system is well-behaved (e.g. transitive) are

themselves derived from the set-theoretic nature of the model and do not

easily adapt to such limitations. Thus we found we needed a declarative

system so that we could explicitly state which rules we support now and

commit to supporting in the future.

On the technological side, we encountered issues with nominality, gener-

ics, and decidability. Ceylon is a nominal object-oriented language. It uses

nominality as a tool for modularity. For example, one can add a method

to a class and, because doing has no impact on the name of this class,

know that this will not cause previously-valid programs to become invalid.

Unfortunately the work on semantic subtyping has often overlooked or

oversimplified the nominal aspects of subtyping. For example, although

Dardha, Gorla, and Varacca [2013] provide a nominal semantic model

for subtyping, their model assumes a closed world and so will treat in-

130 integrated subtyping

terfaces without common implementing classes as disjoint even when

there is no (declared) guarantee disallowing developers from adding such

common implementing classes in the future. Furthermore their encoding

does not extend to reified generics with variance. Putting nominality aside,

a more fundamental issue is that generics enable developers to write

classes whose corresponding structural types are not regular. Regularity

has been a fundamental assumption of the semantic-subtyping literature,

and generics violate that assumption. In fact, this violation likely ensures

that semantic subtyping is undecidable for the resulting model. Thus

languages with generics must limit which subtypings they recognize. The

declarative methodology enables designers to pick which subtypings they

believe are most important, and our framework provides a tool for quickly

assessing which extensions can be implemented reliably.

3.8 summary

The framework discussed in this chapter provides us with tools to play

around with powerful type-system features built around union and in-

tersection types while keeping decidability. This is not only useful for

programming language design in general, it is particularly useful for

our approach to gradual typing. As we will see in Chapter 8, joins and

meets provided by union and intersection types are one way to get generic

type-argument inference more in line with gradual typing. In addition,

designing efficient gradually typed languages requires the ability to make

modifications to type system features to make them interact well with

each other and efficient to implement. In that regard, this framework lets

3.8 summary 131

us re-use much of the work that has already been done before the modifi-

cation, and gives us a straightforward way to ensure that decidability is

not lost in the process.

Part II

I M P L E M E N T I N G G R A D UA L T Y P I N G E F F I C I E N T LY

4
O V E RV I E W

As indicated by the title of this dissertation, the main goal is to demonstrate

that gradual typing can be implemented efficiently, at least if the language,

its type system and its runtime are co-designed with that goal in mind. The

basic intuition of how to achieve sound gradual typing is relatively simple:

we must protect the guarantees obtained through static type-checking by

inserting run-time checks at locations in the code where values flow from

untyped components to typed components. If a value from untyped code

fails to have its expected type at run time, an exception is thrown. Thus,

the statically checked components of the program can assume all values

passed to them are well-typed.

Painted this way, the picture leads us to expect that gradual typing may

incur some overhead for those inserted checks, proportional to the number

of times we transition from untyped to typed parts of the program. In

the optimal scenario, these checks are infrequent and efficient, and thus

the overall cost of gradual typing is low and can be easily estimated and

planned for by analyzing the level of interaction between typed and un-

typed parts of the program. Furthermore, typed code can be optimized in

ways untyped code cannot, so one would expect performance to smoothly

improve as types are added to a code base. However, to date, the only

existing proposals for a sound gradually typed language that have such

performance behavior and reasonable performance for fully untyped code

135

136 overview

are the ones discussed in Chapters 5 and 6. The fact that sound gradual

typing has an efficiency problem was brought to the forefront by Takikawa

et al. [2016], wo measured extreme and unpredictable dips in performance

for programs consisting of both typed and untyped code. These measure-

ments were made on their current proposal for sound gradual typing

for Racket [Tobin-Hochstadt and Felleisen, 2006], but they argued that

no other system provides convincing reasons for why it should perform

significantly better.

In this part, we address the problem of achieving efficient sound gradual

typing. The core component of this approach is a nominal type system with

run-time type information, which lets us verify assumptions about many

large data structures with a single, quick check – Chapter 5 demonstrates

that in a purely nominal language, called Nom, gradual typing is indeed

very efficient. The downside of this approach is that it limits expressivity,

particularly with respect to structural data. While one should be able

to build useful programming languages even under these limitations,

we address some of these limitations in Chapter 6, where we add the

possibility to have structural data in untyped code and monotonically cast

it to nominal interfaces in a language called MonNom, based on earlier

ideas on monotonic references [Rastogi et al., 2015; Siek, Vitousek, Cimini,

Tobin-Hochstadt, et al., 2015; Swamy et al., 2014; Vitousek, Kent, et al.,

2014]. Furthermore, by designing both systems hand-in-hand with gradual

typing, we are able to execute even untyped code efficiently despite our

reliance on nominal typing.

To support our claims about efficiency, we built prototype compilers

for both languages object-oriented language and used it to implement

key benchmarks. As expected, Nom is particularly efficient, measuring

4.1 background on gradual typing 137

worst-case overheads of less than 10% relative to the performance of

untyped code on benchmarks where Takikawa et al. measured overheads

of over 10,000%. MonNom’s nominal implementation is about on par with

Nom, and while its structural values are – as would be expected – slower

than their nominal counterparts, they are still reasonable efficient: our key

benchmark for structural values sufferes about 30% overhead relative to

untyped code.

4.1 background on gradual typing

Gradual typing, as originally proposed by Siek and Taha [2006], features

two core elements: a special type dyn and a consistency relation τ ∼ τ′

expressing that τ and τ′ are structurally equal except for places featuring

dyn. For example, the following types are consistent:

dyn ∼ (dyn→ dyn) ∼ (int→ dyn) ∼ (int→ bool)

A program in their gradually typed language type-checks according

to the original typing rules, but with type equality replaced with the

consistency relation in many places. This enables dyn to stand for any

type while also maintaining the familiar static typing rules where dyn is

not present. The gradually typed program is then translated into a variant

of the original statically typed language by inserting dynamic casts where

run-time checks are necessary to monitor the boundary between untyped

and typed code.

138 overview

Here is how this works for an example program:

f : dyn→ dyn ` (λ f ′ : int→ int. f ′ 5) f

The lambda term expects a parameter of type int→ int, but it is applied

to an argument of type dyn → dyn. Despite this difference in types,

the program type-checks because these two types are considered to be

consistent with each other. This gradually typed program is then translated

to a statically typed program by inserting run-time casts, resulting in

f : dyn→ dyn ` (λ f ′ : int→ int. f ′ 5) (f :: int→ int)

Here e :: τ represents a run-time check that e has type τ, conceptually

throwing a run-time exception if it does not.

4.1.1 Casting Strategies

In most gradual typing settings, casts are the only source of run-time

overhead incurred by gradual typing. Thus, where casts are inserted and

how they work has a big impact on the performance of a gradually typed

program. Before we suggest our own variation on casts in Sections 5.2

and 6.6, we give an overview of existing casting strategies that have been

studied as such.

4.1.1.1 Guarded

Most work on sound gradual typing—including the original works by

Siek and Taha [2006], Tobin-Hochstadt and Felleisen [2006], Matthews and

4.1 background on gradual typing 139

Findler [2007], and Gronski et al. [2006]—uses the guarded cast semantics.

In those systems, a cast like the one above reduces as follows:

f :: int→ int 7→ λx : int. (f (x :: dyn)) :: int

Instead of checking whether the function f always returns an int when

given an int, which is generally impossible, it is wrapped in a new function

that upcasts its input to dyn—which always works—and, after the call

to f completes, checks that its output is an int. Wadler and Findler [2009],

and later Ahmed et al. [2011], showed that this is sound even if it is

later discovered that f does not always return an int when given an int.

However, instead of having one check at the point where the function is

passed to the typed part of the program, this strategy will incur checks

every time the function is called, which can cause signficant overhead

if that function is heavily used. Simply wrapping functions into other

functions also does not preserve object identity, which can be a problem

in languages where object identity is semantically significant.

4.1.1.2 Transient

The transient cast semantics was proposed by Vitousek, Kent, et al. [2014]

to preserve object identity in Reticulated Python. It puts casts nearly

everywhere in the code: the caller of a function casts an argument to the

type that the function expects, but since a different caller might see that

function as dyn→ τ, the function itself also casts its parameters, leading

to many unnecessary checks even in fully typed code. As such, soundness

was not originally meant to be monitored in production programs, but

rather intended to help with finding the sources of type errors during

140 overview

debugging. However, Vitousek, Swords, and Siek [2017] recently used

this casting strategy as the basis of their work on open-world soundness,

finding overheads much smaller than those reported by Takikawa et al.

[2016], but still several multiples of the original run times, sometimes

over 10x.

4.1.1.3 Monotonic

Another approach used by Vitousek, Kent, et al. [2014] in Reticulated

Python, and by Swamy et al. [2014] and Rastogi et al. [2015] in Safe

TypeScript, is what Siek, Vitousek, Cimini, Tobin-Hochstadt, et al. [2015]

formalized as the monotonic approach. Here, every value keeps track of

what type it has been checked to have, and enforces that type in later

mutations. For example, the record {x : 5, y : “Hello′′} might be checked

to have type {x : int}, after which it will get a special run-time-type-

information field assigned and become {x : 5, y : “Hello′′, rtti : {x : int}}.

Any subsequent assignment of a non-integer value to x would fail, and

future checks can use the information in rtti to fast-track failure or success

instead of checking the value of x itself. The rtti field itself can only change

monotonically towards more precise types (if they are consistent with the

current values in the structure). Applying this scheme to higher-order

types is not straightforward; thus Swamy et al. do not treat a function

dyn → dyn as compatible with int → int, while Siek et al. fall back to

guarded semantics for function types. In Chapter 6, we use ideas from

this line of work to integrate unannotated lambdas and records into our

otherwise nominal type system.

4.1 background on gradual typing 141

4.1.2 Properties of Gradual Type Systems

Beyond soundness, there are additional desired properties for gradual

type systems suggested by the literature. In the following, we describe

what they are and why they are useful. Later, in Section 5.2, we propose

two more properties related specifically to the efficiency of gradual typing.

4.1.2.1 Blame and Accountability

Lacking a proper word for a notion of “can assign blame correctly” as

defined by Tobin-Hochstadt and Felleisen [2006] and Wadler and Findler

[2009], we define accountability as the property that, when an inserted cast

fails, it can refer the programmer to some untyped part of the program that

is at fault. Higher-order types are what make blame hard to implement,

since a higher-order cast cannot be determined right or wrong until later

in the program when the cast function is supplied an argument. Blame

tracking is the technique used to enable dynically created casts to keep

track of the statically inserted cast they originated from.

4.1.2.2 The Gradual Guarantee

Siek, Vitousek, Cimini, and Boyland [2015] defined the gradual guarantee,

which expresses the idea that adding or removing type information from a

program should not change its behavior in unexpected ways. In particular,

making a well-typed program more dynamic should always result in a

well-typed program that produces the same output. The only exception is

that a more dynamic program can succeed where the original would fail

142 overview

because the original might assert some unnecessary and overly restrictive

type cast.

The gradual guarantee thus captures the expectation that adding type

annotations to an untyped program should preserve the semantics of the

program provided those annotations are correct. While this clearly seems

like a desirable property for gradually typed languages, Siek, Vitousek,

Cimini, and Boyland [2015] demonstrate that several existing gradual type

systems do not satisfy this property, including Safe TypeScript [Swamy

et al., 2014]. They remark that it seems “challenging to satisfy the gradual

guarantee and efficiency at the same time”.

4.1.3 Overhead of Gradual Typing

A few years ago, Takikawa et al. [2016] surveyed the state of performance

evaluations on gradual type systems. They found that no gradually typed

language had a systematic evaluation of the behavior of the language

during the process of gradually typed software development, by which

they mean an evaluation of how having mixed typed and untyped code

affects run-time overheads. What they found instead was that if there was

some kind of overhead evaluation, it usually just compared completely

typed and completely untyped versions of programs. Thus, Takikawa et al.

proposed a scheme of using microbenchmarks divided up into smaller

modules. Each of these modules would exist in two versions, one com-

pletely typed, and one completely untyped. Thus, if a program consists of

N modules, it would have 2N potential configurations (i.e. different combi-

nations of typed/untyped versions of the modules). Takikawa et al. created

4.1 background on gradual typing 143

a suite of microbenchmarks in Typed Racket, and measured the overhead

of gradual typing by comparing the running time of each configuration

to the running time of the completely untyped configuration. While the

completely typed configuration was usually about 30% faster than the

completely untyped one, they found some programs had configurations

with over 10,000% overhead. Furthermore, for some programs there was

no sequence of annotating modules (simulating a gradual evolution from a

completely untyped to a completely typed program) where every interme-

diate configuration had less than 1,000% overhead. This result prompted

a flurry of follow-on work, among them Chapter 5 [Bauman et al., 2017;

Feltey et al., 2018; Greenman and Felleisen, 2018; Kuhlenschmidt, Alma-

hallawi, and Siek, 2019; Richards, Arteca, and Turcotte, 2017; Vitousek,

Swords, and Siek, 2017]. At the time of writing this dissertation, the results

in Chapter 5 still provide the most efficient system for run-time casts, at

the cost of a far more restrictive type system than the other languages

have. In Chapter 6 we relax these restrictions significantly while still erring

on the side of relative efficiency.

4.1.4 Gradual Typing for Object-Oriented Languages

Gradual typing was extended to object-oriented languages quite early,

again by Siek and Taha [2007]. Their approach was based on structural sub-

typing on records. They used the guarded casting strategy, even delaying

checks for the presence of expected fields to whenever that field was actu-

ally accessed. This is an example of how design choices in casting strategies

are not limited to just functions. Since the language we are formalizing

144 overview

and have implemented is a nominal object-oriented language, it touches on

many aspects from prior work on sound gradual object-oriented languages

(both nominal and structural). Such languages include C# [Bierman, Meijer,

and Torgersen, 2010], GradualTalk [Allende, Callaú, et al., 2014], Reticu-

lated Python [Vitousek, Kent, et al., 2014], Safe TypeScript [Rastogi et al.,

2015; Swamy et al., 2014], and StrongScript [Richards, Nardelli, and Vitek,

2015]. We discuss their relations to our work as we get to the relevant parts

of this part.

5
E X P L O I T I N G N O M I N A L I T Y F O R E F F I C I E N C Y

This chapter is based on a paper presented at OOPSLA 2017: Sound Gradual

Typing is Nominally Alive and Well [Muehlboeck and Tate, 2017b]. The

implementation and experiments discussed in Section 5.8 are available as

an artifact [Muehlboeck and Tate, 2017a].

5.1 introduction

This chapter is describes an efficient implementation of gradual typing in

a purely nominal, object-oriented language, called Nom, and presents a

novel theoretical framework to formalize it and its important properties.

The chapter is organized as follows:

• We present new desirable properties of sound gradual type systems

that we believe significantly improve their performance (Section 5.2).

• We present a simple gradually typed nominal object-oriented lan-

guage (Section 5.4 through 5.6) that fulfills the properties tradition-

ally desired of gradual type systems in addition to our own new

properties (Section 5.7). We also give a crisp connection between the

direct semantics of the language (Section 5.5) and the cast semantics

of the language (Section 5.6).

145

146 exploiting nominality for efficiency

• We provide evidence of our approach’s feasibility and efficiency

by presenting an implementation of said language and comparing

benchmarks between it, Typed Racket [Takikawa et al., 2016], C# [Bier-

man, Meijer, and Torgersen, 2010], and Reticulated Python [Vitousek,

Kent, et al., 2014] (Section 5.8).

5.2 towards well-behaved and efficient gradual typing

In the light of the previous discussion, we want to devise a sound gradually

typed language that is accountable, fulfills the gradual guarantee, and has

acceptably low overhead for the checks needed to ensure soundness. Since

the overhead of gradual typing comes from the run-time checks it needs

to insert, we aim to minimize the number and cost of those checks. The

main ingredients of our scheme to achieve this goal are nominality and

run-time type information. The idea is that every value will be tagged with

its most precise type as run-time type information. This enables what we

call transparency and immediate accountability, the combination of which

provides efficiency.

In this section, we give a brief overview of what these ingredients are

and how our approach relates to existing work. We formalize transparency

and immediate accountability in Section 5.7.

5.2.1 Transparency

A transparent casting strategy is one in which a cast is invisible to the

runtime system after it is evaluated, unless of course it fails. Thus, guarded

5.2 towards well-behaved and efficient gradual typing 147

casting is not transparent because a cast can wrap a value with a new

value that would otherwise not be present. Transient casting, on the other

hand, is transparent because the value is simply passed on after the cast

succeeds. Monotonic casting provides a middle ground in which the same

value is passed on, but the value is modified in place.

5.2.2 Immediate Accountability

Accountability is the ability to identify a source of a cast failure in the

source program. Immediate accountability is the ability to identify that

source immediately as it is being executed. In other words, loops and

recursion aside, once execution has successfully proceeded past a point

in the program, then that point cannot be at fault for some future cast

failure. None of guarded casting, transient casting, or monotonic casting

are necessarily immediately accountable. They often only do shallow

aspects of a cast immediately, and defer deep aspects of a cast to later.

C# [Bierman, Meijer, and Torgersen, 2010] and Safe TypeScript [Swamy

et al., 2014] are the only prior gradual type systems that we know of that

are immediately accountable, both of which sacrifice the gradual guarantee

to achieve this.

5.2.3 Run-Time Type Information

Having every value always be tagged with its most precise type requires a

significant assumption: every value’s most-precise type must be known

upon construction of the value, even if it is constructed in an untyped part

148 exploiting nominality for efficiency

of the program. We discuss the implications of this requirement next and

in Section 7.3.

5.2.4 Discussion

Most earlier work on gradually typing focuses on adding gradual typing

to an existing system. Half of this work aims to add gradual typing to

an existing untyped language. Examples of this category are Reticulated

Python [Vitousek, Kent, et al., 2014], Gradualtalk [Allende, Callaú, et

al., 2014], Safe TypeScript [Rastogi et al., 2015; Swamy et al., 2014], and

StrongScript [Richards, Nardelli, and Vitek, 2015], as well as the two

widespread unsound gradually typed languages (preferably referred to

as optionally typed languages [Bracha, 2004]), Hack [Facebook, 2016] and

TypeScript [Microsoft, 2012]. The other half aims to add gradual typing to,

i.e. “gradualize”, an existing typed language. Examples of this category

are C# [Bierman, Meijer, and Torgersen, 2010], gradual typing for generics

by Ina and Igarashi [2011], and work on systematically [Garcia, Clark, and

Tanter, 2016] or automatically [Cimini and Siek, 2016] gradualizing given

typed languages.

Certainly much of the appeal of gradual typing is that it can give a pre-

existing language new access to the counterpointing paradigm. However,

both directions currently have weaknesses to overcome due to the fact that

gradual typing is heavily intertwined with both the type system and the

runtime implementation. Adding sound gradual typing to an untyped

language seems to frequently incur significant overhead, sometimes mak-

ing programs multiple orders of magnitude slower [Takikawa et al., 2016].

5.2 towards well-behaved and efficient gradual typing 149

Part of the problem is that the type-system features needed to capture the

idioms common to untyped languages are not easy to check efficiently,

especially when the underlying runtime is not designed for it.

Conversely, adding gradual typing to a typed language can introduce

unexpected behavior due to violations of the gradual guarantee. For

example, in C#, adding more precise type information to a well-typed

program may cause that program to cease being well-typed, as the new

information may introduce ambiguities (e.g. through additional available

overloadings) that would have to be resolved. When such an ambiguity is

introduced at compile time, C# can rely on the programmer to resolve the

error. However, with gradual typing, such ambiguities can be introduced

at run time, where no such programmer is readily available to resolve

the problem, causing the system to throw a run-time error. Furthermore,

C# compilation is heavily type-directed, but gradual typing often makes

type information available only at run time, so C# is forced to defer much

of its compilation of untyped code to run time. We have found that this can

introduce significant overhead, as we illustrate in Section 5.8. We discuss

these and other issues in more detail in Chapter 7. The main point here

is that gradual typing is not easy to bolt onto existing languages without

serious drawbacks.

Thus, in contrast to most earlier work, we focus on gradual typing for

new systems, where the entire language can be designed from the start to

both support and benefit from gradual typing. Clearly we can benefit from

all the work on adding gradual typing to existing systems, but our change

in focus also enables us to benefit from a greater degree of flexibility. Here

we use that flexibility to address the efficiency issues in prior work while

retaining desirable properties such as accountability and the gradual guar-

150 exploiting nominality for efficiency

antee. While the improvement in performance is certainly more noticeable

when compared to systems that have added sound gradual typing to

untyped languages, we even achieve better performance than systems that

have added sound gradual typing to typed languages. We accomplish this

by designing a language with a nominal runtime environment, which is

where most of our performance gains come from, optimized for gradual

typing, which is where our smaller performance gains come from. Nomi-

nality in and of itself is not a guarantee for good performance, nor does

it imply transparency or accountability. For example, our benchmarks

for C#—which is nominal, transparent, and immediately accountable—

show that its dynamically typed parts are quite slow (see Section 5.8). As

another example, StrongScript [Richards, Nardelli, and Vitek, 2015] uses

nominality for performance in fully typed programs, but the language as

a whole is neither transparent nor immediately accountable, and there

is no performance evaluation of mixed programs, where Takikawa et al.

[2016] found the biggest problems. Furthermore, Richards et al. found that

blame tracking produced significant overhead, prompting them to only

evaluate the performance of their system without blame.

Of course, the nominality of our runtime environment restricts the

programmer. While gradual typing can recover some of the expressiveness

of structural typing that prior research has worked hard to preserve, there

is still much that is lost. We expect to address this by developing methods

for mixing structural values into our nominal system, much like we mix

untyped and typed code—Chapter 6 discusses first steps in this direction

based on the work here. In fact, there is already significant work to this

effect, some with [Richards, Nardelli, and Vitek, 2015; Wrigstad et al., 2010]

and some without gradual typing [C. Anderson and Drossopoulou, 2003].

5.2 towards well-behaved and efficient gradual typing 151

But it is important to recognize that adding structural reasoning is not

necessary for many of the well-known applications of gradual typing. As

we alluded to in Chapter 0, one envisions gradual typing being a part of

the software-development process from the beginning. Stable code would

typically be typed, benefiting from better optimization and providing

machine-checkable document for programmers and IDEs interacting with

this code. Meanwhile unstable code would not need to be typed, which is

useful for prototyping, scripting, or simply letting the programmer first

experiment in the paradigm they are most comfortable with. In particular,

student programmers can enjoy the benefits of working with well-typed

APIs without having the type system impede their first explorations into

programming.

What we present in this chapter is a minimal system striving towards

this end, just large enough to test whether this path has promise. Our

formalization presented in Section 5.4 is sufficient for covering the same

feature set as Featherweight Java [Igarashi, Pierce, and Wadler, 2001]

with interfaces and little more. Meanwhile, we have made an effort to

be forwards compatible with a multitude of features frequently found

in nominal industry languages, all while also making an effort to be

forwards compatible with structural values. Our implementation covers a

much larger subset of pre-generics Java, including assignment, interfaces,

overloading, primitive types, messages to super, access control, and null

pointers. Some of these features were adapted to work with gradual

typing in a way that satisfies the gradual guarantee. For example, we

require that all overloadings of a method be disjoint in order to avoid

ambiguities at dynamic method lookup at run time, and we made null

explicit in anticipation of adding generics types later to avoid problems

152 exploiting nominality for efficiency

with both type-argument inference [Smith and Cartwright, 2008] and

unsoundness [Amin and Tate, 2016].

5.3 the optimistic perspective

Throughout the remainder of this chapter we will be using the terms

optimistic and pessimistic. This is a change in terminology that we find

unifies our definitions. The idea is that there are two attitudes towards

typing. One is the optimistic attitude: programs should be able to proceed

so long as they might succeed. Dynamic typing takes this attitude, trying

to only stop a program when execution encounters an issue that cannot

be overcome. The other is the pessimistic attitude: programs should only

be able to proceed when it is known they will succeed. Static typing takes

this attitude, trying to only compile a program if it is exhibits certain

guarantees.

Both attitudes have their advantages and disadvantages, and conse-

quently are each better suited to different circumstances. The purpose of

gradual typing is to give the programmer the ability to explicitly control

which attitude is applied where in a given program. Thus, when a variable

is given the type dyn, the programmer is directing the compiler to treat the

variable as optimistically having whatever type is necessary for the usages

at hand. On the other hand, when a variable is given the type Number, the

programmer is directing the compiler to treat the variable as pessimisti-

cally only being usable where a Number provides sufficient guarantees. In

this way, a gradually typed language enables the programmer to change

attitudes as they see fit.

5.4 the type system 153

Class/Interface Name C Field Name f
Method Name m Variable Name x

Type τ ::= > | C | dyn
Context Γ ::= · | Γ, τ x

Expression e ::= x | let τ x := e in e | C(e, ...) | e. fδ

| e.mδ(e, ...) | cast e to τ

Dispatch Mode δ ::= C | dyn
Method Signature s ::= τ m(Γ)
Method Definition d ::= s 7→ e

Interface Definition i ::= interface C {s; . . . }
Class Definition c ::= class C(τ f , . . .) implements C, . . . {d; . . . }

Environment Definition Ψ ::= · | Ψ, i | Ψ, c

Figure 5.1: Grammar

In technical terms, this new terminology expresses the same concept

that Garcia, Clark, and Tanter [2016] generalize as consistent lifting.

5.4 the type system

The grammar of our small gradually typed object-oriented language is

shown in Figure 5.1. The grammar is mostly standard besides being fairly

minimal. Our implementation does of course handle a much richer set

of features as described in Section 5.8. The point of this formalization is

not to specify our implemented language, but to be able to discuss the

interesting aspects of our approach: nominality, run-time type information,

transparency, and immediate accountability. Note that as another simplifi-

cation, we do not concern ourselves with naming issues; it is obvious how

to adjust the rules throughout this chapter to address problems such as

name shadowing.

154 exploiting nominality for efficiency

5.4.1 Dispatch Modes

The one irregular feature of our grammar is the use of dispatch modes δ.

Every field access and method invocation is annotated with a dispatch

mode. This reflects the fact that, at compile time, one must decide how a

field should be accessed or a method implementation should be looked up.

For example, a method could be looked up by accessing some offset of the

object’s virtual-method table. In this case, the dispatch mode is the class

that specifies which offset to use. Alternatively, a method could be looked

up by searching through the object’s interface table, in which case the

dispatch mode is the interface to search for. Lastly, since we are providing

a gradually typed language, a method could be looked up in the object’s

hashtable, like one would do in a dynamically-typed language such as

Python. In this case, the dispatch mode is dyn.

Note that this means we view objects as supplying both a virtual-

method table1 (and interface table) and a (possibly immutable and shared)

hashtable. Similarly, fields can be accessed through fixed offsets when the

object’s class is known, or through the hashtable when the field access is

being typed dynamically. This allows us to interact with objects efficiently

regardless of the typing attitude we happen to be applying in a given part

of the program. Although in theory we could develop a more traditional

calculus without dispatch modes, we include them here to better illustrate

how we are able to implement gradual typing.

In general, the dispatch modes will be inferred by the compiler. As

this issue is orthogonal to the properties that we are trying to formalize

1 For simplicity, we do not allow classes to extend other classes. However, we have designed
our calculus to support class inheritance, and our implementation supports it as well.

5.4 the type system 155

Subtyping Ψ ` τ S τ

Ψ ` C S C
C implements C′ ∈ Ψ

Ψ ` C S C′ Ψ ` τ S >

Ψ ` τ S dyn Ψ ` dyn ◃ C

Figure 5.2: Subtyping, where S is optimistic ◃ or pessimistic ◂

and comes with its own interesting design choices, we defer discussion of

dispatch-mode inference to Appendix B.1.

5.4.2 Subtyping

Our system provides two kinds of subtyping: optimistic and pessimistic.

Optimistic subtyping (◃) recognizes that dyn is optimistically a subtype

of any type τ because it can optimistically be interpreted as being τ.

Pessimistic subtyping (◂) ensures that one type is a subtype of another

only if all values of the former type are also values of the latter type. The

two differ by only rule, so we use the metavariable S to formalize both of

them simultaneously in Figure 5.2.

Like most subtyping relations, pessimistic subtyping is transitive. How-

ever, optimistic subtyping, like its inspiration consistent subtyping [Siek and

Taha, 2007], is not transitive because it conceptually confuses existentials

with universals. That is, dyn semantically represents ∃α.α. Consequently,

every type is semantically a subtype of dyn, as is captured by both pes-

simistic and optimistic subtyping. But the optimistic attitude says to also

treat dyn as ∀α.α when it would make the subtyping hold, making dyn an

optimistic subtype of every type. Thus the difference between optimistic

156 exploiting nominality for efficiency

Shorthands Ψ `S e Ψ ` e S τ

Ψ ` τ Ψ ` e S τ

Ψ `S e
Ψ | · ` e S τ

Ψ ` e S τ

Expression Typing Ψ | Γ ` e S τ

τ x ∈ Γ Ψ ` τ S τ′

Ψ | Γ ` x S τ′
Ψ | Γ ` e S > Ψ ` τ S τ′

Ψ | Γ ` cast e to τ S τ′

Ψ ` τ Ψ | Γ ` e S τ
Ψ | Γ, τ x ` e′ S τ′

Ψ | Γ ` let τ x := e in e′ S τ′

class C(τ1, ..., τn) ∈ Ψ
∀i. Ψ | Γ ` ei S τi Ψ ` C S τ

Ψ | Γ ` C(e1, . . . , en) S τ

Ψ ` δ. f : τ
Ψ ` e S δ Ψ ` τ S τ′

Ψ | Γ ` e. fδ S τ′

Ψ ` δ.m(τ1, . . . , τn) : τ
Ψ | Γ ` e S δ

∀i. Ψ | Γ ` ei S τi Ψ ` τ S τ′

Ψ | Γ ` e.mδ(e1, . . . , en) S τ′

Field Lookup Ψ ` τ. f : τ

class C(τ1 f1, . . .) ∈ Ψ
Ψ ` C. fi : τi Ψ ` dyn. f : dyn

Method Lookup Ψ ` τ.m(τ, ...) ` τ

τ C.m(τ1, . . . , τn) ∈ Ψ
Ψ ` C.m(τ1, . . . , τn) : τ Ψ ` dyn.m(dyn, . . .) : dyn

Type Validity Ψ ` τ

Ψ ` >
interface C ∈ Ψ

Ψ ` C
class C ∈ Ψ

Ψ ` C Ψ ` dyn

Context Validity Ψ ` Γ

Ψ ` ·
Ψ ` Γ Ψ ` τ

Ψ ` Γ, τ x

Figure 5.3: Expression Typing, where S is either optimistic ◃ or pessimistic ◂
subtyping

5.4 the type system 157

and pessimistic subtyping captures the difference between the optimistic

and pessimistic attitudes.

5.4.3 Expression Typing

Our expression-typing rules are shown in Figure 5.3. Observe that they

look nearly identical to what one might expect for a statically typed

language. The only other major difference is that they are parameterized

by a subtyping relation S. When one uses optimistic subtyping ◃ for S,

we say the expression type-checks optimistically. Likewise, when one

uses pessimistic subtyping ◂ for S, we say the expression type-checks

pessimistically. This parameterization illustrates that type-checking is both

standard and adjustable to the preferred attitude at hand.

5.4.4 Class and Interface Validation

Class and interface validation is shown in Figure 5.4. Once again it is

quite standard. The one point to note is that a class is allowed to only

optimistically satisfy method signatures of implemented interfaces. In this

way the class implementation can be completely untyped, even if it is

implementing typed interfaces. The only requirement then is that the class

specify the list of interfaces it intends to implement, and at least provide

methods with the appropriate names and arities. Note also that method

definitions are always type-checked optimistically. Consequently, one of

the challenges is to achieve sound gradual typing throughout the class

hierarchy.

158 exploiting nominality for efficiency

Environment Validity ` Ψ Ψ ` Ψ

Ψ ` Ψ
` Ψ Ψ ` ·

Ψ ` Ψ′ Ψ ` i
Ψ ` Ψ′, i

Ψ ` Ψ′ Ψ ` c
Ψ ` Ψ′, c

Interface Validity Ψ ` i

∀i. Ψ ` si

Ψ ` interface C {s1; . . . }

Class Validity Ψ ` c

∀i. Ψ ` τi ∀i. Ψ | C ` di
∀i. interface Ci {si

1; ...} ∈ Ψ ∀i.∀j.∃ki,j. Ψ ` dki,j ◃ si
j

Ψ ` class C(τ1 f1, . . .) implements C1, ... {d1; . . . }

Signature Validity Ψ ` s

Ψ ` τ Ψ ` Γ
Ψ ` τ m(Γ)

Method Definition Typing Ψ ` d

Ψ ` τ Ψ ` Γ Ψ | C this, Γ ` e ◃ τ

Ψ | C ` τ m(Γ) 7→ e

Overriding Ψ ` Γ ◃ Γ Ψ ` d ◃ s

Ψ ` · ◃ ·
Ψ ` Γ ◃ Γ′ Ψ ` τ ◃ τ′

Ψ ` Γ, τ x ◃ Γ, τ′ x
Ψ ` Γ′ ◃ Γ Ψ ` τ ◃ τ′

Ψ ` τ m(Γ) 7→ e ◃ τ′ m(Γ′)

Figure 5.4: Class and Interface Validation

5.5 the direct semantics 159

Value v::=C(v, . . .)
Error ε::=v. fdyn | v.mdyn(v, . . .) | cast v to C
Valuation ν::=v | ε | ∞
Evaluation Context E::=· | let τ x := E in e

| C(v, . . . , E, e, . . .) | E. fδ | E.mδ(e, . . .)
| v.mδ(v, . . . , E, e, . . .) | cast E to τ

Method Implementation d̄::=τ mδ(Γ) 7→ e
Class Implementation c̄::=class C(τ f , . . .)

implements C, . . . {d̄; . . . }
Environment Implementation Ψ̄::=· | Ψ̄, i | Ψ̄, c̄

Terminals
Ψ ` e terminal τ Ψ ` e erroneous
Ψ ` e bad-cast Ψ ` e lapse τ

Ψ ` v ◂ τ

Ψ ` v terminal τ

Ψ ` e erroneous
Ψ ` e terminal τ

Ψ ` e bad-cast
Ψ ` e erroneous

Ψ `◂ E Ψ `◂ v
v = C(. . .) ¬ Ψ ` C ◂ C′

Ψ ` E[cast v to C′] bad-cast

Ψ `◂ E Ψ `◂ v v = C(. . .)
class C(f 1, . . .) ∈ Ψ @i. f = f i

Ψ ` E[v. fdyn] erroneous

@e′. Ψ ` e −▸ e′

¬ Ψ ` e terminal τ

Ψ ` e lapse τ

Ψ `◂ E
Ψ `◂ v ∀i. Ψ `◂ vi v = C(. . .)
@τ, τ1, . . . , τn. τ C.m(τ1, . . . , τn) ∈ Ψ
Ψ ` E[v.mdyn(v1, . . . , vn)] erroneous

Figure 5.5: Grammar and Terminal Classification

160 exploiting nominality for efficiency

Valuations Ψ̄ ` e R∞ ν : τ Ψ ` e R∗ lapse τ

Ψ̄ ` e R∗ v Ψ̄ ` v ◂ τ

Ψ̄ ` e R∞ v : τ

Ψ̄ ` e R∗ E[ε]
Ψ̄ ` E[ε] erroneous

Ψ̄ ` e R∞ ε : τ

Ψ̄ ` e R∞

Ψ̄ ` e R∞ ∞ : τ

Ψ ` e R∗ e′ Ψ ` e′ lapse τ

Ψ ` e R∗ lapse τ

Evaluation Context Validity Ψ `S E

Ψ `S ·
Ψ `S E

Ψ `S E. fδ

Ψ `S E
Ψ `S E.mδ(e1, . . .)

Ψ `S E
Ψ `S let τ x := E in e

class C(τ1, . . . , τn) ∈ Ψ
∀j. Ψ ` vj S τj Ψ `S E

Ψ `S C(v1, . . . , vi, E, ei+2, . . . , en)

Ψ ` δ.m(τ1, . . . , τn) : τ Ψ ` v S δ
∀j. Ψ ` vj S τj Ψ `S E

Ψ `S v.mδ(v1, . . . , vi, E, ei+2, . . . , en)

Ψ `S E
Ψ `S cast E to τ

Reductions Ψ̄ ` E R E Ψ̄ ` e R e

Ψ̄ ` e R e′ (Ψ̄ `◃ E)
Ψ̄ ` E[e] R E[e′]

(Ψ̄ ` v ◃ τ)

Ψ̄ ` let τ x := v in e R e[x 7→ v]

v = C(. . .)
C.mδ(τ1 x1, . . . , τn xn) 7→ e ∈ Ψ̄ (Ψ̄ ` v ◃ δ) (∀i. Ψ̄ ` vi ◃ τi)

Ψ̄ ` v.mδ(v1, . . . , vn) R e[this 7→ v, x1 7→ v1, . . . , xn 7→ vn]

v = C(v1, . . .) class C(f 1, . . .) ∈ Ψ̄
(Ψ̄ ` v ◃ δ)

Ψ̄ ` v. f i
δ R vi

v = C(. . .)
Ψ̄ ` C ◂ τ (Ψ̄ ` v ◃ >)

Ψ̄ ` cast v to τ R v

Figure 5.6: Operational Semantics, where R is either optimistic−▹ (ignoring paren-
thesized assumptions) or pessimistic −▸ (asserting parenthesized as-
sumptions) reduction

5.5 the direct semantics 161

5.5 the direct semantics

Traditionally, sound gradually typed calculi are formalized using a type-

directed translation to a cast calculus [Cimini and Siek, 2016; Henglein,

1994; Siek and Taha, 2006, 2007]. We will do so as well in the next section,

but here we first develop an operational semantics directly on our calculus.

The intent is to provide an intuitive semantics that programmers can use

to reason about how their gradually typed programs will behave without

needing to understand the details of when and where casts are inserted

and how they are implemented. In the next section, we will demonstrate

that there is a strong relationship between these direct semantics and the

ones derived from cast insertions.

We formalize the direct semantics of our calculus using rewrite rules, as

presented in Figure 5.6, with the grammar and terminal classification in

Figure 5.5. This formalization is odd in that some of the assumptions of the

various rules are parenthesized. This is because the rules are parameterized

by a reduction relation R that can stand for either optimistic reduction (−▹)

or pessimistic reduction (−▸). For optimistic reduction, one ignores the

parenthesized assumptions, optimistically hoping that the expected in-

variants of the system hold. For pessimistic reduction, one includes the

parenthesized assumptions, pessimistically asserting the expected invari-

ants of the system throughout execution. Obviously pessimistic reduction

provides more guarantees, but optimistic reduction is much more efficient.

Thus we can gain much from understanding the relationship between

these two semantics.

162 exploiting nominality for efficiency

values , valuations , and lapses The values in our system are

instances of classes. The arguments to the class constructor indicate the

object’s values for the class’s fields.

Note that error is not an expression in our formalization. Instead, we

simply let failing casts get stuck. This means even non-value programs

can get stuck for both acceptable and unacceptable reasons. For example,

a program could be stuck because it is a failed cast, which is acceptable

and would be caught by the runtime system. However, a program could

also be stuck because it is trying to access a field at a memory offset

not provided by the object, which is unacceptable and corresponds to a

potentially dangerous memory-access violation. We use the judgement

Ψ ` e terminal τ, defined in Figure 5.5, to indicate when e is stuck for

an acceptable reason with type τ. In particular, e could be a value of

type τ, a failed dynamic field lookup, a failed dynamic method lookup, or

a failed cast. As a convenience, we also use the counterpoint judgement

Ψ ` e lapse τ to indicate when e is pessimistically stuck for a reason

unacceptable for type τ, which we call a lapse because it indicates a

current violation of some intended invariant.

Each of these cases represents a different observable result of executing

a program. We use valuations ν to represent the acceptable results. The idea

is that, ignoring situations where a program lapses, a program’s semantics

are the valuations it can result in. Since a program might fail to terminate,

we include ∞ as a valuation representing when programs execute forever.

We capture valuations with the judgement Ψ̄ ` e R∞ ν : τ, defined in

Figure 5.6. As a convenience, we also use the counterpoint judgement

Ψ ` e R∗ lapse τ to indicate that e results in some unacceptable lapse

rather than an acceptable valuation.

5.5 the direct semantics 163

reductions Now we discuss the reduction rules in more detail. As

we mentioned before, these rules specify both optimistic reduction (−▹),

which ignores the parenthesized assumptions, and pessimistic reduc-

tion (−▸), which asserts the parenthesized assumptions. Pessimistic re-

duction of evaluation contexts uses the judgement Ψ `◃ E to ensure that

evaluation of expressions only moves on from left to right when the al-

ready computed values actually have their expected types. The use of

assertions aside, the reduction rules are standard except for one oddity in

our semantics for method invocations.

In particular, the assumption C.mδ(τ1 x1, . . . , τn xn) 7→ e ∈ Ψ̄ looks up

class C’s implementation for method m and dispatch mode δ in the environ-

ment implementation Ψ̄. The most important detail of this assumption is

the inclusion of the dispatch mode δ in this lookup. This allows class C

to provide a different implementation of m for each appropriate dispatch

mode. This will enable C to address the fact that its method definition

only optimistically satisfies the signatures of the interfaces it implements.

To understand how, let us consider implementations in more detail.

implementations Whereas our typing rules are defined in the con-

text of an environment definition, our reduction rules are defined in the

context of an environment implementation. The two differ in that the former

specifies class definitions, whereas the latter specifies class implementa-

tions. A class definition provides a method definition for each method m

of the class; a class implementation provides a method implementation for

each method m of the class and each suitable dispatch mode δ for m. The body

of each such method implementation is a slightly adjusted version of the

164 exploiting nominality for efficiency

body of the method definition to account for the corresponding dispatch

mode, as we will describe below.

We formalize implementations of definitions in Figure 5.7. The judge-

ment Ψ `S Ψ̄ indicates that Ψ̄ is a valid implementation of the environment

definition Ψ. Furthermore, if the parameter S is optimistic subtyping (◃),

then the body of every method implementation in Ψ̄ is optimistically

typed. Likewise, if the parameter S is pessimistic subtyping (◂), then the

body of every method implementation in Ψ̄ is pessimistically typed.

A class implementation c̄ is valid for a class definition c if every method

implementation in c̄ corresponds to some method definition in c and

every method definition in c has a corresponding method implementation

in c̄ for each necessary dispatch mode. In particular, there must be an

implementation for the dispatch modes corresponding to the class itself

and to dyn dispatch. Furthermore, if a method definition is used to satisfy

some method signature in an interface implemented by the class, then

there must be an implementation for the dispatch mode corresponding to

that interface. Thus, a class implementation simply specifies the contents

of the virtual-method table, interface table, and dispatch hashtable, but

with each way to dispatch a given method having its own implementation

(employing low-level tricks to keep the size of the executable down).

Each of these method implementations corresponds to the same method

definition, and while that implies they are closely related, it does not

imply they are identical. First, the signature of a method implementation

coincides with the signature corresponding to its own dispatch mode, not

to its method definition. Second, the body of the method implementation

needs to be adjusted to conform with the corresponding signature. For

example, consider a method implementation whose dispatch mode is an

5.5 the direct semantics 165

Program Implementation Validation Ψ `S Ψ̄ Ψ | Ψ `S Ψ̄

Ψ | Ψ `S Ψ̄
Ψ `S Ψ̄ Ψ | · `S ·

Ψ | Ψ′ `S Ψ̄
Ψ | Ψ′, i `S Ψ̄, i

Ψ | Ψ′ `S Ψ̄ Ψ | c `S c̄
Ψ | Ψ′, c `S Ψ̄, c̄

Class Implementation Validation Ψ | c `S c̄

c = class C(τ1 f1, . . .) implements C1, . . . {d1; . . . }
c̄ = class C(τ1 f1, . . .) implements C1, . . . {d̄1; . . . }

∀i.∃ji. Ψ | C | dji `S d̄i ∀i.∃ji. Ψ ` d̄ji :C di ∀i.∃ji. Ψ ` d̄ji :dyn di
∀i. interface Ci {si

1; . . . } ∈ Ψ ∀i.∀j.∃ki,j. Ψ ` d̄ki,j :Ci si
j

Ψ | c `S c̄

Method Implementation Validation Ψ | C | d `S d̄

d = τ m(τ1 x1, . . . , τn xn) 7→ e
d̄ = τ′ mδ(τ

′
1 x1, . . . , τ′n xn) 7→ let τ′ x := e′ in x

∀i. Ψ ` τ′i ◃ τi Ψ ` τ ◃ τ′ Ψ | C this, τ′1 x1, . . . , τ′n xn ` e′ S τ′

Ψ ` let τ1 x1 := x1 in . . . let τn xn := xn in let τ x := e in x � e′ : τ′

Ψ | C | d `S d̄

Dispatch Mode Validation Ψ ` d̄ :δ d Ψ ` d̄ :δ s

Ψ ` d̄ :δ s
Ψ ` d̄ :δ s 7→ e Ψ ` τ mC(Γ) 7→ e :C τ m(Γ)

Ψ ` dyn mdyn(dyn x1, . . . , dyn xn) 7→ e :dyn τ m(τ1 x1, . . . , τn xn)

Figure 5.7: Implementation Validation, where S is either optimistic ◃ or pes-
simistic ◂ subtyping

166 exploiting nominality for efficiency

interface implemented by the class. The body of the method definition is

defined in terms of the class’s signature for the method, but that signature

only optimistically satisfies the signature of the method required by the

interface.

We address this difference by inserting variable assignments to retype

the method parameters and return value according to the method signa-

ture. Next, the refinement relation (�) specifies that the actual method body

e′ of the implementation is a refinement of the original body wrapped in

these retyping expressions, which means the implementation can have

casts inserted to check optimistic assumptions made in the method defini-

tion. Refinement is a relation, not a procedure, which means the refined

expression may have no additional casts at all, or just the right amount to

type-check pessimistically (in addition to optimistically), or many more

than necessary. We defer detailed discussion of refinement until the next

section.

Given an environment definition Ψ, there exists a naïve implementation

of Ψ. In particular, because refinement is reflexive, one can simply define

every method implementation to be the body of the corresponding method

definition modulo retyping the inputs and output. As an abuse of notation,

we refer to this naïve implementation as Ψ. If Ψ is a valid environment

definition, then it is trivial to prove that Ψ is also a valid optimistically-typed

implementation of itself.

Similarly, given an environment implementation Ψ̄, there often exists

a corresponding definition for Ψ̄. In particular, one derives a class C’s

definition of a method from that method’s implementation for the dis-

patch mode C. As an abuse of notation, we refer to this corresponding

definition as Ψ̄. If Ψ̄ is a valid implementation of some valid environment

5.5 the direct semantics 167

definition Ψ, then the definition Ψ̄ has exactly the same typing information

as Ψ.

soundness Even without inserting casts or restricting to specific

implementations, we can make interesting observations about the behavior

of our direct semantics, as proven in Appendix B.2. The first is that typed

expressions are guaranteed to be either terminal or reducible:

Theorem 5.5.1 (Progress). For every environment Ψ and implementation Ψ̄

where ` Ψ and Ψ `S Ψ̄ hold,

∀e, τ. Ψ ` e S τ =⇒ Ψ ` e terminal τ xor ∃e′. Ψ̄ ` e R e′

where S is either optimistic ◃ or pessimistic ◂ subtyping, and R is either opti-

mistic −▹ or pessimistic −▸ reduction.

Note that this theorem states that even an optimistically typed expression

is either terminal or pessimistically reducible. That is, we can even guarantee

pessimistic progress for optimistic expressions. Also, note that in order

to be terminal, every relevant value in v must be pessimistically typed.

This is ensurable even for optimistically typed expressions because every

optimistically typed value is necessarily also pessimistically typed.

The second observation we can make is that pessimistic typing is pre-

served by reduction:

Theorem 5.5.2 (Pessimistic-Type Preservation). For every environment Ψ

and implementation Ψ̄ where ` Ψ and Ψ `◂ Ψ̄ hold,

∀τ, e, e′. Ψ ` τ ∧ Ψ ` e ◂ τ ∧ Ψ̄ ` e R e′ =⇒ Ψ ` e′ ◂ τ

168 exploiting nominality for efficiency

where R is either optimistic −▹ or pessimistic −▸ reduction.

Importantly, this states that even optimistic reduction preserves pes-

simistic typing, which is arguably the whole purpose of pessimistic typing.

However, neither form of reduction preserves optimistic typing. Clearly

optimistic reduction does not preserve optimistic typing, otherwise we

would not be referring to it as optimistic typing. But it is surprising that

even pessimistic reduction fails to preserve optimistic typing despite the

many run-time assertions it makes. To see why, optimistically type the pro-

gram let dyn x := "Hello" in x % 10, and then try to optimistically type

the reduction of that program, "Hello" % 10. This failure of pessimistic

reduction is critical, as it illustrates why inserting casts is necessary to

ensure soundness.

The third and final observation we make is that optimistic and pes-

simistic reduction coincide for pessimistically typed programs:

Theorem 5.5.3 (Pessimistic Identification). For every environment Ψ and

implementation Ψ̄ where ` Ψ and Ψ `◂ Ψ̄ hold,

∀e, τ. Ψ ` e ◂ τ =⇒ ∀ν. Ψ̄ ` e −▹∞ ν : τ ⇐⇒ Ψ̄ ` e −▸∞ ν : τ

This means that, for pessimistically typed programs, we can use the more

efficient optimistic reduction and yet still enjoy the stronger guarantees of

pessimistic reduction. In particular, a pessimistically typed program will

never become unacceptably stuck by either semantics, so its observable

results are completely described by its set of valuations, which is identical

across the two forms of reduction. Again, this is not true for optimistically

typed programs. Thus, given an optimistically typed program, we would

like a way to interpret it using a “better”-behaved pessimistically typed

5.6 the cast semantics 169

program. This is the purpose of cast insertion, or program refinement,

which we discuss next.

5.6 the cast semantics

We define the cast semantics for our gradual calculus using program refine-

ment. Program refinement is a generalization of cast insertion, the process

traditionally used to enforce soundness for gradual type systems [Findler

and Felleisen, 2002; Siek and Taha, 2006; Tobin-Hochstadt and Felleisen,

2006]. Whereas cast insertion traditionally specifies how to transform a

program by inserting casts, program refinement simply states that two

programs are similar but with one having some casts inserted, akin to the

similarity relation defined by Tobin-Hochstadt and Felleisen [2006]. That

is, refinement specifies no strategy about how to insert casts. A refinement

might have too few casts to achieve a particular goal, or more casts than

are strictly necessary. This laxity actually makes it easier to reason about

refinement, especially with respect to reduction, and in a more uniform

manner, especially with respect to typing.

program refinement Program refinement is formalized using the

judgement Ψ ` e � ẽ : τ, which indicates that the expression ẽ2 is a

refinement of e when the expected output type is τ. The formalization

of refinement has only one interesting rule, presented below; the other

2 Note that, whereas the grammar for a Ψ̄ is different than that for a Ψ, the notation ẽ is not
introducing a new grammar. It is simply a convention we employ to help the reader keep
track of which expressions are “original” expressions versus “refined” expressions.

170 exploiting nominality for efficiency

Translation Validation ` Ψ | e Ψ̄ | ẽ : τ

` Ψ Ψ ` τ Ψ ` e ◃ τ Ψ `◂ Ψ̄ Ψ ` e � ẽ : τ Ψ ` ẽ ◂ τ

` Ψ | e Ψ̄ | ẽ : τ

Cast Semantics ` Ψ | e Ψ̄ | ẽ : τ

` Ψ | e Ψ̄ | ẽ : τ Ψ̄ ` ẽ −▹∞ ν : τ

Ψ ` e ∞ ν : τ

Figure 5.8: Cast Semantics

rules in Appendix B.3 simply allow this rule to be applied throughout the

program.

Ψ ` e � ẽ : τ

Ψ ` e � cast ẽ to τ : τ

This rule is the only rule that lets refinement insert a cast. It states that

we can refine a program by inserting a cast to the expected return type τ

of the program. By restricting inserted casts to be of precisely this form,

we ensure that they only check optimistic assumptions of the original

program. In particular, we avoid inserting casts that would introduce

run-time errors that have no relationship to the optimism of the original

program, say by arbitrarily inserting casts of string expressions to integers.

program translation We mentioned that refinement is reflexive,

but the primary purpose of refinement is translation of optimistically typed

programs into pessimistically typed programs. Although refinement does

not specify how precisely to implement such a translation, we can combine

it with the concepts we have already developed to formalize the concept of

a translation. Given an environment definition Ψ and implementation Ψ̄,

5.6 the cast semantics 171

expressions e and ẽ, and type τ, we say we have a well-formed translation

if ` Ψ | e Ψ̄ | ẽ : τ holds, as defined in Figure 5.8. That is, a translation

is well-formed if the original program Ψ | e optimistically has type τ, the

translated program Ψ̄ | ẽ is a refinement of the original program with

expected return type τ, and the translated program pessimistically has

type τ.

This indicates when we have a well-formed translation, but for a given

Ψ and e there may be multiple such translations. To this end, we have

the following property, proven in Appendix B.3, that all well-formed

translations are semantically equivalent (recalling that pessimistically

typed programs cannot get stuck in an unacceptable manner):

Theorem 5.6.1 (Translation Irrelevance). For every Ψ, Ψ̄1, Ψ̄2, e, ẽ1, ẽ2, and τ,

 ` Ψ | e Ψ̄1 | ẽ1 : τ

` Ψ | e Ψ̄2 | ẽ2 : τ

 =⇒ ∀ν. Ψ̄1 ` ẽ1 R∞ ν : τ ⇐⇒ Ψ̄2 ` ẽ2 R∞ ν : τ

where R is either optimistic −▹ or pessimistic −▸ reduction.

This means that, in order to use well-formed translation as a basis for

our cast semantics, we just need some well-formed translation for our

given optimistically typed program. Which one we happen to choose is

irrelevant. Fortunately, we have the following:

Theorem 5.6.2 (Translation Existence). For every environment Ψ, expression e,

and type τ,

` Ψ ∧ Ψ ` τ ∧ Ψ ` e ◃ τ =⇒ ∃Ψ̄, ẽ. ` Ψ | e Ψ̄ | ẽ : τ

172 exploiting nominality for efficiency

Thus every optimistically typed program has a well-formed translation.

Defining such a translation is straightforward and tedious, so we defer

formal construction to Appendix B.3.

Given that we have both translation irrelevance and existence, we can

define the cast semantics for our gradually typed language using the

judgement Ψ ` e ∞ ν : τ defined in Figure 5.8.

semantic preservation Now that we know that we can always re-

fine an optimistically typed program into a pessimistically typed program,

we want to know that this translation respects the direct semantics of the

original program in a reasonable manner. We demonstrate this with two

observations, the proofs of which can be found in Appendix B.3.

Theorem 5.6.3 (Pessimistic-Valuation Preservation). For every environ-

ment Ψ, expression e, and type τ where ` Ψ and Ψ ` τ and Ψ ` e ◃ τ

hold,

∀ν. Ψ ` e −▸∞ ν : τ =⇒ Ψ ` e ∞ ν : τ

This states that if the direct semantics of our original program can

pessimistically produce some result, then translation also produces that

result. That is, translation preserves pessimistic valuations. Note that

translation does not preserve optimistic valuations, though. This is because

a program can happen to optimistically reduce to some value even if it

requires repeatedly violating expected invariants of the system throughout

the process, and a typical sound gradual type system has no principled

way of safely arriving at that haphazard but fortuitous result.

This leads us to wonder what happens when the original program goes

awry. In particular, due to pessimistic progress and preservation, we know

5.6 the cast semantics 173

that the translation must result in some valuation even if the original

program does not. The following gives us some insight into what the

valuation must be.

Theorem 5.6.4 (Optimistic-Valuation Reflection). For every environment Ψ,

expression e, and type τ where ` Ψ and Ψ ` τ and Ψ ` e ◃ τ hold,

∀ν. Ψ ` e ∞ ν : τ =⇒

Ψ ` e −▹∞ ν : τ

or

Ψ ` ν bad-cast ∧ Ψ ` e −▹∗ lapse τ

This states that any valuation resulting from translation must also result

optimistically from the original program unless the valuation is a bad cast

catching the fact that the original program would become pessimistically

stuck in an unacceptable manner, which Theorem 5.5.1 guarantees can

only happen if the original program would become ill-typed. In combi-

nation with pessimistic-valuation preservation, this informs us that the

cast semantics is essentially the same as the direct semantics except that it

results in bad casts rather than lapsing.

Thus, with the combination of valuation preservation and reflection,

we see that there is a very close relationship between our cast semantics

and our direct semantics, one that is common among sound gradual type

systems. This suggests that programmers can rely on the more intuitive

direct semantics as a reasonable approximation of what the cast semantics

provides. There is still some gap, though, since the cast semantics preserves

pessimistic valuations but reflects optimistic valuations. In most gradual type

systems, bridging this gap requires understanding the details of where

casts are inserted and how they are implemented. In our system, though,

174 exploiting nominality for efficiency

we can actually close that gap. The stronger guarantees in the next section

ensure that our cast semantics even reflects pessimistic valuations, showing

that programmers need only understand direct pessimistic reduction to

anticipate the behavior of our cast semantics.

5.7 the guarantees

The challenge at hand is to design a gradually typed language that is both

principled and efficient. Here we address the principles by formalizing the

guarantees that our calculus provides, the proofs of which can be found in

Appendix B.4. Afterwards, we will address efficiency by comparing with

other similarly principled gradual type systems.

5.7.1 Immediacy

Sound gradual typing guarantees that a cast will fail before the program

would get stuck in an unacceptable manner. However, most sound grad-

ually typed languages only have this property with respect to optimistic

reduction. Our system has a stronger property, which we call immediacy,

formalized as follows:

Theorem 5.7.1 (Immediacy). For every Ψ, Ψ̄, e, ẽ, and τ where ` Ψ | e Ψ̄ |

ẽ : τ holds,

∀e′.

 Ψ ` e −▸∗ e′

Ψ ` e′ lapse τ

 =⇒ ∃ẽ′.

 Ψ̄ ` ẽ −▹∗ ẽ′

Ψ̄ ` ẽ′ bad-cast

 ∧ Ψ ` e′ � ẽ′ : τ

5.7 the guarantees 175

In the statement of this theorem, we distinguish the clause Ψ ` e′ � ẽ′ : τ.

Without this clause, the theorem simply states that the cast semantics

results in a bad cast whenever the original program would eventually

get pessimistically stuck in an unacceptable manner. This is sufficient

to strengthen optimistic-valuation reflection into pessimistic-valuation

reflection, as we discussed in the previous section. And with the distin-

guished clause, the theorem furthermore guarantees that the bad cast

occurs immediately when the original program would get pessimistically

stuck.

This is in contrast with most work on sound gradual typing. To see why,

consider the following traditional gradually typed program:

let dyn→ dyn f := (λs : str. s.length) in

let int→ int g := f in slow(); g 5

This program can pessimistically reduce in a single step to the following:

let int→ int g := (λs : str. s.length) in slow(); g 5

This reduced program, however, can no longer reduce pessimistically. The

value λs : str. s.length fails to have the expected type int → int of the

variable g, even optimistically. This clearly indicates a violation of the

intended invariants of the program. For a gradual type system to provide

immediacy, the cast semantics for this program would have to raise an

error at this point in the execution. However, most prior work cannot

recognize the error until the call to g 5 eventually executes.

Interestingly, threesomes [Siek and Wadler, 2010] do raise an error

immediately for this example, provided one uses a variant that is what

176 exploiting nominality for efficiency

Siek, Garcia, and Taha [2009] describe as the eager error-detection strategy.

Furthermore, it has been proven that eager threesomes can be viewed as

a cast-insertion implementation of the semantics prescribed by Garcia,

Clark, and Tanter [2016] when applied to a gradually typed lambda

calculus [Toro and Tanter, 2017]. So it might generally be the case that

the semantics prescribed by Garcia, Clark, and Tanter [2016] will always

provide immediacy.

5.7.2 Immediate Accountability

Accountability is the ability to indicate what component of the program

is to blame for a given cast failure observed by the cast semantics of a

program, and to furthermore ensure that only dynamically typed com-

ponents are ever blamed. Like in previous work on blame [Ahmed et al.,

2011; Tobin-Hochstadt and Felleisen, 2006; Wadler and Findler, 2009], we

can augment our calculus with labels and errors so that, when such a

cast failure occurs, it provides a label specifying some optimistic assump-

tion that turned out not to hold at run time. However, we forgo such an

augmentation here because, for our calculus, the process is particularly

uninteresting.

The reason is that our system is transparent—unlike in most existing

accountable systems, casts are not introduced by our operational semantics.

This means that casts are only introduced by program refinement and so

directly correspond to locations in the original program. All erroneous

casts in our semantics have the property that they are casts to a class or

interface type, never to dyn. Program refinement only introduces casts of

5.7 the guarantees 177

an expression to its expected return type, which means the receiver of

such a cast must be statically typed. Furthermore, the expression being

refined optimistically has that expected return type. If that expression

were also statically typed, that would imply the expression also has that

expected return type pessimistically. Type preservation would then ensure

that this cast would succeed. So the cast can only fail if the expression is

dynamically typed. Thus, all erroneous casts not in the original program

are necessarily casts from dynamically typed code to statically typed code

that were directly inserted by program refinement, making blame trivial

to achieve.

But whereas accountability is the property that a failing cast correctly

identifies a faulty optimistic assumption in the source code, what we call

immediate accountability furthermore demands that execution is currently

at that point in the source code. That is, optimistic checks either fail

immediately or never. This property makes blame tracking completely

unnecessary, since immediate accountability guarantees that a cast fails

only if that cast itself is to blame. For our system, the reasoning above, in

combination with immediacy, ensures that our system provides immediate

accountability.

However, in general the combination of immediacy and accountability

is not sufficient to provide immediate accountability. This is evidenced

by the fact that eager threesomes [Toro and Tanter, 2017] require blame

tracking in order to provide accountability [Siek and Wadler, 2010] even

though they provide immediacy.

178 exploiting nominality for efficiency

5.7.3 The Gradual Guarantee

The gradual guarantee [Siek, Vitousek, Cimini, and Boyland, 2015], in

our terms, states that adding optimism to a program should increase the

likelihood that the program will type-check and evaluate successfully, and

nothing more. We formalize this using an optimism relation (v), shown in

Figure 5.9, which indicates when two components only differ in terms of

degree of optimism, with the right component being the more optimistic

of the two. This is traditionally known as a precision relation [Garcia,

Clark, and Tanter, 2016; Siek, Vitousek, Cimini, and Boyland, 2015] or

naïve subtyping [Wadler and Findler, 2009]. We use the new terminology

both to be consistent to with the rest of the chapter and to address the fact

that the precision relation is backwards, as noted by its inventors [Siek,

Vitousek, Cimini, and Boyland, 2015], since it places the more precise

component on what the name suggests should be the less precise side.

The gradual guarantee formally consists of three theorems adapted

from [Siek, Vitousek, Cimini, and Boyland, 2015]. Our first theorem states

that a program that is already optimistically typed will still be optimisti-

cally typed if it is made more optimistic:

Theorem 5.7.2 (Gradual Optimism).

∀



Ψ, Ψ′

Γ, Γ′

τ, τ′

e, e′


.



` Ψ

Ψ ` Γ

Ψ ` τ

Ψ | Γ ` e ◃ τ


∧



Ψ v Ψ′

Γ v Γ′

τ v τ′

e v e′


=⇒



` Ψ′

Ψ′ ` Γ′

Ψ′ ` τ′

Ψ′ | Γ′ ` e′ ◃ τ′



5.7 the guarantees 179

Type and Context Optimism τ v τ Γ v Γ

> v > C v C τ v dyn · v ·
Γ v Γ′ τ v τ′

Γ, τ x v Γ′, τ′ x

Valuation and Expression Optimism ν v ν e v e

∞ v ∞ x v x
τ v τ′ e1 v e′1 e2 v e′2

let τ x := e1 in e2 v let τ′ x := e′1 in e′2

∀i. ei v e′i
C(e1, . . . , en) v C(e′1, . . . , e′n)

e v e′ δ v δ′

e. fδ v e′. fδ′

e v e′ δ v δ′ ∀i. ei v e′i
e.mδ(e1, . . . , en) v e′.mδ′(e′1, . . . , e′n)

e v e′ τ v τ′

cast e to τ v cast e′ to τ′

Program Optimism Ψ v Ψ i v i c v c

· v ·
Ψ v Ψ′ i v i′

Ψ, i v Ψ′, i′
Ψ v Ψ′ c v c′

Ψ, c v Ψ′, c′

∀i. si v s′i
interface C {s1; . . . } v interface C {s′1; . . . }

c = class C(τ1 f1, . . .) implements C1, . . . {d1; . . . }
c′ = class C(τ′1 f1, . . .) implements C1, . . . {d′1; . . . }

∀i. τi v τ′i ∀i. di v d′i
c v c′

Method Optimism s v s d v d

τ v τ′ Γ v Γ′

τ m(Γ) v τ′ m(Γ′)
s v s′ e v e′

s 7→ e v s′ 7→ e′

Figure 5.9: Optimism Relation, a.k.a. Precision Relation [Garcia, Clark, and Tanter,
2016; Siek, Vitousek, Cimini, and Boyland, 2015]

180 exploiting nominality for efficiency

Our second theorem states that if a program results in a valuation, then

a more optimistic version of that program results in the same valuation or

some more optimistic one unless the valuation was an overly pessimistic

cast in the more pessimistic program.

Theorem 5.7.3 (Gradual Preservation). For every Ψ, Ψ′, e, e′, τ, and τ′ such

that ` Ψ, ` Ψ′, Ψ ` τ, Ψ′ ` τ′, Ψ ` e ◃ τ, and Ψ′ ` e′ ◃ τ′ hold,

∀ν.



Ψ ` e ∞ ν : τ

Ψ v Ψ′

τ v τ′

e v e′


=⇒

∃ν′.

Ψ′ ` e′ ∞ ν′ : τ′

ν v ν′


or

Ψ ` ν bad-cast

Our third theorem states that, if an optimistic program results in a

valuation, then a more pessimistic version results in that same valuation

or some more pessimistic one unless it encounters an overly pessimistic

cast first.

Theorem 5.7.4 (Gradual Reflection). For every Ψ, Ψ′, e, e′, τ, and τ′ such

that ` Ψ, ` Ψ′, Ψ ` τ, Ψ′ ` τ′, Ψ ` e ◃ τ, and Ψ′ ` e′ ◃ τ′ hold,

∀ν′.



Ψ v Ψ′

τ v τ′

e v e′

Ψ′ ` e′ ∞ ν′ : τ′


=⇒ ∃ν. Ψ ` e ∞ ν : τ ∧

ν v ν′

or

Ψ ` ν bad-cast

Together, these theorems prove our calculus provides the gradual guar-

antee. Interestingly, gradual preservation and reflection can be derived

from our earlier theorems by making one key observation: making a pro-

5.8 experimental evaluation 181

gram more optimistic has the effect of making it more likely to be able to

reduce pessimistically. Thus our direct semantics provides new perspective

on the gradual guarantee.

5.7.4 Transparency

Lastly, it is easy to prove the following theorem about our optimism

relation:

Theorem 5.7.5 (Transparency).

∀v, v′. v v v′ =⇒ v = v′

For languages providing the gradual guarantee, we believe this accu-

rately formalizes our concept of transparency. In particular, the combina-

tion implies that making a program more optimistic will not affect the

values that arise during that program’s execution. This is in contrast to

calculi like the cast calculus [Siek, Vitousek, Cimini, and Boyland, 2015],

in which two values can be related and yet differ due to inserted casts,

which are precisely the wrapper functions we actively avoided in order to

get the following promising experimental results.

5.8 experimental evaluation

We claim that our approach to gradual typing can be implemented effi-

ciently and avoid the performance pitfalls of gradual typing that Takikawa

et al. [2016] described. Here we present an evaluation of our experi-

182 exploiting nominality for efficiency

mental language called Nom. We used benchmarks from two different

sources: first, there are two benchmarks from the benchmark suite used

by Takikawa et al. [2016], and second, there are five benchmarks that are

among those that Vitousek, Swords, and Siek [2017] selected from the

official Python benchmark suite [The Python Development Team, 2008]

at the time. These serve to evaluate our implementation on two metrics,

respectively. The first set of benchmarks tests the overhead that is intro-

duced at the boundaries between typed and untyped code. The second set

of benchmarks tests whether type annotations improve the performance

of programs, which is a part of our motivation for gradual typing. For

comparison with another sound nominally typed language with gradual

typing, we also translated the first group of benchmarks to C#, and we

present the results of running those translations alongside the others.

5.8.1 The Experimental Compiler

Our experimental compiler supports our language Nom that implements

the formalized features discussed so far along with mutable state, primitive

types, implementation inheritance, overloading, access/visibility modifiers,

and static fields and methods. Unlike in our calculus, field accesses and

method invocations are not explicitly annotated with a dispatch mode,

and Appendix B.1 discusses how Nom addresses the subtleties involved

in bridging this gap.

Because dynamic checks are more common with gradual typing, we

make some optimizations to the standard implementation for a nominally

typed object-oriented language. At compile time, a number is generated

5.8 experimental evaluation 183

for each class type. An object is represented as its class number followed by

its fields. The class number is used to index arrays that provide standard

features such as method tables and interface tables, which are used by

statically typed method invocations. Each class index is also associated

with a flat list of all its supertypes—class hierarchies are usually rather

shallow, so scanning these lists for a matching supertype can be expected to

be quick. In order to make dynamically typed method invocations efficient,

the class number is used to access an array of association lists mapping

method identifiers to dispatching methods, each of which employs a

statically determined decision tree to determine which overloading to call,

if any, based on the types of the arguments. This is essentially an extension

of the hybrid-casting technique of Allende, Fabry, and Tanter [2013] in

GradualTalk [Allende, Callaú, et al., 2014]. Furthermore, at the call site of

each applicable method invocation, we cache the result of method lookup

for the three most recent run-time types of the receiver. This is a standard

technique for dynamic languages, known as inline caching [Ahn et al.,

2014; Deutsch and Schiffman, 1984].

Rather than compiling to assembly, our compiler translates to C, which

can then be compiled by a standard C compiler.3 We use the Boehm-

Demers-Weiser conservative garbage collector [Demers et al., 1990].

5.8.2 Design of Benchmark Programs

In contrast to work that adds gradual typing to existing programming lan-

guages, we do not have access to a large collection of programs written in

our language. However, as a first step, all we need is a program that has a

3 For the benchmarks, we use the Microsoft C compiler, set to optimize for speed (/O2).

184 exploiting nominality for efficiency

large number of transitions between untyped and typed code, as these are

the only possible sources of gradual-typing overhead in our system. Fortu-

nately, the two smallest poorly performing (i.e. more than 100x slowdown)

programs in the benchmark suite of Takikawa et al. were also among those

with the highest numbers of boundary transitions. These two programs

are sieve and snake. sieve implements the sieve of Eratosthenes using

streams to determine the 10,000
th prime number. snake implements the

popular game Snake and runs it using a statically predetermined list of

about 55,000 moves and events. Note that sieve in particular was written

“to illustrate the pitfalls of sound gradual typing” [Takikawa et al., 2016],

as it consists of just two heavily interacting modules.

Given that the programs were written in a different programming

paradigm, there are some design choices to be made in how to translate

them to Nom and C#. We strove to mimic the structure of the original

programs as much as possible in order to keep the numbers and kinds of

transitions across module boundaries the same. The biggest differences are

that we manually implement tail-recursion elimination in our translation

and—as Nom does not support anonymous functions—we model function

types using interfaces and closures using classes. All in all, the converted

programs are nominal but not necessarily written in an object-oriented

style. Thus good performance with these programs is likely to imply

good performance in most cases both because they have already been

demonstrated to cause problems for prior work due to frequent interaction

between modules and because they are written in a style that is not favored

by our implementation.

5.8 experimental evaluation 185

The Python benchmarks were much easier to translate, as they were

written in a style that fits our language much more closely. As such, they

are more what a typical benchmark for our language would look like.

5.8.3 Benchmark Results

All benchmarks were run on an Intel Core i7-3770 at 3.4Ghz with 16GB of

main memory, running Windows 7 with minimal background activity. The

benchmark programs were run over several iterations. For each iteration,

the sequence in which individual configurations were run was determined

randomly.

5.8.3.1 Sieve

sieve is an extreme microbenchmark, consisting of just two heavily inter-

acting modules with several hundred million transitions between those

two modules. As such, it is a key benchmark to measure the efficiency

of casts in a gradually typed language. The left-hand side of Figure 5.10

shows the results for the sieve benchmark for Racket, C#, and Nom. There

are four configurations, corresponding to the fully untyped program “00”,

the fully typed program “11”, and the two mixed configurations “01”

and “10”. In Typed Racket, the two mixed configurations cause extreme

overheads due to gradual typing, as described by Takikawa et al. [2016].

C#, on the other hand, is unaffected by interaction but instead suffers

significant slowdown in the presence of dynamic typing.

Regarding Nom, its performance is, in relative terms, fairly constant

across the configurations, though there is an increase in performance

186 exploiting nominality for efficiency

Figure 5.10: Benchmark results for sieve (top) and snake (bottom)

5.8 experimental evaluation 187

in the fully typed configuration. This is despite the fact that we still

measured several hundreds of millions of transitions between typed and

untyped code when executing either mixed configuration in Nom, the

same magnitude that Takikawa et al. reported for Racket.

5.8.3.2 Snake

The right-hand side of Figure 5.10 shows the timings for snake as a

scatter plot of running times, in seconds, grouped by the number of typed

modules. There are two versions for Racket here because the original

version published by Takikawa et al. checks the entire contents of lists

when casting them from untyped code to typed code, an operation that in

theory increases the time complexity of the programs. We thus developed

a modified version of snake, labeled Racket*, that uses a user-defined

structure instead of Racket’s cons-lists in an attempt to make those checks

lazy, similar to how our Nom implementation of lists works. Interestingly,

there does not seem to be much difference in performance between the

two Racket versions, suggesting that the performance issues Takikawa et al.

observed are due to the concerns we have discussed throughout the chapter

rather than due to the use of deep casts. As before, the performance of

Nom, on the other hand, consistently improves as more types are added to

the program. The same holds for C#, though again suffering significantly

more overhead in the presence untyped code.

5.8.3.3 Python Benchmarks

For the Python benchmarks, we chose five with some preference towards

the ones that had poor performance under the transient-cast implemen-

tation of Vitousek, Swords, and Siek [2017] (pystone and float suffer

188 exploiting nominality for efficiency

Figure 5.11: Benchmarks taken from Vitousek, Swords, and Siek [2017]’s selection
of Python benchmarks

5.8 experimental evaluation 189

from about 200% overhead, and go and spectralnorm suffer from about

400% overhead for typed code compared to untyped code4). In contrast to

the Racket benchmarks, these programs were written in a language that is

close to ours and thus were translated with minimal effort. The left-hand

side of Figure 5.11 shows the results of these benchmarks for Reticulated

Python, and the right-hand side of Figure 5.11 shows the results for Nom.

The absolute running times should not be compared other than to serve

as an indicator of overall reasonableness; Python is interpreted, whereas

our code is compiled and optimized by a C compiler, so absolute differ-

ences are not meaningful. The effect of types on performance within each

language is meaningfully different, though. The transient casting strategy

slows down programs as more type annotations are added because type

annotations cause checks to be inserted and executed regardless of whether

the whole program is typed or not. This may be a reasonable thing to do

in the scenarios that Vitousek et al. are considering, where an open world

can readily circumvent invariants of the gradual-typing implementation,

but we believe that in general programs should overall become faster as

more type annotations are added due to the additional optimizations this

enables. Nom achieves this goal here, although the snake benchmark best

illustrates this behavior because it provides data on many intermediate

configurations as well.

5.8.4 Validity

We only evaluated our system on a small set of small programs. While our

system performed well for these programs, there is always the possibility

4 Without blame. Adding blame tracking in many cases more than doubles the overhead.

190 exploiting nominality for efficiency

that it may perform poorly for some other program. However, by the

nature of our implementation, our overhead is proportional to the number

of run-time interactions between typed and untyped code. Importantly,

our overhead is fairly unaffected by the kind of interactions that occur

due to the transparency of our casts. Consequently, it is likely the case

that sieve does in fact represent a worst-case scenario regarding overhead

created by our system due to the immense degree of interaction points

as designed by Takikawa et al. While it seems possible that there are

other programs that could increase our overhead by small factors, say by

designing a program to thwart any effectiveness of inline caches, it seems

unlikely that there are programs that would increase our overhead by

large factors, especially to the degree observed in the related works we

compare to.

As for the measurements we do provide, the usual caveats to experi-

mental running-time measurements apply. Efforts we took to mitigate the

risk of obtaining misleading numbers include

• running the benchmarks sequentially, not in parallel, with a separate

randomized order for each trial run,

• confirming that several minor variations of the Nom benchmarks,

such as employing object-oriented-style dynamic dispatch instead of

functional-style static dispatch, exhibited similar performances,

• and observing no significant differences in performance across three

different machines.

Furthermore, the artifact-evaluation committee approved the validity of

our manual translations of the benchmarks and successfully replicated our

results.

5.9 summary 191

5.9 summary

This chapter presented new properties of gradual type systems that, in

conjunction with the gradual guarantee, capture an intuition about when

and where gradual typing can produce overhead even in the ideal case.

The properties do not necessarily guarantee an efficient implementation of

gradual typing, as we demonstrate with benchmarks for C#.

We showed, however, that by codesigning the type system and underly-

ing runtime system alongside these desired properties for gradual typing,

we could create an efficient and well-behaved gradually typed nominal

object-oriented language. We provided evidence that our language does

not suffer from previously measured extreme overheads due to gradual

typing, even in adversarial scenarios where programs have a high level of

interaction between typed and untyped code.

As part of our design, we chose to use nominal typing instead of struc-

tural typing as an explicit tradeoff of expressiveness for performance. We

argued how this loss of expressiveness is acceptable for many applications

of gradual typing, and we illustrated paths forward towards recovering

expressiveness while still maintaining performance. In general, there are

many desirable features that our language does not have, but it seems that

many of them can be added with reasonable effort. As such Nom forms

a good foundation from which to explore adding more features while

keeping efficiency and good theoretical properties, which we make use of

in the next chapter.

6
T R A N S I T I O N I N G F R O M S T R U C T U R A L T O N O M I N A L

C O D E

6.1 introduction

In this chapter, we relax some of the restrictions we accepted in Nom

to obtain efficiency, and in doing so, we address another issue, namely

that typed and untyped code often exhibits different patterns. Some re-

search has investigated gradually giving types to code exhibiting typical

untyped patterns [Allende, Callaú, et al., 2014; Richards, Nardelli, and

Vitek, 2015; Siek and Taha, 2007; Swamy et al., 2014; Tobin-Hochstadt and

Felleisen, 2008; Vitousek, Kent, et al., 2014; Vitousek, Swords, and Siek,

2017], while other research has investigated gradually removing types

from code exhibiting typical typed patterns [Bierman, Meijer, and Torg-

ersen, 2010; Cimini and Siek, 2016; Garcia, Clark, and Tanter, 2016; Ina and

Igarashi, 2011; Muehlboeck and Tate, 2017b; Siek and Taha, 2006]. Here we

investigate how to extend the gradual-typing concepts so that one can give

formal guarantees not only about how types can change as code evolves

but also about how such patterns can change as well.

We again do so specifically in the setting of object-oriented languages.

Untyped object-oriented languages typically encourage structural patterns

whereas typed object-oriented typically encourage nominal patterns. So as

code stabilizes, one would expect programmers not only to introduce types

193

194 transitioning from structural to nominal code

describing the expected behavior of their programs but also to replace

structural records using dynamic dictionaries with nominal classes using

fields and methods.

Beyond code evolution, some programming tasks are simply better

suited for untyped/structural patterns than for typed/nominal patterns,

and yet this structural code still needs to interact with nominal code. Test

code often has an intimate knowledge of the dynamics of the code being

tested and consequently omits methods that are expected by the interaction

interface but which are unnecessary for the test at hand. Deserialization

code often converts dictionary-like structures such as JSON trees into the

nominal structures expected by the program’s core. Reflection code treats

nominal structures as dictionary-like structures in order to reason about

and manipulate them more mechanically.

Whatever the purpose, there are many applications for principled in-

teraction between not just typed and untyped code but also nominal and

structural code. As such, Thorn [Wrigstad et al., 2010] explores both forms

of mixing. However, its like types only provide a way for nominal values to

be treated as structural values, making the communication between these

two patterns primarily one-sided. This accommodates applications like

deserialization, effectively converting structural data into nominal data,

and like reflection, manipulating nominal values as structural entities, but

not applications like testing, in which structural values need to masquer-

ade as nominal entities. It also fails to provide simple conveniences like

unannotated lambdas, which have proven useful enough to even be incor-

porated into major typed object-oriented languages despite the significant

complexity required of the type checker to retrofit such functionality.

6.2 motivation 195

A major reason for this is efficiency. Nom demonstrated that having

every value know its most precise type at run time enables gradual typing

to be implemented efficiently so that increasing type annotations reliably

improves program performance as one would expect. However, in order

for every value to know its most precise type, Nom requires every lambda

expression to be explicitly annotated with the nominal interface it is

intended to implement, just like Thorn.

In this chapter we provide a system in which nominal values can mas-

querade as structural entities and structural values can masquerade as

nominal interfaces while still providing good performance and semantic

guarantees as to how code can evolve from dynamic structures to nominal

types. Classes and interfaces can be entirely removed from programs,

replacing their nominal components with their structural counterparts

throughout the program, and the only significant change in behavior is the

slowdown one would expect from switching typed field/method-offset

lookups to untyped dictionary-entry lookups. This even works when the

classes that are removed implement interfaces that still remain, meaning

the records and lambdas replacing class instances need to dynamically

discover and adapt to the interfaces that had been implemented by those

instances.

6.2 motivation

Suppose you work at a video-game studio. Video-game development

has the interesting characteristic of creative artistic exploration needing

to be done simultaneously with high-performance implementation. As

196 transitioning from structural to nominal code

such, video games often use two interacting programming languages, with

designers operating in a high-level scripting language and implementers

operating in a low-level performance language (although not too low-level

in the case of mobile development). Furthermore, as designs stabilize, the

implementations of various game mechanics are moved from the high-level

language to the low-level language in order to meet the high-performance

expectations of players. Unfortunately, each such move is a substantial

effort because the two languages are often substantially different and

the communication interface between them itself often requires manual

implementation effort to provide.

This is an ideal application for gradual typing, but it requires providing

a migration path and interaction protocol for more than just types. To see

why, consider how the design of characters changes over time. At first,

characters might just start with a notion of health, but as time progresses

the designers realize the need for more and more attributes such as energy,

strength, speed, and so on. And as time progresses further, some of these

attributes may be removed or merged for the sake of reducing cognitive

load on the player. Designers are used to this ever-changing landscape

and employ structural patterns in order to keep up with and adapt to

these changes. But once a design a solidifies, it makes sense to coalesce

the various attributes of a character into a class and to coalesce the vari-

ous customizable interactions characters are expected to provide into an

interface implemented by that class. And then it makes sense to move that

class and interface into the low-level language, along with various scripts

for implementing character functionality, to provide better performance,

while still providing the scripting language with the necessary hooks for

interacting with this character class and specifying the custom interactions

6.2 motivation 197

expected by its implemented interface. Thus, in addition to refining type

information, this application needs a path for changing from structural

code to nominal code that still enables structural code to access and update

nominal data and to specify implementations for nominal interfaces.

Of course, efficiency is also important in this application. Note that it

is never the case that all code is untyped or all code is typed. Instead,

it always the case that some code is untyped but most code is typed.

Furthermore, while there needs to be back-and-forth interactions between

typed and untyped code, not all interactions are expected to work. In

particular, designers do not expect to be able to give an object whose

dictionary happens to have all the right entries to typed code that expects

specifically instances of a particular class; instead, they would allocate

an instance of the class and, in their untyped scripting language, fill its

fields with the values they want it to have. In this work we will optimize

for when code is mostly typed and rely on these concessions on expected

interactions in order to implement (sound) gradual typing efficiently.

Our strategy at a high level is to treat data differently than interactions.

In particular, while untyped code will be able to manipulate instances

of nominal classes structurally (albeit in a limited fashion in order to

maintain the invariants of the class), we will not allow structural data

to be implicitly cast to a nominal class type. On the other hand, we will

allow structural values to be implicitly cast to a nominal interface type so

that typed nominal code can interact with structural operations just as if

they had been instances of classes implementing the expected interface.

When such a structural value crosses the boundary, we will monotonically

retrofit an appropriate v-table and interface table onto the value. Thus

typed code will be able to invoke methods on these structural values just

198 transitioning from structural to nominal code

as they would class instances. And, since structural data is not implicitly

cast into class instances, typed code can always access fields efficiently.

Similarly, when classes are compiled we provide a pointer to a generated

field-and-method-offset dictionary in the v-table that untyped code can

use to access and mutate fields and invoke methods relatively efficiently.

Thus we repurpose the indirections already present in the implementations

of both nominal and structural code in order to make values from one

setting appear to be values from the other.

Of course there are many high-level and low-level challenges to pro-

viding formal guarantees about code evolution and practical assurances

about code performance. Understanding these challenges requires a more

detailed understanding of the language we provide, so next we provide a

calculus containing the features we found were most critical in formulating

the challenge and informing our design.

6.3 the calculus

The calculus is comprised of both structural and nominal features. How-

ever, the structural features only exist at the expression level whereas

some nominal features only exist at the top level. These nominal features

are used to describe the overarching architecture of the program that we

must work within. As such, we first present the nominal hierarchy of our

calculus.

6.3 the calculus 199

Interface Name I Class Name C
Field/Method Name f Variable Name x

Interface I ::= interface I〈Θ〉 extends I〈σ, ...〉, ... {ms; ...}
Class C ::= class x : C〈Θ〉(f : τ, ...; Γ)

implements I〈σ, ...〉, ... {ms 7→ e; ...}
Material M ::= I | C
Hierarchy H ::=M; ...

Method Name m ::= f | λ

Method Signature s ::= 〈Θ〉(Γ) : τ

Type Context Γ ::= x : τ, ...
Kind Context Θ ::= α, ...

Material Name M ::= I | C
(Gradual) Type τ ::= α | M〈τ, ...〉 | B | Z | R | dyn
Concrete Type σ ::= α | M〈σ, ...〉 | B | Z | R

Figure 6.1: Grammar of Nominal Hierarchy

6.3.1 Hierarchy

The hierarchy of our calculus, presented in Figure 6.1, is comprised of

interfaces and classes. The first thing to notice is that our interfaces and

classes have type parameters, i.e. are generic. The goal of this work is

not to design gradual typing for generics, unlike [Ina and Igarashi, 2011],

and as such our calculus has no support for important features such as

variance. However, even without variance type parameterization imposes

significant constraints on efficiently implementing gradual typing that the

reader should be aware of. For one, it makes casts more complex—unlike

Nom, our casts check a simple nominal tag and compare type arguments.

For another, it means that an interface imposed upon a structural value

might need to be refined as the program proceeds, say do the value first

200 transitioning from structural to nominal code

being cast to Fun〈dyn, dyn〉 and later to Fun〈Z, Z〉. Furthermore, when

monotonically refining the interface imposed upon a structural value, we

must be mindful of concurrency issues. Although our calculus is single-

threaded, our implementation has made sure that mutating casts are lock

free and yet thread safe even under common weak memory models while

also ensuring that successful casts can proceed without synchronizing.

Generics also disallow certain tempting solutions. In particular, rather

than implementing gradual typing by casting structural values, one could

implement gradual typing by instead casting the structural code locations

generating those values. That is, every closure is generated by some

lambda expression, and one could monotonically update the type of the

lambda expression, essentially dynamically inferring the type annotations

for that code location. Such a solution would even satisfy the gradual

guarantee [Siek, Vitousek, Cimini, and Boyland, 2015]. However, generics

invalidate this solution by asserting that even code locations should be

able to take on multiple types (parameteterized by the type variables in

the context) as the program executes.

The second thing to notice is that, while classes and interfaces can each

inherit multiple interfaces, our calculus does not have class inheritance.

This is merely because we found class inheritance to be uninteresting

given the design decisions we have already argued, namely that structural

values should not be castable to class instances. Our implementation does

support subclassing, and our formalism can easily be extended to support

subclassing as well. In particular, even when the receiver of a method

invocation is known to be an instance of a class, the method is dispatched

dynamically rather than statically in case it has been overridden in some

subclass.

6.3 the calculus 201

The final thing to be aware of, although not visible in the grammar, is

that our calculus enforces single-instantiation inheritance. This is neces-

sary if we want to be able to disallow a closure that has already been

cast to Fun〈Z, R〉 from also being cast to the incompatible type Fun〈R, Z〉.

If classes could implement the same generic interface with multiple in-

stantiations, and if we want lambda expressions to be convertible into

class-instance allocations, then the gradual guarantee would require us

to support such incompatible casts. In order to enforce this, as well as to

make casts more efficient, type arguments to inherited interfaces must be

“concrete” types σ rather than (gradual) types τ.

6.3.2 Fields and Methods

In order to support structural patterns, we felt it was important for fields

and methods to share the same namespace f (which we did decide to

distinguish from local variables x). The one exception is the special method

name λ. Structural values and instances of classes (and interfaces) with

such a method can be invoked as if they were themselves functions.

Originally we had intended to treat any interface with a single method as

a “functional” interface. However, this means that closures cast to such

an interface would become endowed with a method of that single name,

which then would need to be invokable even from untyped code in order

to support the gradual guarantee. The consequence of this would be that

a cast could give a value additional functionality, which is fundamentally

incompatible with the gradual guarantee that asserts that removing casts

(e.g. making code more dynamic) should not reduce functionality. Thus we

202 transitioning from structural to nominal code

realized it was either necessary to either have some specially designated

name such as invoke or some non-name symbol such as λ, and we opted

for the latter.

Note that methods in our calculus can be parameterized. In particular,

this means that if a method were fetched by untyped code as if it were

a field, the type of the resulting value is not expressible in our language.

We also chose to permit a limited form of overloading where classes and

interfaces can provide multiple signatures and implementations for a

method provided they all have a different number of type parameters

and/or program parameters. In order to avoid complications with LLVM,

we did not however opt to permit variadic overloading.

One should notice that, just after the declaration of fields, classes also

declare a context Γ of private data. This data intentionally has no field

associated with it so that it cannot be accessed through any means besides

the method implementations. We use so that class instances can replace

closures without exposing any new functionality; the context Γ is the

collection of local variables captured by the closure.

6.3.3 Types

The types in our language include type variables α, parameterized nominal

interfaces and classes M〈τ, ...〉, primitive booleans B, (64-bit) integers Z,

and (64-bit IEEE 764 floating point) reals R, and the “dynamic” type dyn.

Note that we do not have a function type τ → τ. This actually makes our

challenge more difficult, rather than easier, because instead we need to

support lambdas through nominal interfaces with a λ method, and there

6.3 the calculus 203

can be multiple such interfaces within a given program and a lambda must

be simultaneously castable to multiple such interfaces since classes can

implement multiple interfaces.

For the purposes of this chapter, it is important to stress that we in-

tentionally take a broad perspective of the dyn type. We view dyn as a

means to explicitly circumvent the type system. That is, rather than dyn

being just a type that has yet to be determined, we also view dyn as po-

tentially conveying the programmer’s intent to reason about the dynamics

of the program beyond what the type system is capable of expressing.

For example, dyn can represent values that are untypeable in our calculus,

such as structural values. Also, dyn can be used to access functionality

in a value not explicitly accessible by its type. For example, a closure

can be cast to Fun〈Z, Z〉 and then back to dyn and, unlike most (sound)

gradually typed systems, our calculus permits the resulting cast value to

still be supplied, say, Rs and to return Rs when invoked from untyped

code with the understanding that the programmer may be well aware

that the dynamics of the program guarantees that this particular function

also operates on other numical values even if the types are unaware of or

unable to express the fact.

6.3.4 Expressions

The grammar of our expressions is shown in Figure 6.2, divided into five

rows. The first row specifies the basic components. The second and third

rows contain the three ways to create non-primitive values. The fourth row

describes the operations on those non-primitive values. The final row is not

204 transitioning from structural to nominal code

Boolean b ∈ B = {false, true} Integer i ∈ Z Real r ∈ R

Expression e ::= x | let x : τ := e in e | b | i | r | e + e
| new C〈σ, ...〉(e, ...; e, ...) | new λs 7→ e
| new (f := e; ...)x{ms 7→ e; ...}
| e. f | e. f := e | e〈σ, ...〉(e, ...)δ | e ≈ e
| ` | cast e to τ | cast e to τ for `.m〈σ, ...〉(ν, ...)

Dispatch Mode δ ::= M.m | dyn

Figure 6.2: Grammar of Expressions

part of the surface language; it is only used for specifying the semantics,

and so we defer its discussion to Section 6.6.

6.3.4.1 Primitives

Our calculus has three primitive values: booleans b, integers i, and reals r.

For booleans, our language provides standard operations such as ∧ and ∨

as well as standard control flow such as if-then-else and while constructs,

but we elide these from the calculus solely because they proved to com-

plicate the formalism (say by requiring union types) without contributing

meaningful insights. For integers and reals, our calculus provides addition

(which can operate on any combination of integers and reals), and our

language provides many other standard arithmetic operations.

6.3.4.2 Instances, Records, and Closures

Our calculus provides expressions for allocating (on the heap) class in-

stances, structural records, and lambda closures. These are all closely

related. In particular, class instances are the nominal counterpart to both

structural records and lambda closures. Lambda closures are essentially

6.3 the calculus 205

structural records with a single λ method, but they have a more optimized

implementation for this common use case and a more eager cast semantics

in order to make that optimization accessible even when lambda closures

cross the boundary into typed nominal code.

The expression new C〈σ1, ...〉(e f ;1, ...; ex;1, ...) allocates an instance of the

class C with concrete type arguments σ1, ..., with values for its private

data given positionally by ex;1, ..., and with initial values for fields given

positionally by e f ;1,

The expression new (f1 := e f ;1; ...)x{m1s1 7→ em;1; ...} allocates a record.

The initial values of its initial mutable fields f1, ... are given by the corre-

sponding expressions e f ;1, The signatures and implementations of its

immutable methods are given by m1s1 7→ em;1, ..., which can reference the

variable x representing the “this” pointer of the record. New fields can be

added to the record (though, for simplicity, not removed) by subsequent

field assignments. As such, the use of fields in this expression can be

viewed as a shorthand, but we make use of this shorthand so that, if ever

this record is converted into a class, the resulting nominal program will

reduce in the same order as this structural program (evaluating values

for fields before allocating the new reference), making the statement and

proof of our main theorem much simpler.

The expression new λs 7→ e allocates a lambda closure. The body e can

access local variables in the context (and the same goes for the bodies

of methods in structures). This of course is important for implementing

lambda expressions, but our calculus will gloss over these implementation

details and simply substitute local variables with their values even inside

the bodies of lambda expressions.

206 transitioning from structural to nominal code

6.3.4.3 Field Access and Method Invocation

Field access and method invocation seem straightforward, but there are

two important subtle challenges to be aware of. Consider the expression

e. f 〈σ, ...〉(...)δ. In typed code, we can use the type of e to determine whether

this an invocation of the method f on e or an invocation of a functional

interface (i.e. λ method) on the result of the field access e. f . In untyped

code, we cannot make any such distinction at compile time and must

determine which is the case at run time. This is the first challenge, and

in order to keep our calculus simple we chose to address it by having

the former case take one step to reduce (combining method lookup and

invocation into one) even though the latter case takes two steps. An

alternative and more expressive solution that would be relatively easy

to implement would be to have the untyped expression e. f reduce to a

method-with-receiver closure that can then be invoked directly and/or

cast to a functional interface just as a lambda closure can be.

The other challenge is, in the face of gradual typing, determining what

types the arguments should be cast to. This is the purpose of the “dispatch

mode” annotation δ on the invocation. The value of this annotation is

uniquely determined by the type of the receiver e, making it essentially a

note generated by the compiler recording which semantics and dispatch

strategy (e.g. v-table, interface table, or dictionary lookup) should be used

for the invocation. If the receiver has a statically known type, then the

arguments should be cast to the parameter types of the most precise signa-

ture for that method. If the receiver has a type dyn, then the arguments

should be cast to the parameter types of the dynamically fetched method

implementation.

6.3 the calculus 207

Note that in the statically typed case, it is important to use the most

precise signature. Suppose an interface Sub has a signature that accepts a >

(which, for the sake of discussion, represents any value) but also inherits

an interface Super whose corresponding signature accepts only a ⊥ (which,

for the sake of discussion, is uninhabited). Then if the receiver has static

type Sub it would be incorrect to blame [Wadler and Findler, 2009] the

caller once the dynamically typed argument is inevitably determined to

not be a ⊥. On the other hand, if the receiver has static type Super, then

the caller should be blamed even if the receiver’s dynamic type turns out

to be Sub. Thus the most precise static type of the receiver in fact affects

the semantics of the invocation, and so we need the dispatch mode δ to

record which semantics to use even after the dynamic type of the receiver

is determined.

6.3.4.4 Equality

Finally (since we are deferring discussion of the fourth row to Section 6.6),

we close with the equality operator ≈. This operator checks that the

two values are identical (rejecting even 1 ≈ 1.0). Most importantly, this

includes values that are references to the heap. This means that, in or-

der to preserve program behavior as (correct) type annotations are in-

troduced, casts must not introduce references. We want the operator ≈

to also have the property that returning true guarantees identical be-

havior, i.e. if x ≈ x′ then et else e f should be semantically equivalent

to if x ≈ x′ then et[x′ 7→ x] else e f . This means that casts cannot even

“chaperone” references as is done in Typed Racket [Tobin-Hochstadt and

Felleisen, 2008]. Although we will employ monotonic casts by choice, we

suspect that these requirements actually force that choice (or some less-

208 transitioning from structural to nominal code

sound [Greenman and Felleisen, 2018] semantics like transient casts [Vi-

tousek, Kent, et al., 2014; Vitousek, Swords, and Siek, 2017]).

6.4 the type system

The focus of this chapter is not type systems but rather transitioning code

from structural to nominal patterns. Nonetheless gradual typing is critical

to enabling this transition. Here we present the type system of our calculus

in brief, just highlighting the components that are most relevant to our

goal.

6.4.1 Precision, Inheritance, and Subtyping

Expressions aside for now, there are many interesting relationships be-

tween types alone due to the combination of gradual typing and in-

heritance. That is, one can adjust whether inheritance is used and how

dynamism is introduced or eliminated, and each of these combinations

has some interesting utility.

If we ignore inheritance and just focus on dynamism, then we get

the consistency (∼) and precision (4) relations (the latter of which is

traditionally denoted v, but we reserve that symbol for another notion

of precision). The consistency relation holds when there is some way to

instantiate occurrences of dyn in both types in order to make the two

types identical. The precision relation holds when there is some way to

instantiate occurrences of dyn in only the right-hand type in order to make

6.4 the type system 209

the two types identical. That is, τ 4 τ′ holds when τ′ is “more dynamic”

than τ.

If we instead ignore dynamism and focus on inheritance, then we get

the inheritance relation (≤). The inheritance relation holds when either

the two types are the same or the class or interface type on the left can be

repeatedly replaced with some inherited interface type to arrive at exactly

the type on the right.

Lastly, we can combine both dynamism and inheritance. Pessimistic

subtyping (◂) has the property that any value satisfying the contract of

the left-hand type is guaranteed to satisfy the contract of the right-hand

type. Optimistic subtyping (◃) conceptually (although not precisely) holds

whenever there is some way to instantiate occurrences of dyn in both types

in order to make the left inherit the right. Substitutive subtyping (<:) has

the property that whenever τ <: τ′ holds then any expression of type τ

can replace any expression of type τ′ in a well-typed program and the

result will still be well-typed.

6.4.2 Expressions

The judgements and rules for expression typing are presented in Fig-

ure 6.4.The first thing to notice is that there are two typing rules for

judgements: H | Θ | Γ ` e ◃ τ and H | Θ | Γ ` e : τ. The former judgement

should be read as “e optimistically has type τ” (in the relevant context). This

is the judgement that is actually used to determine whether an expression

can be used at a particular location in the program, as can be seen in,

say, the rule for typing let expressions. The latter judgement should be

210 transitioning from structural to nominal code

Precision τ ∼ τ τ 4 τ

τ ∼ τ τ 4 τ

dyn ∼ τ τ ∼ dyn τ 4 dyn

τ1 ∼ τ′1 ...
M〈τ1, ...〉 ∼ M〈τ′1, ...〉

τ1 4 τ′1 ...
M〈τ1, ...〉 4 M〈τ′1, ...〉

Inheritance H ` τ ≤ τ

H ` τ ≤ τ

interface I〈α1, ...〉 extends I′〈σ1, ...〉 ∈ H
H ` I′〈σ1[α1 7→ τ1, ...], ...〉 ≤ τ′

H ` I〈τ1, ...〉 ≤ τ′

class C〈α1, ...〉 implements I〈σ1, ...〉 ∈ H
H ` I〈σ1[α1 7→ τ1, ...], ...〉 ≤ τ′

H ` C〈τ1, ...〉 ≤ τ′

Subtyping
τ ◂ τ (Pessimistic)
τ ◃ τ (Optimistic)

τ <: τ (Substitutive)

H ` τ ≤ τ′

τ′ 4 τ′′

H ` τ ◂ τ′′

H ` τ ≤ τ′

τ′ ∼ τ′′

H ` τ ◃ τ′′

H ` τ ≤ τ′

τ′′ 4 τ′

H ` τ <: τ′′

Figure 6.3: Precision, Inheritance, and Subtyping

6.4 the type system 211

Optimistic Typing H | Θ | Γ ` e ◃ τ

H | Θ | Γ ` e : τe H ` τe ◃ τ

H | Θ | Γ ` e ◃ τ

Method Validation H | Θ ` s 7→ e Signature Validation H | Θ ` s

H | Θ ` 〈Θ′〉(Γ′) : τ
H | Θ, Θ′ | Γ, Γ′ ` e ◃ τ

H | Θ | Γ ` 〈Θ′〉(Γ′) : τ 7→ e

H | Θ, Θ′ ` τ1
... H | Θ, Θ′ ` τ

H | Θ ` 〈Θ′〉(x1 : τ1, ...) : τ

Method Lookup H ` M〈τ, ...〉.ms

class C〈α1, ...〉 {...; ms 7→ e; ...} ∈ H
H ` C〈τ1, ...〉.ms[α1 7→ τ1, ...]

interface I〈α1, ...〉 {...; ms; ...} ∈ H
H ` I〈τ1, ...〉.ms[α1 7→ τ1, ...]

Method Prototypes |ms| = 〈m, n, n〉

|m〈α1, ..., αnα〉(x1 : τ1, ..., xnx : τnx) : τ| = 〈m, nα, nx〉

Primitive Operation Typing τ + τ : τ

Z + Z : Z Z + R : R Z + dyn : dyn
R + Z : R R + R : R R + dyn : dyn

dyn+ Z : dyn dyn+ R : dyn dyn+ dyn : dyn

Expression Typing H | Θ | Γ ` e : τ

H | Θ | Γ ` i : Z H | Θ | Γ ` r : R

H | Θ | Γ ` e1 : τ1 H | Θ | Γ ` e2 : τ2 τ1 + τ2 : τ

H | Θ | Γ ` e1 + e2 : τ

H | Θ | Γ ` e1 : τ1 H | Θ | Γ ` e2 : τ2

H | Θ | Γ ` e1 ≈ e2 : B

Figure 6.4: Expression Typing

212 transitioning from structural to nominal code

Expression Typing (contd.) H | Θ | Γ ` e : τ

class x : C〈α1, ...〉(f1 : τf ;1, ...; x1 : τx;1, ...) implements ... {...} ∈ H
H | Θ ` σ1 ... H | Θ | Γ ` ex;1 ◃ τx;1[α1 7→ σ1, ...] ...

H | Θ | Γ ` e f ;1 ◃ τf ;1[α1 7→ σ1, ...] ...

H | Θ | Γ ` new C〈σ1, ...〉(e f ;1, ...; ex;1, ...) : C〈σ1, ...〉

H | Θ | Γ ` s 7→ e
H | Θ | Γ ` new λs 7→ e : dyn

H | Θ | Γ ` e1 ◃ dyn ... for all n, n′ if fn = fn′ then n = n′

f1 /∈ {m1, ...} ... for all n, n′ if |mnsn| = |mn′sn′ | then n = n′

H | Θ | Γ, x : dyn ` s1 7→ e1 ...
H | Θ | Γ ` new (f1 := e1; ...)x{m1s1 7→ e′1; ...} : dyn

H | Θ | Γ ` e : C〈τ1, ...〉
class x : C〈α1, ...〉(..., f : τ, ...; ...) implements ... {...} ∈ H

H | Θ | Γ ` e. f : τ[α1 7→ τ1, ...]

H | Θ | Γ ` e : dyn
H | Θ | Γ ` e. f : dyn

H | Θ | Γ ` e : C〈τ1, ...〉
class x : C〈α1, ...〉(..., f : τ, ...; ...) implements ... {...} ∈ H

H | Θ | Γ ` e f ◃ τ1[α1 7→ σ1, ...]

H | Θ | Γ ` e. f := e f : C〈τ1, ...〉

H | Θ | Γ ` e : dyn H | Θ | Γ ` e f ◃ dyn

H | Θ | Γ ` e. f := e f : dyn

H | Θ | Γ ` e : M〈τ1, ...〉 H ` M〈τ1, ...〉. f 〈α1, ...〉(x1 : τ1, ...) : τ
H | Θ ` σ1 ... H | Θ | Γ ` e1 ◃ τ1[α1 7→ σ1, ...] ...

H | Θ | Γ ` e. f 〈σ1, ...〉(e1, ...)M : τ[α1 7→ σ1, ...]

H | Θ | Γ ` e : M〈τ1, ...〉 H ` M〈τ1, ...〉.λ〈α1, ...〉(x1 : τ1, ...) : τ
H | Θ ` σ1 ... H | Θ | Γ ` e1 ◃ τ1[α1 7→ σ1, ...] ...

H | Θ | Γ ` e〈σ1, ...〉(e1, ...)M : τ[α1 7→ σ1, ...]

H | Θ | Γ ` e : dyn H | Θ ` σ1 ... H | Θ | Γ ` e1 ◃ dyn ...

H | Θ | Γ ` e〈σ1, ...〉(e1, ...)dyn : dyn

Figure 6.4 (contd.): Expression Typing (MonNom)

6.4 the type system 213

read as “e precisely has type τ”. This judgement is primarily used as a

convenience for optimistic type checking except that it is used to determine

the appropriate dispatch mode for a particular invocation for the reasons

discussed in Section 6.3.4.3.

Most rules are straightforward, so we just discuss the most interest-

ing ones. Class-instance allocations have the obvious type, and record

allocations are entirely dynamic, but notice that lambda expressions also

have the dyn type. That is, lambda expressions do not have any sort of

function type, nor are they inferred to have some functional-interface type.

These rules emphasize our approach of completely bundling types and

nominality—any structural values simply have type dyn. Thus, unlike

Thorn, we completely rely upon gradual typing for integrating nominal

and structure code.

The remaining interesting rules for expression typing are the rules for

invocations. Notice that all of these rules use e : τ rather than e ◃ τ

to check the type of the receiver. This is so that the dispatch mode is

guaranteed to be determined by the receiver’s most precise type. It also

ensures that the only dynamism in the return type of the expression

comes from the dynamism in the reciever’s type and the dynamism in

the method’s signature. That is, if the receiver’s type and the method’s

signature are completely concrete, then this guarantees that the return

type is completely concrete as well.

The first two rules for invocation handle the case where the receiver has a

nominal static type. The first rule handles specifically method invocation—

the case where f is actually a field with some functional-interface type is

handled by the combination of the field-access rule (not shown) and the

second invocation rule. Besides the obvious syntactic difference between

214 transitioning from structural to nominal code

the two rules, the premises only differ in that the first looks up the

signature of method f whereas the second looks up the signature of

method λ.

The third rule for invocation handles the case where the invokee has a

dynamic type. There is no rule for specifically method invocation, since it

is covered by the combination of the (dynamic) field-access rule and the

third invocation rule.

6.4.3 Classes and Interfaces

Lastly, we present the typing rules for classes, interfaces, and the nominal

hierarchy in Figure 6.5. The first rules type the hierarchy itself and are

designed to address the fact that, while inheritance needs to be non-circular,

the signatures of many classes and interfaces are mutually recursive.

Thus, the judgement H | H′ ` M indicates that the class or interface

definition M is valid in the entire nominal hierarchy H provided that

H′ is the restriction of that hierarchy to classes and interfaces defined

“before”M.

The rules for classes and interfaces check a long list of factors: 1) There is

no “earlier” class or interface with the same name. 2) In the case of classes,

the types of all fields are valid, there are no duplicate fields, and there is

no overlap between between field and method names. 3) No two method

signatures have the same method name, accept the same number of type

arguments, and accept the same number of program arguments. 4) All

method signatures are valid and, in the case of classes, their corresponding

implementations have the appropriate types. 5) All inherited interfaces are

6.4 the type system 215

defined “earlier” and have valid corresponding type arguments. 6) The

class or interface does not inherit, directly or indirectly, two distinct in-

stantiations of any interface. 7) All method signatures in the inherited

interface are, in the case of interfaces, extended by or, in the case of classes,

implemented by some method signature of the class or interface.

This final item of checking extension or implementation of method

signatures warrants extra attention. Without gradual typing, its well known

that the subclass or subinterface can soundly broaden the input types and

narrow the return type. That is, signature overriding is contravariant

on inputs and covariant on the output with respect to subtyping. But

with gradual typing there are multiple notions of subtyping, and it is

not necessarily obvious which subtyping should be used. In developing

our proofs, we in fact determined that different notions of subtyping are

appropriate for different situations.

Consider first the return type. Suppose interface Super’s method re-

turns dyn and subinterface Sub overrides that method to return I〈〉. Those

familiar with gradual typing might at first think this is acceptable, since

the type I〈〉 is more precise, in the sense of gradual typing, than dyn. Thus

Sub is just making the intent of the method more precise. But now suppose

one invokes the method on a variable of type Sub and one knows that the

dynamics of this particular instance of Sub guarantees the returned value

will be an instance of class C〈〉 which implements I〈〉. Had the variable

had the less informative type Super, then the return type would be dyn

and the programmer would be able to directly exploit their understanding

of the dynamics. But with the more informative type Sub, the programmer

must explicitly cast the return type to dyn to do so. The issue is fundamen-

tally that Sub’s return type can be used in settings where Super’s cannot.

216 transitioning from structural to nominal code

Hierarchy Typing ` H H ` H

H ` H
` H H ` ∅

H ` H′ H | H′ ` M
H ` H′;M

Material Typing H | H ` M

I /∈ H′
for all n, n′ if |mnsn| = |mn′sn′ | then n = n′ H | Θ ` s1 ...
interface I1〈α1

1, ...〉 {m1
1s1

1; ...} ∈ H′ ... H | Θ ` σ1
1 ...

∀I′, σ′1, σ′′1 . H ` I〈Θ〉 ≤ I′〈σ′1〉 ∧ H ` I〈Θ〉 ≤ I′〈σ′′1 〉 =⇒ σ′1 = σ′′1
∀m′s′ ∈ {m1

1s1
1[α

1
1 7→ σ1

1 , ...], ...}. ∃ms ∈ {m1s1, ...}. H ` ms extends m′s′

H | H′ ` interface I〈Θ〉 extends I1〈σ1
1 , ...〉, ... {m1s1; ...}

C /∈ H′
H | Θ ` Γ H | Θ ` τ1 ... for all n, n′ if fn = fn′ then n = n′

f1 /∈ {m1, ...} ... for all n, n′ if |mnsn| = |mn′sn′ | then n = n′

H | Θ | x : C〈Θ〉, Γ ` s1 7→ e1 ...
interface I1〈α1

1, ...〉 {m1
1s1

1; ...} ∈ H′ ... H | Θ ` σ1
1 ...

∀I′, σ′1, σ′′1 . H ` C〈Θ〉 ≤ I′〈σ′1〉 ∧ H ` C〈Θ〉 ≤ I′〈σ′′1 〉 =⇒ σ′1 = σ′′1

∀mIsI ∈ {m1
1s1

1[α
1
1 7→ σ1

1]}. ∃mCsC ∈ {m1s1}. H ` mCsC implements mIsI

H | H′ ` class x : C〈Θ〉(f1 : τ1; Γ) implements I1〈σ1
1 〉 {m1s1 7→ e1}

Method overriding H ` ms extends ms H ` ms implements ms

H ` τ′1 ≤ τ1 ... H ` τ ≤ τ′

H ` m〈Θ〉(x1 : τ1, ...) : τ extends m〈Θ〉(x1 : τ′1, ...) : τ′

H ` τ′1 ◂ τ1 ... H ` τ ≤ τ′

H ` m〈Θ〉(x1 : τ1, ...) : τ implements m〈Θ〉(x1 : τ′1, ...) : τ′

Figure 6.5: Hierarchy Typing, where x is a shorthand for x, ... or x; ...

6.4 the type system 217

To prevent this mismatch between notions of precision, Sub’s return type

should at least be a substitutive subtype (<:) of Super’s return type.

However, substitutive subtyping is also too lax for return types. While

it address issues with typeability, it does not address issues with casts.

Suppose that class C〈〉 implements a method with return type dyn. Now

suppose that the, as the code executes, an error is reported blaming the

method implementation for failing to return a Z. This would be perplexing

but necessary if the class indicates that it inherits an interface with the

same method but with the return type Z. The same confusion would

happen if a lambda closure were cast to an interface returning dyn but

whose superinterface returns Z. Inheritance provides a syntactic form

of indirection, and to prevent such confusion it is important that return

types in classes and interfaces always guarantee the contracts of return

types in inherited interfaces are also satisfied. That is, return types must

be covariant with respect to pessimistic subtyping (◂) as well.

These two conditions are in fact necessary and sufficient for ensuring re-

turn types are well behaved both statically and dynamically. The notion of

subtyping that not only implies but is even equivalent to the conjunction of

substitutive and pessimistic is precisely inheritance (≤), which we require

of return types in our rules for method extension and implementation.

Consider next the input types. When the class or interface type of

the receiver is known statically, the arguments are cast according to the

input types of that static type’s method. It should be the case that the

more informative this type is, the more relaxed the casts can be. That is,

the contracts of a static signature’s input types should be guaranteed to

be satisfied by the contracts of any inherited signature’s input types. In

218 transitioning from structural to nominal code

other words, input types must be contravariant with respect to pessimistic

subtyping.

This condition is in fact sufficient for classes implementing interfaces,

but not for interfaces extending interfaces. Suppose functional interface

Super’s method accepts Z and subinterface Sub overrides that method

to accept dyn. This more than broadens Super’s signature to accept more

inputs, it also makes the signature more optimistic. When a lambda clo-

sure is cast to a functional interface, the signature of its implementation is

optimistically compared to the interface’s signature. So if a lambda closure’s

implementation were to accept an I〈〉, this would be optimistically compat-

ible with Sub’s signature. Since the cast to Sub succeeds, one would then

expect a cast to Super to succeed. That is, one would expect weakening the

type of a variable to not change the semantics of the program (provided it

still type checks with the weaker type). But in this case the cast to Super

would fail because the lambda closure’s input type I〈〉 is incompatible

with Super’s input type Z. In order to prevent this, it must be the case

that every optimistic supertype of a subinterface’s input type must also be

an optimistic supertype of a superinterface’s input type. Requiring input

types of interfaces to be contravariant with respect to inheritance (≤) en-

sures this behavior and implies contravariance with respect to pessimistic

subtyping.

These restrictions might seem excessive. However, realize that the notion

of subtyping in statically typed programming languages is precisely inher-

itance (restricted to concrete type). Thus our calculus is no more restrictive

than statically typed languages. The restriction only limits how dynamism

can vary across signatures. Interestingly, when we discuss our precision

relation in the next section, we will see a similar need to restrict but in the

6.5 the transition 219

opposite direction: variations with respect to inheritance will be restricted

rather than dynamism.

6.5 the transition

Now that we understand the syntax and type system the programmer

would be working within, we can finally discuss the primary goal of the

chapter: guaranteeing a transition path from untyped structural code to

typed nominal code. Our calculus and language are designed to enable

programmers to replace a record (or lambda) with a (new) class and be

guaranteed that this change will preserve the behavior of the program

provided the class has sufficient structure to accommodate the various

ways the record was being used. Similarly, programmers should be able to

define interfaces describing how values are used and transparently replace

dynamic types with those new interfaces provided those interfaces indeed

sufficiently describe the ways the values were being used.

The gradual guarantee [Siek, Vitousek, Cimini, and Boyland, 2015]

provides assurances on how a “correct” program types can be changed

without changing the program’s extensional compile-time and run-time

behavior (i.e. the only changes have to do with type errors). This guarantee

is defined in terms of a “precision” relation (v) that extends the precision

relation on types (4) to the entire program so that type annotations can be

changed. The guarantee ensures that replacing types with dyn preserves

the typeability of the program and the semantics of the program except

for possibly reducing occurrences of failed type casts. In other words, the

220 transitioning from structural to nominal code

guarantee ensures that replacing dyns with types preserves the typeability

and semantics of the program except where the new types are incorrect.

Notice that the precision relation serves two roles: typing and semantics.

In our setting, we need to separate these two roles. We want to provide

semantic guarantees about changes to the program that do not necessarily

preserve typeability and that are not necessarily restricted to just type

annotations. In particular, we want to reason about programs with different

nominal hierarchies, and consequently different grammars of valid types,

so that we can provide guarantees about replacing records and lambdas

with class instances and about inserting interfaces describing preexisting

interactions.

For precision with respect to typing, we use the symbol v4. For pre-

cision with respect to semantics, we use the symbol vJ. As the notation

suggests, the definitions of these relations are fairly similar. For many rules

the only difference is that the former uses 4 whereas the latter uses J.

As such, most rules are presented using a metavariable≪ representing

either 4 or J.

6.5.1 Changing the Nominal Hierarchy

Figure 6.6 provides the precision rules for the nominal hierarchy. Notice

that the first rule indicates that we are only interested in well-formed

hierarchies. In particular, the judgement ` H v4 H′ is not intended to

guarantee that if H is well-formed then so is H′. As we have already

discussed, it is important for subinterfaces and superinterfaces to be con-

sistent with the dynamism in their signatures, so the standard expectation

6.5 the transition 221

Hierarchy Precision ` H v≪ H H v H ` H v≪ H

` H ` H′ H v H′ ` H v≪ H′

` H v≪ H′

H v H′ ` H0 v≪ H′0
H v H′ ` M v≪M′

H v H′ ` H0;Mv≪ H′0;M′
H v H′ ` H0 v H′0

H v H′ ` H0;Mv≪ H′0

Material Precision H v H ` M v≪M

I = interface I〈Θ〉 extends I1〈σ1
1 , ...〉, ..., I′′1 〈...〉, ... {m1s1; ...}

I ′ = interface I〈Θ〉 extends I1〈σ1
1 , ...〉, ... {m1s′1; ...}

I′′1 /∈ H′ ... H v H′ ` s1 v4≪ s′1 ...
H v H′ ` I v≪ I ′

C = class x : C〈Θ〉(f1 : τf ;1; Γ) implements I1〈σ1
1 〉, I′′1 〈...〉 {m1s1 7→ e1}

C ′ = class x : C〈Θ〉(f1 : τ′f ;1; Γ′) implements I1〈σ1
1 〉 {m1s′1 7→ e′1}

H v H′ ` Γ≪ Γ′ H v H′ ` τ1 ≪ τ′1 ...
I′′1 /∈ H′ ... H v H′ ` s1 7→ e1 v≪≪ s′1 7→ e′1 ...

H v H′ ` C v≪ C ′

Type Precision H v H ` τ≪ τ

H | Θ ` τ
H′ | Θ ` τ′ H ` τ ◂ τ′

H v H′ ` τ ◂ τ′

H | Θ ` τ
H′ | Θ ` τ′ τ 4 τ′

H v H′ ` τ 4 τ′

Signature Precision H v H ` s v≪≪ s

H v H′ ` τ1 ≪i τ′1 ... H v H′ ` τ≪o τ′

H v H′ ` 〈Θ〉(x1 : τ1, ...) : τ v≪i
≪o
〈Θ〉(x1 : τ′1, ...) : τ′

Implementation Precision H v H ` s 7→ e v≪≪ s 7→ e

H v H′ ` s v≪≪o
s′ H v H′ ` e v≪ e′

H v H′ ` s 7→ e v≪≪o
s′ 7→ e′

Figure 6.6: Hierarchy Precision, where≪ ranges over {4, ◂}, and x is a short-
hand for x, ... or x; ...

222 transitioning from structural to nominal code

of being able to replace arbitrary types in a signature with dyn will not

result in a valid hierarchy. Instead, this judgement is intended to indicate

that expressions typeable using H will also be typeable using H′ but with

one significant caveat.

Focus on the second rule for the judgement H v H ` H v≪ H. This

rule allows the more precise program to have classes and interfaces that

are entirely missing from the less precise program (note that the notation

is known to be confusing: the left-hand side is more precise and the

right-hand side is less precise). Clearly removing classes and interfaces

makes a program less typeable because it means even the types in the

original program are no longer valid. Thus the caveat is that all types

that become invalid by removing these classes and interfaces are also

somehow removed from the program. For typing precision, this is done by

replacing relevant types with dyn. For semantic precision, this can be done

by replacing relevant typed with either dyn or some pessimistic supertype

(since a removed class or interface might have implemented or extended

an interface that was not removed).

To formalize this caveat, we use the judgement H v H′ ` τ≪ τ′. This

judgement first checks that each type is valid according to its respective

hierarchy (using an arbitrary kind context Θ in order to effectively ignore

type variables). It then checks that the two types are related according

to≪ (the specific choice of hierarchy does not matter). Thus if τ is some

M〈...〉 where M is not in H′, then τ′ must be dyn if ≪ is 4 or possibly

some superinterface still in H′ if≪ is ◂.

Looking at the precision rule for classes, we can see that this judge-

ment is used to check the precision of fields in the two class declarations.

For precision typing, the use of 4 ensures both that any assignments

6.5 the transition 223

to fields in the former hierarchy will still type-check in the latter hier-

archy and that any fetches of fields in the latter will still type-check in

all contexts where fetches of fields in the former did (though possibly

requiring dispatch modes to be recomputed). The former property holds

because τe ◃ τ 4 τ′ implies τo ◃ τ′, and the latter property holds because

4 implies <: (subsumptive subtyping).

6.5.2 Changing Method Signatures

Beyond changes in the existence of interfaces and classes and in field types,

the methods of the nominal hierarchy can be changed as well. As with

inheritance of methods, precision of methods needs to be done with care

because of their dual role in typing and casts. For this reason, the precision

judgements for signatures and signature implementations are parameter-

ized by an (upper) relation to use for inputs (and implementations) and

a (lower) relation to use for outputs. Notice that, unlike with inheritance,

inputs are covariant with respect to this relation. This is because precision

is not the same thing as overriding; it is changing the signature in the class

or interface itself, not broadening it in some subclass or subinterface.

For class methods, the relation for input and output types is simply

the relation for the notion of precision at hand, as one would expect. For

interface methods, though, this relation is only used for output types,

whereas the relation for input types is always 4 (which is the more re-

strictive of the two relations). This is because, for semantic precision, we

have to ensure that any cast to this interface that would succeed in the

more precise program would also succeed in the less precise program. In

224 transitioning from structural to nominal code

particular, if we were to cast a lambda closure to this interface, we would

check that the closure’s signature is (optimistically) compatible with the

interface’s signature. This means we would check that the interface’s input

types are (optimistic) subtypes of the closure’s input types. If the input

type for the more precise interface were Sub and the closure’s input type

were also Sub, then this check would succeed. However, if the less precise

interface’s input type were Super, then this check would fail, thereby vio-

lating our desired gradual guarantee. As such, even for semantic precision

we must use just 4 on input types of interface methods rather than the

more permissive ◂. Note that this concern does not apply to classes since

structural values cannot be cast to classes, and as such we can use ◂ for

semantic precision of class-method input types.

6.5.3 Changing Expressions

Supposing we have a change in nominal hierarchies satisfying ` H v≪ H′,

we now consider which corresponding changes to expressions we will

provide guarantees for. Figure 6.7 provides a selection of the key precision

rules for expressions.

6.5.3.1 Changing Allocations

The first two rules formally capture the main theoretical contribution

of this chapter. One interpretation of them is that, once the appropriate

structure of various values has been finalized, the programmer can write a

class describing that structure and be guaranteed that allocations of those

structures can be replaced with allocations of this class without changing

6.5 the transition 225

Near-Value ν ::= x | v

Expression Precision H v H ` e v≪ e

class x : C〈α1〉(f1 : τf ;1; x1 : τx;1) {m1s1 7→ em;1} ∈ H
≪ = ◂ =⇒ C /∈ H′ H v H′ ` e f ;1 v≪ e′f ;1 ...

H v H′ ` s1[α1 7→ σ1] 7→ em;1[α1 7→ σ1, x1 7→ ν1] v≪◂ s′1 7→ e′m;1 ...

H v H′ ` new C〈σ1〉(e f ;1; ν1) v≪ new (f1 := e′f ;1)x{m1s′1 7→ e′m;1}

class x : C〈α1〉(∅; x1 : τ1) {λs 7→ e} ∈ H ≪ = ◂ =⇒ C /∈ H′
H v H′ ` s[α1 7→ σ1] 7→ e[α1 7→ σ1, x1 7→ ν1] v≪◂ s′ 7→ e′

H v H′ ` new C〈σ1〉(∅; ν1) v≪ new λs′ 7→ e′

H v H′ ` s 7→ e v≪4 s′ 7→ e′

H v H′ ` new λs 7→ e v≪ new λs′ 7→ e′

H v H′ ` e v≪ e′

H v H′ ` e1 v≪ e′1 ... H v H′ ` δ〈nα〉(nx) v≪ δ′〈nα〉(nx)

H v H′ ` e〈σ1, ..., σnα〉(e1, ..., enx)
δ v≪ e′〈σ1, ..., σnα〉(e′1, ..., e′nx

)δ′

Dispatch Mode Precision H v H ` δ〈n〉(n) v≪ δ〈n〉(n)

H v H′ ` δ.m〈nα〉(nx) v≪ dyn〈nα〉(nx)

H v H′ ` M〈Θ〉 ◂ M′〈σ′1, ...〉 H ` M〈Θ〉.ms
H′ ` M′〈σ′1, ...〉.ms′ |ms| = 〈m, nα, nx〉 = |ms′| H v H′ ` s v◂

◂
s′

H v H′ ` M.m〈nα〉(nx) v◂ M′.m〈nα〉(nx)

M ∈ H M ∈ H′

H v H′ ` M.m〈nα〉(nx) v4 M.m〈nα〉(nx)

Figure 6.7: Expression Precision (selected rules), where ≪ ranges over {4, ◂},
and x is a shorthand for x, ... or x; ...

226 transitioning from structural to nominal code

the semantics of the program (assuming the class was designed correction).

Another interpretation is that removing a class from the hierarchy and

replacing all of its corresponding instance allocations with an appropriate

structural counterpart is guaranteed to preserve both the typeability and

semantics of the program. Note that this guarantee applies even if the class

implements some interfaces that are still be present in the program even

though the structural counterpart does nothing to declare its intent to im-

plement of those interfaces. Thus this mandates being able to dynamically

impose (multiple) interfaces upon any structure that could possibly be

converted into a class that could implement those interfaces. Given the

importance of these rules, let us examine them in detail.

In the case of semantic precision, both rules explicitly require the class C

to no longer be in the hierarchy H′. This is necessary because structural

values cannot be cast to class types. By requiring the class type to not

in the less precise hierarchy, we ensure that this particular difference in

casting behavior cannot be observed. This is the main reason why it is

important to consider precision of expressions with respect to a change in

hierarchies.

Both rules use “near-values” ν. The method implementations in records

and lambdas can reference local variables in the context. As execution

proceeds, these local variables will eventually be substituted with values.

A near-value essentially represents a local variable that may have or

may have not yet been substituted for a value. What is important is

that a near-value is either irreducible or will only ever be substituted

with irreducible expressions. Thus it is fine for the class allocation to

reference the near-value even if it never gets evaluated in the corresponding

structural implementation. Note that it is also important that these near-

6.5 the transition 227

values are not assigned to fields; if they were then structural code would

be able to access those fields in the class instance but the corresponding

field accesses would fail on the structural value since the fields do not

exist as they were not necessary to capture the local variables. (After all,

lambda closures cannot even have fields.)

When comparing method signatures between class allocations and struc-

tural allocations, we can always use ◂ (the more permissive of the two

relations) to compare return types. This is because the signatures of the

structural values are not externally visible, so we only need to ensure

that the class’s implementation would still type-check with the structural

value’s signature. Pessimistic subtyping ensures this because τe ◃ τ ◂ τ′ im-

plies τe ◂ τ′, and in general our optimistic typing rules admit subsumption

with respect to pessimistic subtyping.

6.5.3.2 Changing Structural Methods

The third rule for expression precision is shown to illustrate the precision

requirements between method signatures of structures. Here we shown

the rule for lambda expressions; the rule for records is similar, just more

complex because records are syntactically more complex. The detail to

note is that precision between return types is always restricted to 4, even

in the case of semantic precision. The reason is that we need to ensure that

any casts that could be successfully applied to the more precise lambda

can also be applied to the less precise lambda. In particular, any optimistic

supertype of the more precise lambda’s return type must also be an

optimistic supertype of the less precise return lambda’s type. Precision (4)

ensures this property, whereas pessimistic subtyping (◂) does not.

228 transitioning from structural to nominal code

6.5.3.3 Changing Dispatch Modes

The final rule for expression precision is for invocation. This is mostly

straightforward, but there are two details to note. One is that the type

arguments must be exactly the same in both cases; they are concrete types

after all, so there is no dynamism that can be changed anyways. The other

is that the dispatch mode must be related.

When the less precise program uses dynamic dispatch, or when we

are considering typing precision, this comparison of dispatch modes is

uninteresting. However, there is an important subtlety to be aware of

when considering semantic precision of statically resolved dispatch modes.

Suppose the programmer determines that a variable of some interface

type I〈〉 only ever dynamically references instances of some class C〈〉

implementing I〈〉. They would like to know that refining the type of the

variable to reflect this information (and get better performance) in fact

preserves the semantics of the program. As such, we define semantic

precision to permit more precise variables to be declared with pessimistic

subtypes of their less precise counterparts.

This definition also captures the expectation that changing the type of a

variable from some subinterface Sub to some superinterface Super would

not change the (dynamic) semantics of the program (except for possibly

permitting more successful executions). However, that expectation does not

quite match reality. Recall that methods of subinterfaces and classes can

have broader input types than methods of their superinterfaces. And recall

that this means the types that (untyped) arguments are cast to depend on

the (most precise) type of the receiver. As such, changing the program so

that the receiver type changes from Sub to Super can in fact cause more

6.5 the transition 229

cast errors due to Super imposing more restrictive casts. So, rather than

switch semantic precision entirely over to the more restrictive 4 relation

to prevent this uncommon possibility, we instead check that the input

types of the signature for the more precise dispatch mode are pessimistic

subtypes than the input types of the less precise dispatch mode, thus

ensuring that any casts imposed by the more precise dispatch mode are

more restrictive than the casts for the less precise dispatch mode.

6.5.4 The Static Gradual Guarantee

At last we can formally state our first guarantee about transitioning be-

tween structural and nominal code with a property known as the static

gradual guarantee.

Theorem 6.1. For all nominal hierarchies H and H′, expressions e and e′, and

types τ and τ′,

` H v4 H′ ∧ H v H′ ` e v4 e′ ∧ τ 4 τ′ ∧ H | ∅ | ∅ ` e ◃ τ

⇓

∃e′′. e′ ≡ e′′ (mod δ) ∧ H′ | ∅ | ∅ ` e′′ ◃ τ′

This theorem ensure that if a program is well-typed then any program

that is less precise with respect to typing is necessarily also well-typed

(modulo a possible need to recompute dispatch-mode annotations). In

particular, according to our definition of typing precision, this implies

that a program is well-typed if it is possible to add classes and interfaces,

replace all records and lambdas with allocations of classes, and replace all

occurrences of dyn with concrete types such that the resulting program is

230 transitioning from structural to nominal code

well-typed. In other words, any program with a viable path towards being

statically well-typed is guaranteed to be gradually well-typed, even if that

path requires changing structural code to nominal code.

Of course, being well-typed in a gradually typed language guarantees

very little about actual execution behavior. Thus we need to provide

another guarantee that the existence of this path towards a fully statically

typed program that necessarily never gets stuck also ensures the current

program never gets stuck. That is, we need a corresponding guarantee

about the semantics of the calculus.

6.6 semantics

The semantics of our calculus was carefully designed to simultaneously

facilitate the proof of our transition guarantee and to enable an efficient

implementation of our language. Figure 6.8 provides rules specifically

selected to illustrate key properties of our semantics.

6.6.1 Semantic Expressions, Values, and Heaps

Now we discuss aspects of the calculus that are specific to the semantics

and not visible at the surface level. Expressions include locations, i.e. refer-

ences into a mutable heap, and explicit casts, which are only used to cast

values to be returned by methods (more on this later). Values are either

booleans, integers, reals, or references into the heap. Evaluation contexts

are as one would expect except that dispatch modes of the form M. f

prevent the corresponding e. f from being evaluated as a field access.

6.6 semantics 231

Value v ::= b | i | r | `
Evaluation E ::= � | let x : τ := E in e | if E then e else e
Context | E + e | v + e | new C〈σ, ...〉(e, ...; v, ..., E, e, ...)

| new C〈σ, ...〉(v, ..., E, e, ...; v, ...)
| new (f := v; ...; f := E; f := e; ...)x{ms 7→ e; ...}
| E. f | E. f := e | v. f := E | E ≈ e | v ≈ E
| E. f 〈σ, ...〉(e, ...)M. f | v. f 〈σ, ...〉(v, ..., E, e, ...)M. f

| E〈σ, ...〉(e, ...)M.λ | v〈σ, ...〉(v, ..., E, e, ...)M.λ

| E〈σ, ...〉(e, ...)dyn | v〈σ, ...〉(v, ..., E, e, ...)dyn

| cast E to τ | cast E to τ for `.m〈σ, ...〉(ν, ...)

Location `

Mutability µ ::= ro | rw
Imposition ι ::= I〈τ, ...〉
Heap Value h ::= C〈σ, ...〉(v, ...; v, ...) | (f 7→µ v; ...)x{ms 7→ e; ...}ι,...

| λι,...s 7→ e
Heap H ::= ` 7→ h; ...

Transition Relation H ` H | e→` H | e

H | H → H′ ` v : τ

H ` H | E[let x : τ := v in e]→` H′ | E[e[x 7→ v]]

` /∈ H
H ` H | E[new λs 7→ e]→` H; ` 7→ λs 7→ e | E[`]

M | H → H′ ` `′.λ〈σ1, ...〉(v1, ...)δ → e

H ` H | E[`′〈σ1, ...〉(v1, ...)δ]→` H′ | E[e]

M | H → H′ ` `′. f 〈σ1, ...〉(v1, ...)δ → e

H ` H | E[`′. f 〈σ1, ...〉(v1, ...)δ]→` H′ | E[e]

H | H → H′ ` v : τ

H ` H | E[cast v to τ]→` H′ | E[v]

H | H → H0 ` v : τ
H0 ` `′ 7→ ι1, ... H | H0 → H1 ` v : ι1.m〈σ1, ...〉(v1, ...) ...

H | Hn−1 → Hn ` v : ιn.m〈σ1, ...〉(v1, ...)
H ` H | E[cast v to τ for `′.m〈σ1, ...〉(v1, ...)]→` Hn | E[v]

Figure 6.8: Semantics (selected rules)

232 transitioning from structural to nominal code

The heap is a (partial) mapping of locations to heap values, which

are class instances, records, or lambda closures. Importantly, records and

lambda closures have a list of interfaces that are imposed upon them.

These lists are updated via monotonic casts, which are discussed in more

detail next.

6.6.2 Implicit Casts

The semantics for a gradually typed language are usually given by a type-

directed translation to a cast language, a process known as cast insertion.

This is useful for showing that the cast-insertion implementation of the

language is type-safe, i.e. programs only get stuck due to casts. Unfortu-

nately our language is not implemented through cast insertion; although

cast insertion is a part of the implementation, it is only a small part. In

particular, invocation is implemented instead through v-tables, interface

tables, and dictionary lookups. This implementation does rely on low-level

invariants that casts help maintain, say by dynamically generating inter-

face tables for structural values, but the calculus that properly formalizes

our implementation so that we could formally prove soundness would

unfortunately distract from the more important contributions of this work.

As such, our semantics instead asserts that casts are implicitly every-

where. This then guarantees that variables are only ever substituted with

appropriate values, fields only ever contain appropriate values, and meth-

ods only ever return appropriate values. As such, many implicit casts can

be proven to be unnecessary, and so our implementation instead works by

removing unnecessary casts.

6.6 semantics 233

This notion of implicit casts can be seen in the rule for let expressions.

This rule first checks that the value has the necessary type, possibly

updating the heap to monotonically cast the value to make it so, and

only if that is successful does it substitute the value into the body of the

let expression. Thus, this substitution is only ever done if the variable

was assigned an appropriate value.

The semantics of our monotonic casts [Siek, Vitousek, Cimini, Tobin-

Hochstadt, et al., 2015; Vitousek, Kent, et al., 2014; Vitousek, Swords, and

Siek, 2017] are shown in Figure 6.9. No check is done if the target type

is dyn. Otherwise, primitive values trivially have the appropriate target

type. References to class instances can be cast (without change) to any pes-

simistic supertype of the instantiated class. References to heap values with

impositions (given by the judgement H ` ` 7→ ι, ...) can be cast (without

change) to any pessimistic subtype of any of the impositions. Alternatively,

references to records can be cast to any interface type that is compatible

with its existing impositions. (The judgement H ` ι1, ... : I〈τ, ...〉 indicates

that I〈τ, ...〉 is the most precise instantiation of I that every imposition

in ι1, ... is a pessimistic subtype of if it inherits I at all.) Notice that with

records nothing is done to check that the record has the appropriate

method—this check is only done when the method is actually invoked,

permitting records to provide partial implementations and preventing cast

performance from being slowed down by many (potentially unnecessary)

checks. On the other hand, casts of lambda closures immediately check

that the target interface is a functional interface whose sole signature

is optimistically compatible with the closure’s. This enables us to build

an optimized interface table and furthermore, if the signature happen

234 transitioning from structural to nominal code

Let Context L ::= � | let x : τ := x in L

Run Time Value Casting H | H → H ` v : τ

H | H → H ` v : dyn H | H → H ` b : B

H | H → H ` i : Z H | H → H ` r : R

` 7→ C〈σ1, ...〉(...; ...) ∈ H
H ` C〈σ1, ...〉 ◂ τ

H | H → H ` ` : τ

H ` ` 7→ ..., ι, ... H ` ι ◂ τ

H | H → H ` ` : τ

` 7→ (f1 7→µ1 v1; ...)x{m1s1 7→ e1; ...}ι1,... ∈ H
∀I.∃τ1, H ` ι1, ..., ι : I〈τ1, ...〉

H | H → H[` 7→ (f1 7→µ1 v1; ...)x{m1s1 7→ e1; ...}ι1,...,ι] ` ` : ι

` 7→ λι1,...s 7→ e ∈ H ∀I′.∃τ′1, H ` ι1, ..., I〈τ1, ...〉 : I′〈τ′1, ...〉
interface I〈α1, ...〉 {λs′} ∈ H H ` s ◃ s′[α1 7→ τ1, ...]

H | H → H[` 7→ λι1,...,I〈τ1,...〉s 7→ e] ` ` : I〈τ1, ...〉

Invocation Semantics H | H → H ` `.m〈σ, ...〉(v, ...)δ → e

H ` M〈α1, ...〉.m〈α′1, ...〉(x1 : τ′1, ..., xn : τ′n) : τ H | H0 ` ` ≤ M〈τ1, ...〉
H | H0 → H1 ` v1 : τ′1[α1 7→ τ1, ..., α′1 7→ σ1, ...] ...
H | Hn−1 → Hn ` vn : τ′n[α1 7→ τ1, ..., α′1 7→ σ1, ...]
Hn → H′ ` `.m〈α′1, ...〉(x1 : τ′1, ..., xn : τ′n)

M.m 7→ e
e′ = e[α′1 7→ σ1, ..., x1 7→ v1, ..., xn 7→ vn]

H ` H0 → H′ ` `.m〈σ1, ...〉(v1, ..., vn)
M.m → e′

H → H′ ` `.m〈α′1, ...〉(x1 : τ′1, ..., xn : τ′n)
dyn 7→ e

e′ = e[α′1 7→ σ1, ..., x1 7→ v1, ..., xn 7→ vn]

H ` H → H′ ` `.m〈σ1, ...〉(v1, ..., vn)
dyn → e′

Figure 6.9: Cast and Invocation Semantics

6.6 semantics 235

Run Time Method Lookup H → H ` `.m〈Θ〉(Γ)δ 7→ e

` 7→ C〈σ1, ...〉(...; v1, ...) ∈ H
class x : C〈α1, ...〉(...; x1 : τ1, ...) {...; m〈Θ〉(Γ) : τ 7→ e; ...} ∈ H

e′ = cast e[α1 7→ σ1, ..., x 7→ `, x1 7→ v1, ...] to τ[α1 7→ σ1, ...]

H → H ` `.m〈Θ〉(Γ[α1 7→ σ1, ...])M.m 7→ e′

` 7→ C〈...〉(...; ...) ∈ H H | H ` `.m〈Θ〉(x1 : τ1, ...)C.m 7→ e
H → H ` `.m〈Θ〉(x1 : τ1, ...)dyn 7→ let x1 : τ1 := x1 in ... e

` 7→ (...)x{...; m〈Θ〉(x1 : τ1, ...) : τ 7→ e; ...}... ∈ H
e′ = let x1 : τ1 := x1 in ... cast e[x 7→ `] to τ

H → H ` `.m〈Θ〉(x1 : τ1, ...)dyn 7→ e′

` 7→ λ...〈Θ〉(x1 : τ1, ...) : τ 7→ e ∈ H
H → H ` `.λ〈Θ〉(x1 : τ1, ...)dyn : τ 7→ let x1 : τ1 := x1 in ... cast e to τ

H ` ` 7→ ι, ... H ` `.m〈Θ〉(x1 : τ1, ...)dyn 7→ L[cast e to τ]

H → H ` `.m〈Θ〉(x1 : τ1, ...)M.m 7→ L[cast e to τ for `.m〈Θ〉(x1, ...)]

` 7→ (..., f 7→µ `′, ...)x{m1s1 7→ e1; ...}ι1,...
H ` `′.λ〈Θ〉(x1 : τ1, ...)dyn 7→ L[cast e to τ]

H′ = H[` 7→ (..., f 7→ro `
′, ...)x{m1s1 7→ e1; ...}ι1,...]

H → H′ ` `. f 〈Θ〉(x1 : τ1, ...)M. f 7→ L[cast e to τ for `. f 〈Θ〉(x1, ...)]

Figure 6.9 (contd.): Cast and Invocation Semantics

to be pessimistically compatible, this table can point to a variant of the

implementation that skips the argument casts entirely.

6.6.3 Allocation

The expressions allocating values onto the heap proceed as one would

expect. We provide the rule for lambdas to illustrate one formal device we

use. Note that the reduction judgement is annotated with a location. This

236 transitioning from structural to nominal code

annotation is used by the allocation rules to indicate which location was

allocated. This is the only source of non-determinism in the calculus, so

by making it explicit we can compare reductions of programs that make

the same non-deterministic choices.

6.6.4 Invocation

The semantics of invocations use a judgement defined in Figure 6.9. If

the dispatch mode is some class or interface M.m, this judgement first

casts the arguments to the parameter types expected by M, using the

receiver’s run-time instantiation of M and the invocation’s type arguments

to determine the types of any type variables in the parameter types.

Note that these casts can normally be fully inserted at the call site at

compile time; the only exception is when dyn occurs in the type arguments

of the receiver’s static type, in which case the type arguments to use

need to be fetched from the receiver at run time. After these casts, the

judgement uses another judgement to determine the receiver’s run-time

implementation of a method according to its signature and its dispatch

mode. Note that the dispatch mode is only used here to distinguish static

dispatch from dynamic dispatch—all static dispatch modes have the same

implementation. This means our implementation can associate with each

heap value two implementations of a method: the one that is retrieved

through the v-table or interface table and is optimized for static dispatch,

and the one that is retrieved through a dictionary and is optimized for

dynamic dispatch.

6.6 semantics 237

If the receiver is a class and the dispatch mode is static, the implementa-

tion simply passes the (guaranteed to be valid) arguments straight through

to the method implementation, but it does at least make sure to cast its

own returned value to its own return type (in case the method implemen-

tation only optimistically type-checked). If the dispatch mode is instead

dynamic, then the implementation casts the arguments to the method

implementation’s input types and then defers to the static implementation.

If the receiver is a structural value and the dispatch mode is dynamic,

then the implementation first casts the arguments to the method imple-

mentation’s input types, then supplies these (now valid) arguments to the

method implementation, and finally casts its own returned value to its

own return type. If the dispatch mode is instead static, then the imple-

mentation defers to the dynamic implementation (if it exists) but refines

the cast of the returned value to also cast the return type to any return

types expected by any of the interfaces that have been imposed upon the

receiver. Lastly, as a special case to support more structural patterns, if the

receiver is a record and the dispatch mode is static but the implementation

is provided by a field of the receiver rather than the method, then the

appropriate implementation is looked up from the value of that field, its

return cast changed to check the impositions on the receiver, and the field

is made immutable so that this implementation can be stored directly into

the interface table for faster lookups in the future.

238 transitioning from structural to nominal code

6.6.5 The Dynamic Gradual Guarantee

At last we can formally state our second guarantee about transitioning

between structural and nominal code with a property known as the dy-

namic gradual guarantee, which is implied by the following two theorems

(which reference the straightforward extension of semantic precision to

heaps).

Theorem 6.2. For all nominal hierarchies H and H′, heaps H1, H′1, and H2,

expressions e1, e′1, and e2, and locations `,

` H v◂ H′ ∧ H v H′ ` H1 | e1 v◂ H′1 | e′1 ∧ H ` H1 | e1 →` H2 | e2

⇓

∃H′2, e′2. H ` H′1 | e′1 →` H′2 | e′2

Theorem 6.3. For all nominal hierarchies H and H′, heaps H1, H′1, H2, and H′2,

expressions e1, e′1, e2, and e′2, and locations `,

∧ ` H v◂ H′ ∧ H v H′ ` H1 | e1 v◂ H′1 | e′1

H ` H1 | e1 →` H2 | e2 ∧ H ` H′1 | e′1 →` H′2 | e′2

⇓

∃..., H′n, e′n. ... ∧ H ` H′n−1 | e′n−1 →` H′n | e′n ∧ H v H′ ` H2 | e2 v◂ H′n | e′n

These theorems ensure that reduction (eventually) preserves semantic

precision and that less precise programs always make progress when more

precise programs do. In particular, according to our definition of typing

precision, this implies that a program does not get stuck if it is possible to

add classes and interfaces, replace all records and lambdas with allocations

6.7 implementation 239

of classes, and replace all occurrences of dyn with concrete types such that

the resulting program does not get stuck. In other words, in combination

with the static gradual guarantee, any program with a viable path towards

being statically well-typed (and necessarily not getting stuck) is guaranteed

to be gradually well-typed and to not get stuck, even if that path requires

changing structural code to nominal code. Unlike Thorn [Wrigstad et al.,

2010], this even includes situations in which structural values need to

appear like nominal values implementing nominal interfaces.

Thus, our calculus and implementation provide a language in which

structural values are strictly more expressive than their nominal counter-

parts, including being castable to nominal interfaces, with the one excep-

tion that they cannot be cast to nominal classes. Furthermore, transitioning

structural components of the program to (correctly) use nominal patterns

is guaranteed to preserve the semantics of the program. Of course, this is

great in theory, but in practice gradual typing has a history of significant

issues with large overheads caused by the casts ensuring safety [Takikawa

et al., 2016]. Next we demonstrate that the design of our calculus en-

ables an implementation that exhibits little-to-no overhead relative to the

performance of fully untyped programs.

6.7 implementation

Our implementation, called MonNom, takes careful detail to make com-

mon cases fast and to ensure low-level efficiency techniques wherever

possible. However, because the language is new and still quite small and

therefore no realistic programs in it exist, we are restricted to evaluat-

240 transitioning from structural to nominal code

ing microbenchmarks. Therefore, we do not employ several optimization

techniques that are used in practice but may threaten the validity of our

results. These are techniques such as inference, caching, and speculation,

which are quite likely to be far more effective for small languages with

simplistic benchmarks than they will be for large languages and realistic

benchmarks. There is one exception to this, which we believe to be justified

as explained below in Section 6.7.5.

The MonNom runtime is implemented using LLVM’s [Lattner and

Adve, 2004; The LLVM Project, 2019] JIT libraries, although currently

all programs are fully compiled at the start of the runtime executable.

We again use the Boehm-Demers-Weiser conservative garbage collector

to manage our heap-allocated values [Demers et al., 1990]. The rest of

this section explains the major aspects of our particular implementation

techniques.

6.7.1 Primitives

We represent primitive values differently depending on whether they are

statically or dynamically typed, a technique we already employed in Nom,

albeit slightly improved here, as explained below. In particular, besides

reference values to heap-allocated objects, there are three kinds of primitive

values: Booleans, 64-bit Integers, and 64-bit IEEE double-precision floating

point numbers. All of these fit into 64 bits. In typed code, primitive types

are used in their raw representation, but in untyped code, they need to be

“packed” to also carry type information. Since pointers are 64-bit aligned,

the lower three bits can carry type information, of which we use two for

6.7 implementation 241

packing – this is a common technique in dynamically typed languages.

This would usually leave us with 62 bits to encode integers and floating Nom and Grift [Kuhlenschmidt,
Almahallawi, and Siek, 2019] use the
62-bit encoding; Grift allocates all
floating point numbers on the heap,
whereas Nom just accepts the loss of
precision, following Self [Chambers,
Ungar, and Lee, 1989].

point numbers; which makes integers less useful to express things that rely

on (multiples of) 64-bit integers, such as bitmaps, encryption algorithms,

IP addresses, and so on, and floating point numbers would lose a lot of

precision and potentially special values such as NaN and infinity.

Instead, Nom allocates certain packed values on the heap (those are

called “boxed”), and leaves others on the stack. Recall that we use the

lower two bits of a 64-bit value as a flag for which kind of value it is.

Reference values use “00” as their flag and are thus unchanged. Integers

use “11”, and floats use both “01” and “10”. Booleans that are being

packed are converted into a reference to one of two preallocated Boolean

object instances. When an integer is being packed, we first do a funnel

shift by three bits to the left; that is, all bits are moved three positions to

the left, and the formerly three most-significant bits are now the three

least-significant bits, but in the same order as before. That is, the sign bit

of the integer is now in the third-least-significant position. If the other

two least-significant bits are the same as the sign-bit, the number is closer

to zero than any other possible combination, hence it is a more common

integer value, and those are the values we leave on the stack. All other

integers are allocated as reference values on the heap. All in all, this means

that integers between −261 and 261 − 1 are always on the stack, either

packed or unpacked, and all other integers between −263 and 263 − 1 are

boxed into reference values when packed.

When a float is packed, we again do a funnel shift by three bits to the

left; again the sign bit is the third-least significant bit. If the two least-

significant bits are either “01” or “10”, the value can be left as-is, with one

242 transitioning from structural to nominal code

exception: the floating point value 0.0 is expressed as the 64-bit value 1;

conversely if every bit except the two least significant bits “01” (after the

funnel shift) is 0, that value has to be allocated on the heap, too, because

it collides with the encoding for 0.0. Many relatively short floating point

numbers are using the “10” flag, such as all the lower “round” numbers,

so a reasonable number of floats will not be allocated on the heap when

packed.

Unpacking/unboxing are the straightforward reversals of the above

operations.

6.7.2 Interlude: Monotonic Casting to Generic Interfaces

To support run-time type checks, gradual typing requires generics to be

reified, that is, instances of a generic type like List〈String〉 need to be

tagged such that it is clear that they are instances of class List with type

argument String. This is usually done per instance, but requires that

there is additional space in each instance per type argument instead of

just a fixed-size tag for a single nominal class. For class instances created

using their explicit constructors, that is easy, as the space can be allocated

along with the rest of the object. However, for records and lambdas, it is

unclear at the type of their allocation which type they will be cast to, and

hence how many slots for type arguments there need to be. Our solution

is to keep track of the maximum number of type arguments any type a

record or lambda has been cast to for each record/lambda allocation site.

New instances of that record/lambda are allocated with enough space to

accomodate that number of type arguments when they encounter such a

6.7 implementation 243

cast. Any record or lambda that does not have enough space for the type

arguments of the type it is cast to needs to create a special copy of that

type’s descriptor that includes the type arguments there – this is expensive,

usually only a few instances will need to do that, as newer instances will

already have enough space. There is yet another, even better optimization

that covers what we believe to be a common case, explained below in

Section 6.7.5.

6.7.3 Heap Values

Given a reference to a heap value, the reference points to a 64-bit block. If

the heap value is a record or a lambda closure that has not yet been cast to

any interface, then the lower two bits will indicate whether it is a record

or lambda closure and the upper 32 bits denote how many type-argument

slots have been preallocated elsewhere in the memory block, as discussed

in Section 6.7.2. If the heap value is a class instance or a record or lambda

closure that has been cast, then the lower two bits will be clear and the

64 bits will be a pointer to a virtual method table (v-table, see Section 6.7.4),

which has the necessary information to determine whether the heap value

is a class instance or a record or a lambda closure, but which only provides

a lower bound for the number of type arguments that were preallocated.

For a class instance, the referenced memory block extends below the

reference to include fields at statically determined offsets, and up to hold

any type argument references, if the class is generic.

For a record, the referenced memory block extends below the reference

to include a pointer to an immutable hidden-class dictionary (shared

244 transitioning from structural to nominal code

across all records allocated by the same code site), a pointer to a mutable

field dictionary (specific to the record), the values of the local variables in

the closure, and the variables used in the constructor. Dictionary entries

that are monotonically locked down (i.e. changed to read-only) at run-time

are marked with a bit set on third-least significant bit (we exploit the fact

that integers and floats are never locked in this fashion). Preallocated slots

for type arguments, if there are any for the record, are found above the

reference. The hidden-class dictionary is a hashmap from field/method

names to field offsets or method-overloading descriptors (tagged accord-

ingly). A method-overloading descriptor is an immutable association list of

arities associated with code pointers to that overloadings implementation.

For a lambda closure, the referenced memory block extends below the

reference to include a pointer to a lambda descriptor (shared across all

lambda closures allocated by the same code site), then the values of local

variables in the closure. Preallocated slots for type arguments, if there are

any for the record, are found above the reference. The lambda descriptor

provides the code pointer for the lambda implementation as well as a

description of the signature to be used in run-time casts.

6.7.4 V-Tables

The lowest bit of the v-table pointer indicates whether the remaining

bits point to a virtual-method table with an immutable association-list

interface table or to a linked-list interface table. The former is used for

interface tables whose layout could be generated at compile time, which is

all interface tables except for interface tables for record or lambda closures

6.7 implementation 245

that have been cast to multiple unrelated interfaces. The association list

specifies for each implemented interface the offset within the v-table at

which its method table can be found. The linked list specifies the type

arguments and method table for each interface. Initially the method table

indicates to use a standard dictionary-lookup process, but this linked list

is specific to the heap value and so the method tables are updated with

the result of the lookup in order to make subsequent dispatches quick.

For class instances, the virtual-method table is very similar to Nom’s

(Section 5.8.1), except that there is a precompiled function rather than

an association list for dynamic dispatcher lookup. That is, on a dynamic

method call on the class, the precompiled dispatcher lookup function is

accessed through the method table. It takes the “name” of the method (a

unique number for each possible method name string), the number of type

arguments, and the number of value arguments, and returns a dispatcher

function. This dispatcher function takes the right number of type and

value arguments and does the appropriate bounds and type checks, if

any. While not currently a feature of MonNom, the original use of the

dispatchers was also to support overloading, by using the type checks to

implement a decision tree of which method to dispatch to, if any.

To support monotonically casting records as described in Section 6.7.2,

there are up to two virtual-method-table layouts per interface declaration

in the program. Every generic interface declaration has a virtual-method-

table layout for records with an insufficient number of slots for preallocated

type arguments. This layout includes room in the table to store the type

arguments. As such, a new virtual-method table with this layout is allo-

cated each time such a record is cast. In order to reduce such dynamic

allocations, every generic interface declaration also has an immutable

246 transitioning from structural to nominal code

virtual-method table for records with sufficient room for type arguments.

In this case the type arguments are stored in the record and so the same

such virtual-method table can be used by all such records, avoiding the

need for dynamic allocation.

To support monotonically casting lambda closures as described in Sec-

tion 6.7.2, there are four virtual-method-table layouts per functional in-

terface declaration (i.e. interfaces that only declare a λ-method) in the

program due to two degrees of freedom. One degree of freedom is the

same as with records: whether type arguments are stored in the virtual-

method table or in the lambda closure. The other degree of freedom

is specific to lambda closures: whether the implementation’s signature

pessimistically or just optimistically satisfies the functional interface’s sig-

nature. This is determined immediately upon (eagerly) casting the lambda

closure. If the lambda closure’s signature pessimistically satisfies the func-

tional interface’s signature, then the virtual-method table is optimized

to bypass casts to the implementation’s parameter types and from the

implementation’s return type.

6.7.5 The Single-Target-Type Hypothesis

For our intended applications of gradual typing, we suspect that most

structural values allocated by a given code site will only ever be cast

to one instantiated interface type with no reference to type variables in

scope. Even better, the cast site will usually be the exact same for all those

values. For example, lambda expressions are very often written directly

as arguments to the typed method whose parameter they will be cast to.

6.8 evaluation 247

As such, we associate an initially null virtual-method-table pointer and an

initially null cast-site identifier with every structural allocation site.

When a not-yet-cast structural value is cast to an interface type with

no reference to type parameters in the context, the cast-site identifier

associated with the value’s allocation site is checked. If it matches the

current cast-site, then the associated virtual-method-table pointer is simply

copied into the structural value. If not but the associated virtual-method-

table pointer is not null, then it is checked whether it was generated for

the interface type at hand, in which case it is copied into the structural

value. If the virtual-method table is not a match for the interface type at

hand, then the pointer is replaced with null and the cast-site identifier is

replaced with a garbage identifier so that no such checks are done again.

That is, this is not a cache, just an optimization that saves significant time

when applicable and otherwise is nearly no overhead (just a dereference

and equality check).

6.8 evaluation

MonNom is even more unique in its approach to gradual typing than Nom

was. To evaluate the basic overhead of our monotonic casts for lambdas and

records, we adapted the sieve benchmark from the benchmark suite by

Takikawa et al. [2016] (also used in Section 5.8 and wrote a quicksort-based

benchmark we call intersort, which implements a sorting library for

integer list. The interface of the sorting library is specified using interfaces

for iterators, mutable doubly recursive lists, and mutable list nodes for

those lists.

248 transitioning from structural to nominal code

As in the original benchmarking scheme by Takikawa et al. [2016], each

program is divided up into modules – for each module, there exist different

versions. To run a benchmark, we run all possible combinations of the

different versions to get all possible kinds of mixing typed and untyped

code, at least at a somewhat coarse granularity. Usually, each module just

has a typed and an untyped version, but here we also are interested in

the transition from structural to nominal. Technically, this would give us

two degrees of freedom: typed vs. untyped and structural vs. nominal.

However, because of the restrictions on method overriding discussed in

Section 6.4.3, an untyped nominal module may be incompatible with a

typed nominal module, as one might contain a specification of class or

interface that extends a class or interface in the other. In Nom, the calculus

and implementation implicitly made things typed and added casts in

many cases, but MonNom does not do that, so we omit the untyped

nominal modules from consideration. This leaves us with three versions

for each module:

1. “Typed Nominal” (or just “Nominal”): fully typed and nominal, i.e.

there exist no structural values whatsoever. For example, the

2. “Typed Structural”: replacing nominal classes with structural values

(i.e. lambdas or structures) where appropriate, but retaining type

annotations where applicable; we explain for each benchmark below

what that means for each benchmark

3. “Untyped Structural”: like typed structural, but with all type anno-

tations everywhere erased

For example, “Untyped Structural” version of the benchmark Sieve con-

tains the following lambda:

6.8 evaluation 249

() => Main.CountFrom(n+(dyn)1)

The corresponding “Typed Structural” version of Sieve adds type anno-

tations everywhere and removes the artificial casts to dyn - including the

lambda:

() => Main.CountFrom(n+1) : Stream

Finally, the “Nominal” version of Sieve instead contains the code

new CountFromFun(n)

where the class CountFromFun is implemented as follows:

class CountFromFun implements Fun<Stream>

{

private readonly Int N;

public constructor(Int n)

{

N=n;

}

public fun this() : Stream

{

return Main.CountFrom(N+1);

}

}

Both benchmarks were run on an Intel Core i7-3770 at 3.4Ghz with

16GB of main memory, running Windows 7 with minimal background

activity. The reported running times represent the average over 10 runs of

the benchmark.

250 transitioning from structural to nominal code

6.8.1 Sieve

As before, Sieve consists of two modules, yielding 9 possible configura-

tions. It implements the Sieve of Eratosthenes and still causes catastrophic

overhead for Typed Racket [Tobin-Hochstadt and Felleisen, 2008], though

Grift has managed to reduce the overhead from catastrophic factors to just

significant factors [Kuhlenschmidt, Almahallawi, and Siek, 2019]. The only

difference between Nominal and Typed Structural here is that the nominal

classes implementing the functional interfaces for the three continuations

that create the sieving stream are replaced with lambdas (see example

above). All other code is mostly not based on objects and instead in static

methods; technically, the stream implementation could be re-worked to be

based on structs, but we would then also need to introduce interfaces for

it, and in general this is not the point of this benchmark.

Figure 6.10 shows the results of running this benchmark. On the right,

there is basically no difference between the configurations where the main

implementation is nominal and the stream library is either nominal or

typed structural, which makes sense because the Stream module contains

no lambdas, so those configurations are identical. These configurations

are about 30% faster than the fully untyped structural configuration on

the bottom. The slowest configuration, where the main implementation is

nominal but the stream library is untyped structural, is about 7% slower

than the fully untyped configuration, which is a reasonable amount of

overhead and in line with our results from Nom. The relative slowdowns in

this configuration compared to the others mostly comes from the fact that

interacting with a lambda that has been cast is a little bit more expensive

6.8 evaluation 251

Figure 6.10: Results for the various configurations of Sieve. Each axis is a module,
and their versions are labeled U (Untyped Structural), S (Typed
Structural), or N (Nominal). The area of the bubbles is proportional
to their running times, and contain the overhead compared to the
fully untyped structural configuration at the bottom in percent and
the absolute running time in seconds. A more classical bar graph
with error bars can be found in Appendix C.1.

for untyped code, while due to the tight coupling of streams with the main

implementation code not a lot of other typed-based optimization potential

exists. In absolute numbers, the running times very closely match those of

Nom (compare to Figure 5.10).

6.8.2 Intersort

Intersort consists of one always nominally typed sorting module and

three modules (Iterator, List, and ListNode) in different versions, yield-

252 transitioning from structural to nominal code

ing 27 possible configurations. We designed this benchmark to specifically

evaluate the overheads of switching between object-oriented structural

and nominal patterns. It implements the quicksort algorithm on a mu-

table doubly-linked list and per run sorts a list of 200,000 integers. The

difference between Nominal and Typed Structural here is as follows: the

nominal code was designed to not directly call the constructors of the

implementing classes for iterators, lists, and list nodes – instead, there are

static methods implemented in each module that essentially wrap those

constructors. Then for the Typed Structural version, we delete the classes

for iterators, lists, and list nodes, and instead in the static constructor

methods construct the corresponding records. Since in Typed Structural

the static constructor method is typed (as returning an instance of the

appropriate interface), the records are cast immediately after being con-

structed. In Untyped Structural, where the type annotations are removed

(at least from the module that contains the static constructor method),

those casts may happen later.

Figure 6.11 shows the results of running the benchmark. Here, we

see that structural code is indeed a lot slower than nominal code, even

without the overhead from gradual typing. The fully untyped, structural

configuration UUU takes about three times as long to run as the fully

typed, nominal configuration NNN. The configurations in between vary

a lot, in part because the figure now does not represent a linear gradient

from untyped to typed anymore, as there are three different versions of

each module. We see that the middle module List has the least influence

on the running time, which makes sense, as it is only used to kick off

the first level of quicksort; most of the work is done by the first module,

Iterator, which in turn often accesses ListNodes, implemented in the last

6.8 evaluation 253

All 27 configurations for Intersort,
grouped by the version of List. As
before, the three versions of the three
modules are U (Untyped Structural),
S (Typed Structural), or N (Nominal).
The area of the bubbles is proportional
to their running times, and contain the
overhead compared to the fully untyped
structural configuration at the bottom in
percent and the absolute running time
in seconds. A more classical bar graph
with error bars can be found in Ap-
pendix C.1.

Figure 6.11: Results for the various configurations of Intersort.

module. The maximum overhead is about 31%, and overall, the worst-

performing configurations are those where Iterators and ListNodes are

typed structural. This is because the typed structural version still contains

structs, but also many type annotations that force these structs to be cast,

and casting structs has fewer optimization potential than lambdas. While

those overheads are a lot more than for Sieve, they are still a lot lower

than the multiples of running times all previous work on sound gradual

typing suffered from. This suggests that structs can, in the use cases we

envision, effectively masquerade as interfaces, and that the transition from

254 transitioning from structural to nominal code

untyped structural to typed nominal code can be done without suffering

catastrophic overheads in the meantime.

6.9 summary

In this chapter, we saw a formal development of how to reason about

transitioning not only from untyped to typed code, but also from struc-

tural code to nominal code. However, our implementation of a language

featuring this concept shows reasonably efficient casts for microbench-

marks aimed at stress-testing the core use cases. As such, this is a major

stepping stone in lifting the restrictions of Nom to obtain sound, efficient,

and convenient gradual typing.

7
D I S C U S S I O N

The languages discussed in the previous two chapters are the currently

best-performing sound gradually typed languages in terms of the overhead

of gradual typing. This performance comes at the price of expressiveness;

the languages are not yet as feature-rich as the other languages out there.

As such, they provide a baseline for efficiency from which more expressive

sound gradual type systems can be explored while trying to keep the

overhead minimal. In this section, we argue that this baseline is valid and

useful, sketching an outlook of how to get to more expressive type systems

from it, and sketching the challenges that still need to be overcome.

7.1 designing for performance

Nom’s and MonNom’s efficiency comes from a combination of multiple

factors that keep potentially expensive run-time operations cheap. Nomi-

nality makes casts infrequent and efficient. Transparency for nominal val-

ues prevents overhead due to wrapper allocation, and the non-transparent

casts in MonNom still avoid as much overhead as possible. Immediate

accountability makes blame tracking unnecessary – at least in Nom; Mon-

Nom loses this property, as lambdas and structs may have to delay some

checks. However, it is common practice to deactivate blame tracking by

default and only enable it when a program is being debugged [Vitousek,

255

256 discussion

Swords, and Siek, 2017]. Furthermore, the clear separation of dynamic

vs. statically checked field accesses and method invocations allows us to

implement and optimize both using the techniques appropriate to each. In

the following, we illustrate the advantages of each of these properties by

comparing Nom/MonNom to the other languages that we benchmarked.

typed racket In Typed Racket, most of the overhead of gradual typ-

ing is caused by expensive run-time checks. Compared to Nom/MonNom,

these have two major causes: wrappers vs. transparency, and structural

vs. nominal. In gradually-typed Racket, transferring a value across the

typed/untyped boundary, in either direction, often requires the value

to be wrapped in order to enforce soundness and provide blame. Thus

each such transfer causes an allocation, and these wrappers themselves

often have to produce more wrapped values, leading to more allocations.

Allocation is known to be a fairly slow operation even in Racket where

allocation is quite optimized. Furthermore, these wrappers introduce lay-

ers of indirection, especially since wrappers often end up being stacked

onto each other in our benchmarks. Note that this stacking is indirect,

so using threesomes à la Siek and Wadler [2010] would not help—in fact

it would only add more overhead (indeed, Feltey et al. [2018] found no

improvement for the sieve benchmark when trying to combine wrappers).

Our systems are transparent, so we suffer none of these allocations or

layers of indirection.

The second major reason is that Typed Racket uses a structural type

system whereas we use a nominal type system. In Typed Racket, one can

dynamically check that a value has a field of the appropriate name, and

one can check that the value in that field is a function. However, one cannot

7.1 designing for performance 257

check what kind of function it is. Consequently, every time one uses that

function to get an integer (the type that your typed code is expecting), one

has to check that it actually returns an integer. This is even the case when

that function was created by typed code but happened to transfer through

untyped code. In Nom (and the nominal parts of MonNom), we can often

accomplish all these checks with a single nominal check In particular,

if the value was created by typed code, then that single nominal check

accomplishes what Racket would need a potentially infinite number of

structural checks for. For the structural parts of MonNom, we can still

avoid the extra checks for values created by typed code. In problematic

programs, such as sieve and snake, these two major differences can each

introduce multiple factors of overhead in gradually-typed Racket (but not

in Nom or MonNom), explaining the performance differences (the fact that

MonNom has some structural features yet performs reasonably suggests

that wrapper allocation may be the bigger factor).

c# We experimented with a few variations of dynamic programs in C#

to investigate why increased dynamism causes large overheads. As an

example, we experimented with casting everything to and from Object

instead of dynamic. Conceptually, these two programs should have the

same performance since the dynamic program is simply doing those casts

implicitly at run time. However, we found that the Object version of

the program was significantly faster. This leads us to believe that C#’s

choice of implementation of dynamic, which recompiles the relevant code

at run time using the run-time type of the relevant value, is the cause

of its inefficiency. This choice seems to be forced upon C# in order to

accommodate the many type-system features of C# that were not designed

258 discussion

with gradual typing in mind, an issue we will discuss this further in

Section 7.3.

reticulated python As already stated in Section 5.8.3.3, the tran-

sient casting strategy in Reticulated Python inserts more casts as more type

annotations are added, making fully typed code the slowest configuration

of any program. In contrast, pessimistically typed code in (Mon)Nom

is sound without any casts being inserted and can additionally benefit

from type-directed compiler optimizations. Furthermore, the numbers we

give for the Reticulated Python benchmarks are for the versions of the

programs where blame tracking was turned off. Blame tracking signif-

icantly increases—sometimes doubles—the overhead of gradual typing

in Reticulated Python. In contrast, as discussed in Section 5.7.2, Nom’s

immediate accountability makes blame tracking completely unnecessary –

we have not yet measured the overhead of blame tracking in MonNom.

7.2 scaling to industry

Our compilers and languages are experimental and thus lack many fea-

tures that real-world compilers and languages would have, such as support

for debugging, multithreading, separate compilation, etc. However, fea-

tures that do not affect the type system should not affect the efficiency

of gradual-typing-related operations. In fact, in contrast to some systems

with monotonic run-time type information, Nom’s approach has trivial

multithreading support, as all operations during a cast are read-only. Mon-

Nom has been designed to support multithreading in an efficient way,

7.3 increasing expressiveness 259

but we so far lack the benchmarks to say anything conclusive about how

well this would work in practice. With respect to type-system features,

the major differences between (Mon)Nom and pre-generics Java is that

(Mon)Nom restricts overloading and does not support exceptions and

(in Nom’s case) arrays (Nom provides a natively implemented ArrayList

class whose getter method is typed as returning dynamic). We do not

believe that adding these features would cause significant gradual-typing

overhead. If that turns out to be the case, then Nom and MonNom should

be easy to extend to something that could be used in an industrial setting,

although incorporating more powerful features such as variant generics

will still require some more work, as discussed next and in Chapter 8.

7.3 increasing expressiveness

Nominal typing faces many challenges specific to nominality. This is

true even without gradual typing, and still today discoveries about the

foundations of nominal typing are being made. Here we discuss some of

the challenges related to gradual typing, in particular ones that make the

gradual guarantee difficult to achieve.

7.3.1 Types Affect Execution

Unlike structurally typed languages, types in statically typed nominal

languages often affect execution. Examples of this are method overload-

ing and extension methods. With method overloading, the type of the

arguments is used to determine which overloading to call. When there is

260 discussion

ambiguity, languages like C# and Java report a type error forcing the pro-

grammer to resolve the ambiguity before compiling. This use of ambiguity

as error is often necessary when types affect execution in order to keep

execution predictable.

However, with gradual typing these ambiguities arise at run time, when

the programmer is not generally available to disambiguate the execution,

and so an error is thrown. And because the run-time types of values

can provide more overloadings than might have been statically available,

making a program more dynamic can even introduce such ambiguity

errors, violating the gradual guarantee. Thus, gradually typed nominal

languages cannot rely on the programmer to resolve the many ambiguities

that statically typed nominal language often have. For method overloading,

this means all overloadings provided by a given class or interface must

have pairwise disjoint signatures in order to satisfy the gradual guarantee.

C# has another issue with gradual typing: extension methods. Extension

methods are a way to retroactively add methods to an interface or class.

In C#, when the type-checker fails to find a method declaration in a given

receiver’s class or interface, it checks for extension methods defined for that

class or interface in the current static scope. But this faces two challenges

when gradually typed. First, the current static scope is not available at run

time. As a consequence, C# fails to identify extension methods at run time

and simply throws a run-time type exception. This means that LINQ, the

specialized syntax used to describe database queries that is built entirely

on extension methods, is completely unusable by dynamically typed C#.

Second, a method declaration that is not visible at compile time, so that

the extension method is invoked, could be visible at run time, so that the

7.3 increasing expressiveness 261

instance’s method is invoked, thereby causing dynamic typing to change

the semantics of the program, violating the gradual guarantee.

7.3.2 Generics

Java, C#, and Scala have all had generics for over a decade, and more

recent nominal languages such as Ceylon and Kotlin continue the trend.

Thus gradual typing for nominal types needs to address generics. Ina and

Igarashi have considered gradual typing for generics [Ina and Igarashi,

2011]. They have an interesting approach to Foo〈dynamic〉, where Foo〈T〉

is a generic class, which is to consider all uses of T in the body of Foo as

potentially dynamic. Unfortunately, this means that even well-typed code

may need to have frequent run-time checks inserted. Furthermore, they

do not consider generic methods, type-argument inference, or any form of

variance, all of which are essential to how generics are used in practice.

As such, expressive generics and sound gradual typing have not yet been

successfully married. The reason for that lies in a number of challenges.

The first challenge was decidability of subtyping in general, which we

covered Part I. With respect to efficiency, it is important to note that our

approach requires the ability to check subtyping at run time. This implies

that every instance of List〈String〉 stores the information necessary to

determine at run time that the instance is not just a List, but a List of

String. This is known as reified generics and is the counterpoint to type

erasure. This might cause some concern, as reified generics imply that

type information has to be constructed and passed around at run time

throughout generic methods. Schinz [2005] did an analysis of what the

262 discussion

impact of this would be for Scala on the JVM, and he found that it would

on average make programs run 50% slower, allocate 140% more memory,

and compile to 30% more byte code. However, Microsoft added reification

to the CLR because of its potential to improve performance with primitive

types and specialization, and Ceylon’s generics are reified because the

team found they could implement it with little overhead, even on the JVM.

It is thus unclear what the overhead of reified generics might actually

entail for gradual typing.

The greatest challenge, though, is likely to be type-argument inference,

a feature that is critical to making use of generic methods convenient. To

understand why it is likely to be such a significant challenge, consider the

following statically typed C# function SnocS (without extension methods):

List〈T〉 SnocS〈T〉(IEnumerable〈T〉 startS, T endS) {

var elemsS = Enumerable.ToList(startS);

elemsS.Add(endS);

return elemsS;

}

and its corresponding dynamically typed C# function SnocD

dynamic SnocD(dynamic startD, dynamic endD) {

var elemsD = Enumerable.ToList(startD);

elemsD.Add(endD);

return elemsD;

}

In order to fulfill the gradual guarantee, if a call to SnocS succeeds, the

same call to SnocD should succeed. However, the calling the typed ver-

sion SnocS(new List〈String〉(), 5) succeeds in C#, whereas the untyped

version SnocD(new List〈String〉(), 5) throws a run-time type exception.

7.3 increasing expressiveness 263

In particular, the invocation elemsD.Add(endD) fails because at run time

elemsD is a List〈String〉 but endD is an Int. In the corresponding line

of SnocS, the run-time type of elemsS is List〈Object〉. The cause of the

difference in behavior is that in SnocS, the type argument for ToList is in-

ferred to be T, which at run time is Object, due to the static type of startS

and endS, whereas in SnocD it is inferred to be String due to the dynamic

type of startD. Thus, in addition to developing a decision procedure for

type-argument inference, a gradual type system for generics must also

overcome this challenge regarding the gradual guarantee. We discuss this

further in Chapter 8.

It is due to these many complications with nominal typing that C# is

forced to implement gradual typing using run-time compilation. This

unfortunate fact is likely the cause of its poor performance in Section 5.8.

Thus, with nominal typing, it seems to be important to design the language

with gradual typing in mind in order to not only achieve the gradual

guarantee, but also to achieve efficient implementation of dynamic typing.

Part III

G E N E R I C S

8
T O WA R D S I N F E R A B L E A N D G R A D UA L I Z A B L E

G E N E R I C S

8.1 introduction

We already discussed the need for decidability in gradual typing and

its usefulness in general in Chapter 1. However, as we have mentioned

many times in the preceding chapters, decidability is not all that is needed

for gradual typing to be well-behaved. In languages with generics, type-

argument inference for generic methods tends to be the primary culprit

for unpredictable changes in program behavior because of changes in type

information. Due to subtyping, there is no known sound and complete

algorithm for type-argument inference, so compilers are forced to em-

ploy ad-hoc heuristics. Plus, again due to subtyping, there can multiple

valid type-arguments, which has semantic significance in reified languages,

meaning type arguments can be examined at run time, which we already

mentioned is necessary to do run-time type checks for gradual typing.

Thus whether a program type-checks often varies by compiler, and even

how that program executes can vary by compiler. This is a problem for the

program-writer because they can unwittingly get locked into a particular

267

268 towards inferable and gradualizable generics

compiler1, and it is a problem for the compiler-writer because they can

unwittingly get locked into a particular type-checking algorithm2.

These problems with type-argument inference become all the more

pronounced by gradual typing. Gradual typing must perform many type-

checking operations at run time in order to provide sound behavior. Con-

sequently, the unreliability and inconsistency that type-argument inference

has traditionally only caused at compile time now become run-time prob-

lems. Thus, before one can even consider developing a practical gradually

typed language for generics, one first needs to provide the infrastructure

for supporting run-time casts and for reliable and consistent dynami-

cally typed invocations of generic methods. That is, one must first make

generics gradualizable. While here we have made it clear that decidability

affects gradualizability, later in the chapter we will demonstrate that in

fact gradualizability can also affect decidability.

This chapter strives towards making generics decidable (and even locally

inferable) and gradualizable while still being practical. In particular, we

selected the features of modern major languages that seem to be the most

important to the usability of generics: inheritance, mixed-site variance,

type-argument inference, local lambdas, reification, and a solution to the

binary-method problem. We then developed two calculi that provide those

features while simultaneously being decidable and (mostly) gradualizable,

taking a major step towards principled practical generics.

1 This problem grew significant enough that for Java 8 there was a concerted effort across
the compiler teams along with the language team to develop essentially an official type-
checking algorithm, particularly for type-argument inference.

2 After improving type-argument inference for Java 8, Oracle discovered that the more-
precise types being inferred were changing overload resolutions, altering the semantics of
preexisting programs [Oracle Corporation, 2014, Area: Tools/javac].

8.2 overview 269

8.2 overview

The primary challenge of this chapter is the many interacting features

that need to be considered simultaneously. Rather than first present all

these features and their full myriad of interactions, we instead illustrate a

few issues they cause in C#, the best-known language that supports all of

them.

8.2.1 The Binary-Method Problem, Declaration-Site Variance, and Decidability

Designs for generics inevitably run into the binary-method problem, with

type-safe equality being the most pressing case. For many designs, one

wants to be able to check if the contents of two variables are equal in

some deep sense rather than just shallow reference equality. However, in

order for, say, a String to check if it describes the same character sequence

as some other value, it first needs to know that that other value is also

a String and so has the fields it needs to inspect. It can do so for any

Object by using a dynamic cast, but that means the type-checker will fail

to warn the programmer that they wrote str.Equals(person) rather than

str.Equals(person.Name). Thus this form of equality is not considered to

be (statically) type-safe.

The obvious alternative is to have String’s Equals method accept only

Strings. But this introduces a new problem: many generic data structures

need to use equality but can no longer assume that all values are equatable

with all other values. That is, in order for these libraries to be parametrically

polymorphic over a type variable E, they need some way to constrain E so

270 towards inferable and gradualizable generics

that they can ensure that values of type α are at least equatable with each

other.

F-bounded polymorphism was designed for precisely this purpose [Can-

ning et al., 1989]. One designs a generic interface Eq〈T〉 that guarantees

a method Equals(T), and then the library simply requires that E be a

subtype of Eq〈E〉.

Unfortunately, this solution quickly encounters its own limitations. For

example, one would like to be able to equate sequences (i.e. read-only

lists) with other sequences, but this is only possible when the values

these sequences contain are themselves equatable with each other. That is,

equatability of sequences is conditional upon equatability of their contents.

Ideally one could combine declaration-site variance with inheritance to

address this problem. Something that is equatable with Number is also

equatable with Integer since every Integer is a Number and therefore can

be passed to the appropriate Equals method. This makes Eq a contravariant

interface, which C# supports by adding in to the declaration of the Eq in-

terface, as in Eq〈in T〉. On the other hand, a sequence of integers is also

a sequence of numbers, making sequence a covariant interface. This is

expressed in C# via the declaration Seq〈out E〉. If one could furthermore

declare that Seq〈E〉 extends Eq〈Seq〈Eq〈E〉〉〉, then the combination of co-

and contravariance would actually make it so that Seq〈E〉 is equatable with

itself whenever E is.

This would successfully encode conditional equatability for sequences

if it were not for the fact that it introduces yet another problem. Suppose

the class Tree implements Seq〈Tree〉 to provide its sequence of children.

Consider whether Tree is equatable with itself. Trees are equatable if

sequences of trees are equatable, and sequences of trees are equatable

8.2 overview 271

if trees are equatable. That is, trees are equatable if and only if they are

equatable through conceptually cyclic reasoning. While in this case the

cycle is easy to identify, in the more general case the cycle can be irregular

and undetectable, making subtyping undecidable [Grigore, 2017; Kennedy

and Pierce, 2007].

For this reason, C# disallows expansive inheritance clauses, which ensures

that all cycles can be detected and makes subtyping decidable [Kennedy

and Pierce, 2007]. But having Seq〈E〉 extend Eq〈Seq〈Eq〈E〉〉〉 is an expansive

inheritance clause, and so this restriction also blocks the above solution to

conditional equatability. As such, even new major languages with generics

still fall back on the aforementioned casting mechanism for equality rather

than a type-safe mechanism.

8.2.2 Type-Argument Inference

Type-argument inference is critical to the usability of generics. Unfortu-

nately, it is also complicated. Consequently, following the research con-

vention of making calculi as simple as possible, most calculi for generics

require all type arguments to be explicitly specified. When verifying sound-

ness, such as in Featherweight Generic Java [Igarashi, Pierce, and Wadler,

2001], this convention is perfectly valid. But when designing for gradual

typing, such as in the extension alluded to by Ina and Igarashi [2011], this

convention fails to address the greatest challenge in gradualizing generics.

Here we provide a glimpse of that challenge, using the following methods

and assuming variables b1 and b2 whose respective class types B1 and B2

both extend class A.

272 towards inferable and gradualizable generics

Seq〈E〉 Singleton〈E〉(E elem) {

var list = new List〈E〉(); list.add(elem); return list;

}

List〈E〉 Snoc〈E〉(Seq〈E〉 head, E tail) {

var l = new List〈E〉(head); l.add(tail); return l;

}

T Random〈T〉(T first, T second) {

if (CoinFlip()) return first; else return second;

}

In C#, the expression Snoc(Singleton(b1), b1) has type List〈B1〉. In

particular, the type arguments for the generic methods Singleton and Snoc

are both inferred to be B1. While that inference works well for this expres-

sion, it is not necessarily ideal for the context of the expression.

Suppose we want to add b2 to the resulting list. We cannot do so given

the inferred type of the list because it only accepts B1s. If we had instead

declared b1 to have the supertype A, voluntarily losing precision of type

information, then the inferred type of the list would instead be List〈A〉,

which we could add b2 to. This observation means that any language that

infers the type arguments in Snoc(Singleton(b1), b1) necessarily fails

to ensure subsumption, a property of subtyping.

For many languages, subtyping has meaning at run time, guaranteeing

that values of the subtype can be used wherever values of the supertype are

acceptable. Subsumption is the property that subtyping also has meaning

at compile time, guaranteeing that expressions of the subtype can be used

wherever expressions of the supertype are acceptable. That is, subsump-

tion means that subtyping has a formal connection to program typing rather

than simply being an approximation of subset that is ad-hocly incorpo-

8.2 overview 273

rated into type-checking. Unfortunately, none of the major languages with

generics ensure subsumption, with the ad-hoc nature of type-argument

inference being a major obstacle to achieving subsumption.

Failing to ensure subsumption is particularly problematic for gradual

typing. Suppose we first assign b1 to a variable a of type A, and then we

use Snoc(Singleton(a), a).Add(b2) instead. This will type check in C#

and execute as expected. But if we change the type of a to be dynamic

instead, utilizing C#’s support for gradual typing, then it will type-check

the code using the dynamic type of a, which will be B1, and this will cause

the subsequent invocation of Add to fail. This fickleness in the semantics

means that C# fails to satisfy the (dynamic) gradual guarantee, which in

short asserts that adding or removing correct type annotations should not

change the semantics of programs. Thus, in order to support well-behaved

gradual typing, type-argument inference needs to be guaranteed to be

more successful as more-precise type information is made available.

8.2.3 Principal Types

Notice that the above problem with subsumption was entirely due to Snoc.

This is because Singleton has the property that, no matter what argument

is provided, there is always a type argument that results in a principal

type for the invocation. A language has principal types if every typeable

expression can be given a most-precise type (also known as minimal

types [Balsters and Fokkinga, 1991; Bruce, Crabtree, and Kanapathy, 1994;

Ghelli and Pierce, 1998], and not to be confused with principal type

schemes [Damas and Milner, 1982; Hindley, 1969] such as in ML). If the

274 towards inferable and gradualizable generics

language ensures subsumption, then this means every typeable expression

can be given a type that is a subtype of all other ascribable types.

Principal types are great for decidability because they ensure that there

is a single type that best describes the expression, meaning the compiler

does not have to backtrack through multiple options (assuming there are

only finitely many). They often even make various local forms of inference

practical by recursively computing the principal types of expressions.

Invocations of Snoc cannot always be given a principal type due to type-

argument inference, but invocations of Singleton can, and as such we say

it is (or its type arguments are) principally inferable.

Note that this is a property of how Singleton is declared rather than

of how it is used. Type-argument inference has so far focused on uses of

generic methods. By shifting the focus to declarations of generic methods

we will be able to ensure principal typing. Furthermore, we will even be

able to develop a new semantics for reified generic methods, one that will

ensure gradual typing. But we first need to discuss the many obstacles to

making this change in perspective practical.

8.2.4 Semantic Coherence

Singleton still poses problem for gradual typing despite being principally

inferable. Suppose we assign b1 to a variable a of type A, then we assign

the expression Singleton(a) to a variable list of type dynamic, and then

we execute list.Add(b2). In C#, this will execute successfully because

Singleton’s type argument will statically be inferred to be A, causing its

invocation to allocate a List〈A〉, which will then accept b2. However, if

8.2 overview 275

we change the type of a to be dynamic, then the type argument will be

dynamically inferred to be B1, causing Singleton to allocate a List〈B1〉,

which will reject b2, causing a run-time type error.

The issue is that the semantics of statically typed C# fails to be coherent.

C#, like many statically typed languages, has a type-directed semantics,

meaning the proof that the program type-checks is used to determine

its run-time behavior. But, with a reasonably declarative specification of

the type system, there are generally many ways to prove that a program

is well-typed. Coherence, then, is the property that all these declarative

type-checking proofs result in the same run-time behavior. The issue

with Singleton arises from the fact that the proof itself determines the

type argument, and that type argument has semantic significance due to

reification and the potential for casting (whether in the surface language

or in the cast calculus for gradual typing). Because of subtyping, there are

multiple valid type arguments for this invocation, causing the semantics

to be fickle in the face of gradual typing, as illustrated. Note that gradual

typing is not strictly necessary to expose this fickleness; one could simply

attempt to cast seq to List〈A〉 in statically typed C# to observe the same

behavior. As with all the problems illustrated here, it is not limited to C#.

Indeed, it seems to be fundamental to the standard semantics for reified

generics, hence we need to develop a new semantics.

8.2.5 Joins and Meets

But before diving into semantics, we need to further understand the

challenges of type-argument inference. Consider now the expression

276 towards inferable and gradualizable generics

Random(x, y), where x has type X which extends Seq〈X〉, and y has type Y

which extends Seq〈Y〉. C#’s inference algorithm intentionally fails in this

case [ECMA TC39-TG2, 2017, §12.6.3]. The reason is that it requires com-

puting a common supertype of X and Y, and doing so in a principled

manner is impossible for C#.

To see why, consider what common supertypes X and Y have. We

can see they are both sequences, and due to covariance of Seq they

are in fact both subtypes of Seq〈Object〉. But better yet they are both

subtypes of Seq〈Seq〈Object〉〉, and even better they are both subtypes

of Seq〈Seq〈Seq〈Object〉〉〉. This increase in precision can go on forever, so

the ideal answer, i.e. the least common supertype or join, would be the

infinite type Seq〈Seq〈Seq〈...〉〉〉. Unfortunately, this type is not expressible,

and consequently the join of X and Y does not exist.

This means that, not only does Random(x, y) not have a principal type,

it does not even have a finite number of types that cover all of its possible

typings. The lesson here is that, first, the subtyping system needs to ensure

the existence of joins (and consequently meets due to contravariance) in

order to provide principal types for many practical examples, and, second,

C#’s rejection of expansive inheritance fails to ensure joins even though it

ensures decidable subtyping.

8.2.6 Ambiguity

Moving beyond type-argument inference, we discuss one last issue that is

common in statically typed languages. Many statically typed languages

have situations in which ambiguities arise. For example, C# permits mul-

8.2 overview 277

tiple-instantiation inheritance, meaning a class Seqs can simultaneously

implement both Seq〈Int〉 and Seq〈String〉. If Seq〈E〉 has an E First()

method, then Seqs can implement that method differently for its two

instantiations of E. If one assigns a Seqs instance to a Seq〈Int〉 variable,

then it is clear how all method invocations on that variable should operate.

However, if that variable were given the more precise type Seqs, then it

is unclear how invocations of First should proceed. C# recognizes this

ambiguity and fails to type-check the invocation, providing an error in-

forming the programmer that they need to clarify, typically by upcasting

the variable to the intended instantiation.

Many ambiguities in statically typed languages are of this form. The

type information is used to determine the semantics, but there is too much

type information in order to sufficiently guide this determination. Thus the

programmer must explicitly remove type information from the situation.

Any language with this behavior necessarily fails to exhibit subsumption.

This observation is particularly important regarding the binary-method

problem. Recent proposals address binary methods by using either im-

plicits [Odersky, Altherr, et al., 2014, Chapter 7] or constraints [Zhang,

Loring, et al., 2015] to emulate type-class evidence [Wadler and Blott, 1989].

Manually specifying this evidence is tedious, and as such these proposals

construct it automatically based on type information. However, because

this evidence is semantically meaningful, they defer to the programmer

when ambiguities exist, consequently failing to exhibit subsumption, which

we will need for decidability and gradualizability.

278 towards inferable and gradualizable generics

Hierarchy Ψ ::= c; ...
Expression e ::= (see Figure 8.9)
Confluence c ::= cI | cS

Interface cI ::= (see Figure 8.2)
Shape cS ::= (see Figure 8.5)

Program Validity ` Ψ; e

` Ψ Ψ | ∅ | ∅ | ∅ ` e : >
` Ψ; e

Hierarchy Validity ` Ψ

`I Ψ Ψ `S Ψ
Ψ `σ Ψ Ψ `s Ψ

` Ψ

Figure 8.1: Programs and Hierarchies (with rules for missing judgements to be
found in Figures 8.2, 8.5, 8.6, 8.8, and 8.9)

8.3 interfaces and subtyping

We now begin presenting the design of our calculi that address the many

problems just discussed. In addition to providing the features of practical

generics, these calculi will further ensure subsumption, principal types,

and semantic coherence. By doing so, even though the calculi will not

themselves provide gradual typing, they will enable well-behaved gradual

typing to be built on top of them.

The calculi are type-checked in multiple passes. Each pass establishes

invariants that the subsequent passes rely upon. These invariants, more

than anything else, are the key to achieving our goals. As such we will

present the calculi in the order of these passes, highlighting the invariants

they ensure along with how and why. Note that this means expressions

will be presented last.

A program in our calculi is a hierarchy Ψ and an expression e, which

are introduced in Figure 8.1. A hierarchy is simply an ordered list of, for

lack of a better term, confluences c. A confluence is either an interface cI

8.3 interfaces and subtyping 279

or a shape cS; in terminology of Chapter 2, interfaces are just materials,

and shapes are completely separate. For simplicity our calculi model

classes as methods that generate objects, which are in turn simply closures

implementing an interface. Shapes, on the other hand, will be how we

address the binary-method problem. Rather than being part of types

themselves, shapes will be constraints that types can satisfy – types will

be comprised solely from (material) interfaces. Note that throughout this

chapter that superscripts are used to distinguish related grammars—such

as cI for interface confluences versus cS for shape confluences—and are

not used to parameterize grammars, meaning the use of I in cI places no

restriction on which interface is defined by cI .

Figure 8.1 shows that programs are type-checked in five passes, the first

four of which validate the hierarchy. The first pass validates interfaces and

ensures that subtyping is well-behaved. The second and third passes vali-

date shapes and ensure that shape satisfaction is well-behaved. The fourth

pass ensures that method signatures are well-behaved. And, with the

hierarchy validated, the final pass ensures that the actual implementation

is well-behaved.

Appendix D.3 contains the full grammar an index of every part of

the static formalization. Most of it is specfied directly in the rest of the

chapter as the components come up; a few very straightforward parts of

the dynamic part of formalization are contained in Appendix D.4. In the

rest of this section we discuss the first pass: interfaces and subtyping.

280 towards inferable and gradualizable generics

Interface Name I
Interface Declaration cI ::= interface I〈Θ〉 extends ~τ I satisfies~σI {s; ...}
Kind Context Θ ::= τ <: να <: τ, ...
Inherited Interfaces ~τ I ::= ∅ | τ I | τ I , ...
Inherited Interface τ I ::= I〈α, ...〉 | I〈~τ〉
Conditionally
Satisfied Shapes

~σI ::= (see Figure 8.6)

Method Signature s ::= (see Figure 8.8)
Signed Variance ν± ::= + | −
Variance ν ::= ν± | !
Ignorable Variance ν? ::= ν | ?
Type Variable α

Type τ ::= (see Figure 8.3)
Types ~τ ::= τ, ...

Interfaces Validity `I Ψ

`I ∅
`I Ψ

`I Ψ; cS

`I Ψ Ψ `I 〈Θ〉 Ψ | Ψ | Θ `I ~τ I

`I Ψ; interface I〈Θ〉 extends ~τ I satisfies • {•}

Interface Parameter Validity Ψ `I 〈Θ〉

Ψ `I 〈〉
Ψ `I 〈Θ〉 Ψ | Θ `− τ` Ψ | Θ `+ τu Ψ | Θ ` τ` <: τu

Ψ `I 〈Θ, τ` <: να <: τu〉

Interface Inheritance Validity Ψ | Ψ | Θ `I ~τ I Ψ | Ψ | Θ `I τ I

Ψ | Ψ′ | Θ `I ∅ Ψ′ = ΨI ; interface I〈ΘI〉 extends ~τ I
I satisfies • {•}; Ψ′′

Ψ | ΨI | Θ `I ~τ I Ψ | Θ `+ 〈~τ〉 : 〈ΘI〉
∀τ I

I ∈ ~τ I
I .∃τ I ∈ ~τ I . Ψ | Θ ` τ I <: τ I

I b~τ/ΘIe
Ψ | Ψ′ | Θ `I ~τ I , I〈~τ〉

Ψ | Θ `+ τ I

Ψ | Ψ′ | Θ `I τ I

Figure 8.2: Interfaces (with rules for missing judgements to be found in Figure 8.3)

8.3 interfaces and subtyping 281

8.3.1 Interfaces

An interface declaration cI , as shown in Figure 8.2, specifies a kind con-

text Θ of constrained type parameters α with variances ν, inherited inter-

faces ~τ I , conditionally satisfied shapes ~σI , and signatures s of methods

guaranteed by the interface. In the first pass, we only aim to ensure that

subtyping is well behaved, and as such here we focus on the type pa-

rameters and on interface inheritance. (Notice that shapes are completely

ignored in this pass.)

The first step for validating an interface declaration (after checking

the hierarchy up to this point) is to validate the constraints on the type

parameters for the interface via the judgement Ψ `I 〈Θ〉. The kind con-

text Θ declares the type parameters, each with a lower bound τ`, an upper

bound τu, and a variance v that can be either covariant (+), contravari-

ant (−), or invariant (!). The rules of Ψ `I 〈Θ〉 are designed to disallow

recursive constraints on type variables; every type variable can only be

constrained by types referencing preceding type variables. This is in line

with material-shape separation and takes advantage of the fact that ap-

plications of F-bounded polymorphism will instead be addressed using

shapes, discussed later. The rules also ensure that the lower bound is a

subtype of the upper bound, which is useful for ensuring decidability

(with transitivity) of subtyping within this kind context. In order to ensure

that this subtyping check is itself decidable, all bounds are restricted to

using interfaces preceding the one currently being validated, which have

already been validated themselves.

282 towards inferable and gradualizable generics

The second step is to validate the inherited interfaces, the grammar and

rules for which differ across the two calculi. The first calculus permits only

single inheritance and only allows the type arguments to the inherited

interface to be type variables. This is the calculus with the simplest type

grammar that we could construct, and due to the latter restriction on

inheritance we refer to the first calculus as Genα. The second calculus

permits multiple inheritance and extends the type grammar with arbitrary

intersection and union types as its solution for addressing the complexities

that multiple inheritance introduces. As such, we refer to the second

calculus as Gen∩. Nonetheless, unlike C#, Gen∩ does not allow arbitrary

multiple-instantiation inheritance. Instead, its complex rules for interface

inheritance Ψ | Ψ | Θ `I ~τ I ensure principal-instantiation inheritance (see

also Section 3.6.3), which will be discussed in more detail shortly.3

8.3.2 Enforcing Constraints

The differences between the two calculi are most significant in this first

pass. This is because they take different approaches to ensuring that

method invocations have a principal return type.

In order to understand the issue, consider the following hierarchy

(where + indicates covariance):

interface Foo〈+A〉 { get() : A }

interface Bar〈+A,+B <: A〉 extends Foo〈A〉 { get() : B }

This hierarchy is conceptually valid because, although the return type

of Bar’s get method differs from Foo’s, the subtyping constraint on B

3 The rules also cause all interfaces that would be indirectly inherited to be directly inherited,
but that is just a formalism convenience and is not essential to calculus.

8.3 interfaces and subtyping 283

ensures that it is a more precise return type. Thus any implementation of

an instantiation of Bar, which is by definition required to satisfy the type

constraints, is necessarily also an implementation of the corresponding

instantiation of Foo.

The issue, then, is the return type of get() when invoked on an ex-

pression of an arbitrary Foo〈τA, τB〉. If we use Foo’s signature, then it will

be τB, but if we use the supertype Bar’s signature, then it will be τA. One

might think τB must be a subtype of τA due to the constraint on Bar’s B.

However, it has been shown that enforcing these constraints in type valid-

ity is actually unnecessary for soundness [Amin and Tate, 2016; Tate, 2013];

it is only necessary when validating the declared type arguments of an

implementation of an interface. So while our observation here suggests that

these constraints might be useful for decidability, constraint enforcement

is itself a design choice. Given that decidability is a primary goal of this

work, both our calculi choose to enforce constraints.

8.3.3 Intersection Types

Enforcing constraints does not necessarily entirely solve the problem with

return types though. A similar issue can arise in the presence of arbitrary

intersection types. If interfaces Biz and Baz both happen to have a method

with the same name but with incomparable return types, then there are

multiple incomparable return types when invoking that method on an

expression of type Biz∩ Baz. For this reason, Genα opts to forgo all forms

of intersection types.

284 towards inferable and gradualizable generics

As we will see shortly, Genα must impose some significant restrictions to

ensure decidability without intersection types, and so Gen∩ instead solves

the problem with return types another way. Recall that we demonstrated

the importance of semantic coherence to gradual typing, specifically to the

(dynamic) gradual guarantee. Semantic coherence also ensures another

property that was first observed in designing Forsythe [Reynolds, 1988,

1997]: if a particular method invocation can soundly be given two different

types, then it can also soundly be given the intersection of those types

(which in turn is a subtype of both other typings). This is because semantic

coherence means the invocation would result in the same value regardless

of how it is typed, and so the resulting value must simultaneously have

both ascribable types, and consequently belongs to their intersection. Thus,

while arbitrary intersection types cause problems with ensuring a principal

method signature, when combined with semantic coherence they ironically

can solve the very problem they create.

8.3.4 Joins and Meets

Joins are extremely useful for decidable type-checking. Their most common

application is in combining the types of the two cases of a conditional

expression. With generics, they are also useful in inferring a type argument

for which multiple lower-bound constraints have been identified. And

in the presence of contravariance, joins necessitate meets, which are also

needed for inferring type arguments in certain less-common situations.

The existence of joins and meets depend very much on the grammar and

validity of types and the definition of subtyping, presented in Figure 8.3.

8.3 interfaces and subtyping 285

Type τ ::= ⊥ | > | I〈~τa〉 | α | τ ∪ τ | τ ∩ τ

Type Arguments ~τa ::= τa, ...
Type Argument τa ::= τ | in τ out τ

Invariant Kind Context Θ! ::= τ <: !α <: τ, ...

Variance ν ∗ ν? Subvariance ` ν ≤ ν?

ν ∗ ν? ! + − ?

! ! ! ! ?
+ ! + − ?
− ! − + ?

` ! ≤ ν?

` ν ≤ ν ` ν ≤ ?

Type Validity and Variance Ψ | Θ `ν? τ Ψ | Θ `ν? τ I

Ψ | Θ `ν? ⊥ Ψ | Θ `ν? >

Ψ | Θ `ν? τ1
Ψ | Θ `ν? τ2

Ψ | Θ `ν? τ1 ∪ τ2

Ψ | Θ `ν? τ1
Ψ | Θ `ν? τ2

Ψ | Θ `ν? τ1 ∩ τ2

• <: να <: • ∈ Θ
` ν ≤ ν?

Ψ | Θ `ν? α

interface I〈ΘI〉 extends • satisfies • {•} ∈ Ψ
Ψ | Θ ` 〈~τa〉; 〈~τ〉 | Θ!

Ψ | Θ, Θ! `ν? 〈~τ〉 : 〈ΘI〉
Ψ | Θ `ν? I〈~τa〉

Type-Argument Validity Ψ | Θ `ν? 〈~τ〉 : 〈Θ〉

Ψ | Θ `ν? 〈〉 : 〈〉

Ψ | Θ `ν? 〈~τ〉 : 〈Θ′〉 Ψ | Θ `ν∗ν? τ
Ψ | Θ ` τ`b~τ/Θ′e <: τ Ψ | Θ ` τ <: τub~τ/Θ′e

Ψ | Θ `ν? 〈~τ, τ〉 : 〈Θ′, τ` <: να <: τu〉

Type-Argument Capture Ψ | Θ ` 〈~τa〉; 〈~τ〉 | Θ!

Ψ | Θ ` 〈〉; 〈〉 | ∅
Ψ | Θ ` 〈~τa〉; 〈~τ〉 | Θ!

Ψ | Θ ` 〈~τa, τ〉; 〈~τ, τ〉 | Θ!

Ψ | Θ ` 〈~τa〉; 〈~τ〉 | Θ! Ψ | Θ ` τi <: τo

Ψ | Θ ` 〈~τa, in τi out τo〉; 〈~τ, α〉 | Θ!, τi <: !α <: τo

Figure 8.3: Types and Subtyping

286 towards inferable and gradualizable generics

Named Type-Argument Capture ` 〈~α!〉 := 〈~τa〉; 〈~τ〉 | Θ!

` 〈〉 := 〈〉; 〈〉 | ∅
` 〈~α!〉 := 〈~τa〉; 〈~τ〉 | Θ!

` 〈~α!, _〉 := 〈~τa, τ〉; 〈~τ, τ〉 | Θ!

` 〈~α!〉 := 〈~τa〉; 〈~τ〉 | Θ!

` 〈~α!, α〉 := 〈~τa, in τi out τo〉; 〈~τ, α〉 | Θ!, τi <: !α <: τo

Subtyping Ψ | Θ ` τ <: τ Ψ | Θ ` τ I <: τ I

Ψ | Θ ` τ <: τ

Ψ | Θ ` τ <: τ′ Ψ | Θ ` τ′ <: τ′′

Ψ | Θ ` τ <: τ′′

Ψ | Θ ` ⊥ <: τ Ψ | Θ ` τ <: >

τ` <: να <: τu ∈ Θ
Ψ | Θ ` τ` <: α

τ` <: να <: τu ∈ Θ
Ψ | Θ ` α <: τu

Ψ | Θ ` 〈~τa〉; 〈~τ〉 | Θ! Ψ | Θ, Θ! ` I〈~τ〉 ∩ τ <: τ′

Ψ | Θ ` I〈~τa〉 ∩ τ <: τ′

interface I〈ΘI〉 extends • satisfies • {•} ∈ Ψ
Ψ | Θ ` 〈~τ〉 <: 〈~τa〉 : 〈ΘI〉

Ψ | Θ ` I〈~τ〉 <: I〈~τa〉

interface I〈ΘI〉 extends τ I satisfies • {•} ∈ Ψ

Ψ | Θ ` I〈~τ〉 <: τ Ib~τ/ΘIe

interface I〈ΘI〉 extends ..., τ I , ... satisfies • {•} ∈ Ψ

Ψ | Θ ` I〈~τ〉 <: τ Ib~τ/ΘIe

interface I〈ΘI〉 extends • satisfies • {•} ∈ Ψ
Ψ | Θ ` 〈~τ1〉 ∩ 〈~τ2〉 <: 〈~τa〉 : 〈ΘI〉

Ψ | Θ ` I〈~τ1〉 ∩ I〈~τ2〉 <: I〈~τa〉

i ∈ {1, 2}
Ψ | Θ ` τi <: τ1 ∪ τ2

Ψ | Θ ` τ1 <: τ Ψ | Θ ` τ2 <: τ

Ψ | Θ ` τ1 ∪ τ2 <: τ

Ψ | Θ ` τ <: τ1 Ψ | Θ ` τ <: τ2

Ψ | Θ ` τ <: τ1 ∩ τ2

i ∈ {1, 2}
Ψ | Θ ` τ1 ∩ τ2 <: τi

Figure 8.3 (contd.)

8.3 interfaces and subtyping 287

Type-Arguments Subtyping Ψ | Θ ` 〈~τ〉 <: 〈~τa〉 : 〈Θ〉

Ψ | Θ ` 〈τ1〉 <: 〈τ′1〉 : 〈ν1〉 ...
Ψ | Θ ` 〈τ1, ...〉 <: 〈τ′1, ...〉 : 〈• <: ν1α1 <: •, ...〉

Type-Argument Subtyping Ψ | Θ ` 〈τ〉 <: 〈τa〉 : 〈ν〉

Ψ | Θ ` τ <: τ′

Ψ | Θ ` 〈τ〉 <: 〈τ′〉 : 〈+〉
Ψ | Θ ` τ <: τ′ Ψ | Θ ` τ′ <: τ

Ψ | Θ ` 〈τ〉 <: 〈τ′〉 : 〈!〉

Ψ | Θ ` τ′ <: τ

Ψ | Θ ` 〈τ〉 <: 〈τ′〉 : 〈−〉
Ψ | Θ ` τi <: τ Ψ | Θ ` τ <: τu

Ψ | Θ ` 〈τ〉 <: 〈in τi out τo〉 : 〈!〉

Intersected Type-Arguments Subtyping Ψ | Θ ` 〈~τ〉 ∩ 〈~τ〉 <: 〈~τa〉 : 〈Θ〉

Ψ | Θ ` 〈τ1〉 ∩ 〈τ′1〉 <: 〈τa
1 〉 : 〈ν1〉 ...

Ψ | Θ ` 〈τ1, ...〉 ∩ 〈τ′1, ...〉 <: 〈τa
1 , ...〉 : 〈• <: ν1α1 <: •, ...〉

Intersected Type-Argument Subtyping Ψ | Θ ` 〈τ〉 ∩ 〈τ〉 <: 〈τa〉 : 〈ν〉

Ψ | Θ ` τ1 ∩ τ2 <: τ

Ψ | Θ ` 〈τ1〉 ∩ 〈τ2〉 <: 〈τ〉 : 〈+〉
Ψ | Θ ` τ <: τ1 ∪ τ2

Ψ | Θ ` 〈τ1〉 ∩ 〈τ2〉 <: 〈τ〉 : 〈−〉

Ψ | Θ ` τi <: τ1 ∪ τ2 Ψ | Θ ` τ1 ∩ τ2 <: τo

Ψ | Θ ` 〈τ1〉 ∩ 〈τ2〉 <: 〈in τi out τo〉 : 〈!〉

Figure 8.3 (contd.)

288 towards inferable and gradualizable generics

~τ ~τb~τ/Θe
τ1, ... τ1b~τ/Θe, ...

τ τb~τ/Θe
⊥ ⊥
> >
I〈~τa〉 I〈~τab~τ/Θe
αi τi where Θ = • <: ν1α1 <: •, ... and ~τ = τ1, ...
α α where @τ`, ν, τu. τ` <: να <: τu ∈ Θ
τ1 ∪ τ2 τ1b~τ/Θe ∪ τ2b~τ/Θe
τ1 ∩ τ2 τ1b~τ/Θe ∩ τ2b~τ/Θe
~τa ~τab~τ/Θe
τa

1 , ... τa
1 b~τ/Θe, ...

τa τab~τ/Θe
in τi out τo in τib~τ/Θe out τob~τ/Θe
τ I τ Ib~τ/Θe
I〈α1, ...〉 I〈α1b~τ/Θe, ...〉
I〈~τ〉 I〈~τb~τ/Θe〉
σ σb~τ/Θe
S〈~τ〉 S〈~τb~τ/Θe〉
Σ Σb~τ/Θe (belongs to Στ)

ς1 : α1.σ1, ... ς1 : α1b~τ/Θe.σ1b~τ/Θe, ...

Θ′ Θ′b~τ/Θe
τ1 <: ν1α1 <: τ′1, ... τ1b~τ/Θe <: ν1α1 <: τ′1b~τ/Θe, ...

Γ Γb~τ/Θe
p1, ... p1b~τ/Θe, ...

p pb~τ/Θe
x : τ x : τb~τ/Θe
f (τ1, ...) : τ f (τ1b~τ/Θe, ...) : τb~τ/Θe
s sb~τ/Θe (belongs to sτ)

m〈Θ!〉[Θ′](Γ)[Σ] : τ m〈Θ!b~τ/Θe〉[Θ′b~τ/Θe](Γb~τ/Θe)[Σb~τ/Θe] : τb~τ/Θe

Figure 8.4: Type-Argument Substitution

8.3 interfaces and subtyping 289

For Gen∩, joins and meets are trivially provided by arbitrary union and

intersection types, the standard rules for which define them as the join

and meet of the respective types. However, because union and intersection

types introduce their own issues, as will be evident throughout the chapter,

Genα instead ensures joins and meets exist by placing careful restrictions

on the interface hierarchy.

First, suppose unrelated interfaces B1 and B2 were to both inherit un-

related interfaces A1 and A2. Then the join B1t B2 needs to be a subtype

of both A1 and A2. In this case, this join would need to be the intersection

type A1∩ A2. Thus, in order to avoid intersection types, Genα restricts its

hierarchy to single inheritance.

Second, consider the case where we need to compute the join

I〈τ+, τ−, τ!〉 t I〈τ′+, τ′−, τ′! 〉 in the hierarchy with interface I〈+α+,−α−, !α!〉.

For the covariant arguments, we can simply recursively compute their joins.

For the contravariant arguments, we can recursively compute their meets.

For the invariant arguments, we make use of use-site variance to mitigate dif-

ferences between the type arguments, if any. That is, an Array〈in τi out τo〉

as an array of some unknown type but for which we can at least put in

τi values and get out τo values. Since the in out construct effectively splits

an invariant type into its contravariant and covariant uses, we can recur-

sively compute the meet of the input type and the join of the output type.

The input type must always be a subtype of the output type, but if they

happen to even be equivalent then the subtyping rules in Figure 8.3 will en-

sure that using in τi out τo is equivalent to using simply τi or τo. Thus the

join of this type in Genα should be I〈τ+ t τ′+, τ− u τ′−, in τ! u τ′! out τ! t τ′! 〉.

At least we would like that to be the case. But recall that I might have

constraints on its type parameters, and Genα needs those constraints

290 towards inferable and gradualizable generics

to be enforced in all corresponding type arguments. To make matters

worse, if this constructed type fails to satisfy the constraints, that does not

necessarily mean no common valid supertype exists. A valid supertype

could be constructed by using less-precise type arguments that might

happen to satisfy the constraints, or it could be constructed by upcasting to

an interface that I inherits from that might impose more lax constraints or

might not even reference the problematic type arguments at all. Worst yet,

it is possible to construct valid supertypes using both of these strategies

and with neither subsuming the other, in which case there simply is no join

at all. This is why the rule for validating the bounds on type parameters

in judgement Ψ `I 〈Θ〉 of Figure 8.2 imposes variance requirements.

These variance requirements ensure the property that, if some given type

arguments for an interface I satisfy the required constraints, then all less-

precise type-arguments (according to the variance of I) will also satisfy the

required constraints. In particular this means that joining valid types using

the strategy above will always result in a valid type. Conveniently, these

variance requirements also ensure there is a principal way to remove a type

variable from a valid type—say because the type variable is leaving scope—

while retaining validity. This property is also necessary for type-checking

Gen∩, which is why both calculi impose the variance requirements on

interface type-parameter bounds.

Third, consider the case where we instead need to compute the meet

I〈τ+, τ−, τ!〉 u I〈τ′+, τ′−, τ′! 〉 in the same hierarchy. The construction is as

before but with recursive joins and meets swapped:

I〈τ+ u τ′+, τ− t τ′−, in τ! t τ′! out τ! u τ′! 〉

8.3 interfaces and subtyping 291

However, in this case the design of Ψ `I 〈Θ〉 does not ensure this type is

valid. Instead, it ensures that, if this type is invalid, then no more-precise

instantiation of I is valid either. Thus, after constructing this type, one

simply checks the constraints and, if any of them fails, determines that ⊥

is necessarily the meet of the two types instead.

Lastly, consider the case where one type is an instantiation of I and the

other type is an instantiation of J, which I inherits from. When joining the

two types, one simply upcasts the instantiation of I into an instantiation

of J and proceeds appropriately. But when meeting the two types, one

needs to figure how to construct an instantiation of I that is a subtype of

both types. That is, one needs to figure out how to incorporate the type

arguments to J appropriately into type arguments for I. In general, this is

impossible, such as if I〈α〉 inherits J〈>〉, in which case no meet exists at

all. This is why Genα restricts the grammar of inherited interfaces τ I so

that only type parameters can be used as type arguments. This restriction

makes it clear how to incorporate the type arguments to J appropriately

into type arguments for I, ensuring the existence of meets.

8.3.5 Type-Argument Inference

Gen∩ bypasses all the issues with joins and meets by providing arbitrary

union and intersection types, but as we suggested these types introduce

their own issues. One such issue arises in type-argument inference. Con-

sider the following generic method:

flatten〈E〉(seq_of_seqs : Seq〈Seq〈E〉〉) : Seq〈E〉

292 towards inferable and gradualizable generics

This common method seems like it should always be principally inferable,

but naïvely adding arbitrary intersection types makes it not so.

Suppose we call flatten on a value of type Seq〈Seq〈Int〉 ∩ Seq〈String〉〉.

Then E could be inferred to be either Int or String, with neither being

better than the other. In fact, instead of intersection types one can use

multiple-instantiation inheritance to create a similar ambiguity in C#, one

that is even semantically meaningful.

For this reason, Gen∩ enforces principal-instantiation inheritance in its

interface hierarchy. That is, the design of the judgement Ψ | Ψ | Θ `I

~τ I in Figure 8.2 ensures that if an interface inherits both Seq〈Int〉 and

Seq〈String〉 through its various inherited interfaces, then it must also

inherit some principal instantiation of Seq, which would likely be Seq〈⊥〉

in this case due to the covariance of Seq and the presumable disjointness

of Int and String.

Gen∩ then incorporates this invariant into its subtyping system

through the second Gen∩ subtyping rule in Figure 8.3. This rule al-

lows the type arguments of intersections of interface types to be com-

bined according to their respective variances, as done by judgement

Ψ | Θ ` 〈~τ〉 ∩ 〈~τ〉 <: 〈~τa〉 : 〈Θ〉. In particular, Seq〈Int〉∩Seq〈String〉 is

considered to be a subtype of Seq〈Int∩ String〉 due to covariance of Seq.

This extension to subtyping, which we know to be decidable based on the

results in Chapter 3, makes the type argument for flatten always inferable.

In the concrete case above, E would be inferred to be Int∩String.

8.4 shapes and satisfaction 293

8.4 shapes and satisfaction

With the basics and invariants of types and subtyping in place, we now

discuss our solution to the binary-method problem: shapes. The second

pass in validating a hierarchy ensures that shapes and subshaping are well-

behaved. The third pass ensures that shape satisfaction is well-behaved.

Note that, unlike with interfaces, the design of the two calculi are nearly

identical with respect to shapes.

8.4.1 Shapes

A shape declaration cS, as shown in Figure 8.5, specifies constrained type

parameters Θ, inherited shapes σ, and signatures s of methods guaranteed

by the shape. In the second pass, we validate shapes and the inheritance

hierarchy between shapes, ignoring interface declarations entirely.

In validating a shape declaration, validation of the constrained type

parameters is much like as with interfaces. The only difference is that here

neither calculus imposes any variance requirements on the bounds. This

is because shapes are not involved in types and so are not intermediately

constructed through joins and meets. For this same reason, shapes do not

have in out type arguments. However, shapes are used in type-argument

inference, so we require principal-instantiation inheritance between shapes.

This is all that comprises the second pass of hierarchy validation.

Thus a shape is very similar to an interface. Much like how a type

being a subtype of an interface ensures it has certain methods, a type

satisfying a shape also ensures it has certain methods. But, as discussed

294 towards inferable and gradualizable generics

Shape Name S Shape σ ::= S〈~τ〉
Shape Declaration cS ::= shape S〈Θ〉 extends σ, ... {s; ...}

Shapes Validity Ψ `S Ψ

Ψ `S ∅
Ψ `S Ψ′

Ψ | Ψ′ `S Ψ′; cI

Ψ `S Ψ′ Ψ `S 〈Θ〉 Ψ | Ψ′ | Θ `S σ1, ...

Ψ `S Ψ′; shape S〈Θ〉 extends σ1, ... {•}

Shape Parameter Validity Ψ `S 〈Θ〉

Ψ `S 〈〉
Ψ `S 〈Θ〉 Ψ | Θ `? τ` Ψ | Θ `? τu Ψ | Θ ` τ` <: τu

Ψ `S 〈Θ, τ` <: να <: τu〉

Shape Inheritance Validity Ψ | Ψ | Θ `S σ, ...

Ψ | Ψ′ | Θ `S ∅

Ψ | ΨS | Θ `S σ1, ...
Ψ | Θ `+ 〈~τ〉 : 〈ΘS〉 Ψ | Θ ` σ1, ... <: σ′1b~τ/ΘSe ...

Ψ | ΨS; shape S〈ΘS〉 extends σ′1, ... {•}; ... | Θ `S σ1, ..., S〈~τ〉

Shape Covering Ψ | Θ `S σ, ... v σ

Ψ | Θ ` σ <: σ′

Ψ | Θ `S ..., σ, ... v σ′

Shape Validity and Variance Ψ | Θ `ν? σ

shape S〈ΘS〉 extends • {•} ∈ Ψ Ψ | Θ `ν? 〈~τ〉 : 〈ΘS〉
Ψ | Θ `ν? S〈~τ〉

Subshaping Ψ | Θ ` σ <: σ

Ψ | Θ ` σ <: σ

Ψ | Θ ` σ <: σ′ Ψ | Θ ` σ′ <: σ′′

Ψ | Θ ` σ <: σ′′

shape S〈ΘS〉 extends • {•} ∈ Ψ
Ψ | Θ ` 〈~τ〉 <: 〈~τ′〉 : 〈ΘS〉

Ψ | Θ ` S〈~τ〉 <: S〈~τ′〉
shape S〈ΘS〉 extends ..., σ, ... {•} ∈ Ψ

Ψ | Θ ` S〈~τ〉 <: σb~τ/ΘSe

Figure 8.5: Shapes

8.4 shapes and satisfaction 295

in Chapter 2, how they are used in the design of libraries and in the

type system are very different. That is, we are simply incorporating the

programmer behavior observed by material-shape separation directly into

the syntax of the design of the language in order to ensure decidability

and provide new functionality, as discussed next.

8.4.2 Shape Satisfaction

In the third pass, we validate conditionally satisfied shapes of interfaces

in order to ensure that shape satisfaction is well-behaved. Every interface

declares a list of conditionally satisfied shapes σI . As shown in Figure 8.6,

a conditionally satisfied shape is a shape σ along with type parameters Θ

and a shape context Σ. The idea is that the shape context specifies what

shapes must be satisfied by the various type parameters of the interface

and Θ in order for the interface to itself satisfy σ. For example, the inter-

face Seq〈+α〉 could specify that it satisfies Eq〈Seq〈β〉〉 provided that β is a

supertype of α and α satisfies Eq〈β〉. This would be syntactically written as

interface Seq〈+α〉 satisfies Eq〈Seq〈β〉〉[α <: −β][ς : α.Eq〈β〉] (where the

evidence variables ς are insignificant throughout this section), and this

definition is in fact covariant with respect to α.

In validating conditionally satsified shapes, conceptually the first thing

we check is that each conditionally satisfied shape is covariant with respect

to the type parameters of the interface. This ensures that the more precise

the type arguments are then the easier it will be to satisfy the conditions

and the more precise the resulting shape will be, both of which are im-

portant for decidability. Consequently, only covariant and invariant type

296 towards inferable and gradualizable generics

Evidence Variable ς

Conditionally Satisfied Shapes~σI ::= σI , ...
Conditionally Satisfied Shape σI ::= σ[Θ][Σ]
Shape Context Σ ::= ς : α.σ, ...
Shape Premise Στ ::= ς : τ.σ, ...
Shape Conclusion Σ<: ::= ⊥ | 〈Θ〉[Σ]

Shape Satisfactions Validity Ψ `σ Ψ

Ψ `σ ∅

Ψ `σ Ψ′

Ψ `σ Ψ′; cS

Ψ `σ Ψ′ Ψ | Ψ′ | Ψ′ | Θ `σ ~σI

Ψ | Θ `σ ~σI v τ I
1 ...

Ψ `σ Ψ′; interface I〈Θ〉 extends τ I
1 , ... satisfies~σI {•}

Conditionally Satisfied Shapes Validity Ψ | Ψ | Ψ | Θ `σ ~σI

Ψ | Ψ′ | Θ `σ ∅
Ψ | ΨI | ΨS | Θ `σ ~σI

ΨI | Θ ` 〈Θ′〉 Ψ | Θ, Θ′ `+ 〈~τ〉 : 〈ΘS〉 Ψ | Θ, Θ′ | ∅ ` [Σ]
Ψ | Θ ` ()[Σ] ; 〈Θ′ | ∅〉 Ψ | Θ, Θ′ | Σ `σ ~σI v σ1b~τ/ΘSe ...

Ψ | ΨI | ΨS; shape S〈ΘS〉 extends σ1, ... {•}; ... | Θ `σ ~σI , S〈~τ〉[Θ′][Σ]

Conditionally Satisfied Shape Covering Ψ | Θ | Στ `σ ~σI v σ

Ψ | Θ | Στ | ∅ ` ⊥
Ψ | Θ | Στ `σ ~σI v σ′

Ψ | Θ | Στ | ∅ ` 〈Θ′〉[Σ′] Ψ | Θ′ `? 〈~τ〉 : 〈Θσ〉
Ψ | Θ′ | Σ′ ` Σσb~τ/Θσe Ψ | Θ′ ` σb~τ/Θσe <: σ′

Ψ | Θ | Στ `σ ..., σ[Θσ][Σσ], ... v σ′

Conditionally Satisfied Shape Inheritance Ψ | Θ `σ ~σI v τ I

interface I〈ΘI〉 extends • satisfies σ1[Θ1][Σ1], ... {•} ∈ Ψ
Ψ | Θ, Θ1 | Σ1b~τ/ΘIe `σ ~σI v σ1 ...

Ψ | Θ `σ ~σI v I〈~τ〉

Shape-Context Validity Ψ | Θ | Σ ` [Σ]

Ψ | Θ | Σ ` []

Ψ | Θ | Σ ` [Σ′] shape S〈ΘS〉 extends σ1, ... {•} ∈ Ψ
τ` <: να <: τu ∈ Θ ` ν ≤ + Ψ | Θ `− 〈~τα〉 : 〈ΘS〉
Ψ | Θ | Σ, Σ′ ` τ`.σ Ψ | Θ | Σ, Σ′ ` α.σ1b~τ/ΘSe ...
∀~τ. Ψ | Θ | Σ, Σ′ ` τu.S〈~τ〉 =⇒ Ψ | Θ ` 〈~τα〉 <: 〈~τ〉 : 〈ΘS〉

Ψ | Θ | Σ ` [Σ′, ς : α.S〈~τα〉]

Figure 8.6: Conditionally Satisfied Shapes (see also Figures 8.7, 8.8)

8.4 shapes and satisfaction 297

parameters can be constrained. We also check that, for each conditionally

satisfied shape, the type parameters in Θ can be decidably and principally

inferred from how they are used in the conditioning shape context, which

is conceptually a special case of the type-argument inference of methods

that we will discuss later.

The second thing we check is that every shape has a principal condi-

tionally satisfied shape (if any) amongst the list. Similarly, the final thing

we check is that the conditional shapes declared by the interface subsume

those declared by the interfaces it inherits. These are important for type-

argument inference, and as a formalization convenience our particular

means of formulating these requirements ensure that all shapes condi-

tionally satisfied by the interface, including those that would be indirectly

satisfied via shape or interface inheritance, are necessarily in the list.

8.4.3 Shape Simplification

Both of these latter checks are done using the judgement Ψ | Θ | Στ `σ

~σI v σ. This judgement ensures that, given evidence that the shapes in

Στ are satisfiable, then the methods guaranteed by σ are guaranteed by

conditionally satisfied shapes in~σI . This judgement has two rules, both of

which use the judgement Ψ | Θ | Στ | ∅ ` Σ<:, where Σ<: is a conclusion

that can be deduced from the premise. This conclusion can either be that

the premise unsatisfiable and therefore the relevant method can never be

invoked (denoted ⊥), or that some stronger subtyping constraints and

shape evidence necessarily hold (denoted 〈Θ〉[Σ]).

298 towards inferable and gradualizable generics

Inferred Bounds Θ<: ::= ∅ | Θ<:, τ <: α | Θ<:, α <: τ

Shape Simplification Ψ | Θ | Στ | Θ<: ` Σ<:

Ψ | Θ<: ` 〈Θ〉; 〈Θ′〉 Ψ | Θ′ | Σ ` Σ′

Ψ | Θ | Σ | Θ<: ` 〈Θ′〉[Σ′]

interface I〈ΘI〉 extends • satisfies ..., S〈~τ′S〉[Θ′][Σ′], ... {•} ∈ Ψ
Ψ | Θ ` 〈~τa

I 〉; 〈~τI〉 | Θ! Ψ | ∅ ` S〈~τ′Sb~τI/ΘIe〉 <: S〈~τS〉; 〈Θ<:
S 〉

Ψ | Θ, Θ!, Θ′ | Στ
1 , Σ′b~τI/ΘIe, Στ

2 | Θ<:, Θ<:
S ` Σ<:

Ψ | Θ | Στ
1 , ς : I〈~τa

I 〉.S〈~τS〉, Στ
2 | Θ<: ` Σ<:

interface I〈•〉 extends • satisfies σI
1 , ... {•} ∈ Ψ

@~τ′, Θ′Σ′. S〈~τ′〉[Θ′][Σ′] ∈ {σI
1 , ...}

Ψ | Θ | ..., ς : I〈•〉.S〈•〉, ... | Θ<: ` ⊥

τ` <: να <: τu ∈ Θ Ψ | Θ | Στ
1 , ς : α.σ, ς : τ`.σ, Στ

2 | Θ<: ` Σ<:

Ψ | Θ | Στ
1 , ς : α.σ, Στ

2 | Θ<: ` Σ<:

Ψ | Θ | ..., ς : >.σ, ... | Θ<: ` ⊥
Ψ | Θ | Στ

1 , Στ
2 | Θ<: ` Σ<:

Ψ | Θ | Στ
1 , ς : ⊥.σ, Στ

2 | Θ<: ` Σ<:

Ψ | Θ | Στ
1 , τ1.σ, Στ

2 | Θ<: ` Σ<:

Ψ | Θ | Στ
1 , τ2.σ, Στ

2 | Θ<: ` Σ<:

Ψ | Θ | Στ
1 , (τ1 ∩ τ2).σ, Στ

2 | Θ<: ` Σ<:
Ψ | Θ | Στ

1 , τ1.σ, τ2.σ, Στ
2 | Θ<: ` Σ<:

Ψ | Θ | Στ
1 , (τ1 ∪ τ2).σ, Στ

2 | Θ<: ` Σ<:

Shape Satisfaction Ψ | Θ | Σ ` Στ Ψ | Θ | Σ ` τ.σ

Ψ | Θ | Σ ` τ1.σ1 ...
Ψ | Θ | Σ ` ς1 : τ1.σ1, ...

Ψ | Θ | Σ ` τ.σ
Ψ | Θ ` τ′ <: τ Ψ | Θ ` σ <: σ′

Ψ | Θ | Σ ` τ′.σ′

ς : α.σ ∈ Σ
Ψ | Θ | Σ ` α.σ Ψ | Θ | Σ ` ⊥.σ

Ψ | Θ | Σ ` τ1.σ Ψ | Θ | Σ ` τ2.σ
Ψ | Θ | Σ ` (τ1 ∪ τ2).σ

interface I〈ΘI〉 extends • satisfies ..., σ′[Θ′][Σ′], ... {•} ∈ Ψ
Ψ | Θ ` 〈~τa〉; 〈~τ〉 | Θ! Ψ | Θ, Θ! `? 〈~τ′〉 : 〈Θ′b~τ/ΘIe〉

Ψ | Θ, Θ! | Σ ` Σ′b~τ,~τ′/ΘI ,Θ′e Ψ | Θ, Θ! ` σ′b~τ,~τ′/ΘI ,Θ′e <: σ

Ψ | Θ | Σ ` I〈~τa〉.σ

shape S〈ΘS〉 extends • {•} ∈ Ψ Ψ | Θ | Σ ` τ.S〈~τ1〉
Ψ | Θ | Σ ` τ.S〈~τ2〉 Ψ | Θ ` 〈~τ1〉 ∩ 〈~τ2〉 <: 〈~τ〉 : 〈ΘS〉

Ψ | Θ | Σ ` τ.S〈~τ〉

Figure 8.7: Shape Satisfaction

8.4 shapes and satisfaction 299

Invariant Conversion ` 〈Θ〉; 〈Θ!〉

` 〈〉; 〈〉
` 〈Θ〉; 〈Θ!〉

` 〈Θ, τ` <: να <: τu〉; 〈Θ!, τ` <: !α <: τu〉

Kind-Context Validity Ψ | Θ ` 〈Θ〉

Ψ | Θ ` 〈〉

Ψ | Θ `+ τ` Ψ | Θ `− τu
Ψ | Θ ` τ` <: τu Ψ | Θ, τ` <: !α <: τu ` 〈Θ′〉

Ψ | Θ ` 〈τ` <: να <: τu, Θ′〉

Inferred-Bound Incorporation Ψ | Θ<: ` 〈Θ〉; 〈Θ′〉

Ψ | Θ<: ` 〈Θ〉; 〈Θ〉

Ψ | Θ<: ` 〈Θ〉; 〈Θ1, τ` <: να <: τu, Θ2〉
τ′` <: α ∈ Θ<: Ψ | Θ1 `? τ′′`

Ψ | Θ1 ` τ` <: τ′′` Ψ | Θ ` τ′′` <: τ′` Ψ | Θ1 ` τ′′` <: τu

Ψ | Θ<: ` 〈Θ〉; 〈Θ1, τ′′` <: να <: τu, Θ2〉

Ψ | Θ<: ` 〈Θ〉; 〈Θ1, τ` <: να <: τu, Θ2〉
α <: τ′u ∈ Θ<: Ψ | Θ1 `? τ′′u

Ψ | Θ1 ` τ` <: τ′′u Ψ | Θ ` τ′u <: τ′′u Ψ | Θ1 ` τ′′u <: τu

Ψ | Θ<: ` 〈Θ〉; 〈Θ1, τ` <: να <: τ′′u , Θ2〉

Type Bound Inference Ψ | Θ ` τ <: τ ; 〈Θ<:〉

Ψ | Θ ` τ <: α ; 〈τ <: α〉

Ψ | Θ ` α <: τ ; 〈α <: τ〉

Ψ | Θ ` τ <: τ′ ; 〈〉

Ψ | Θ `I τ <: 〈~τa〉; 〈Θ<:〉
Ψ | Θ ` τ <: I〈~τa〉; 〈Θ<:〉

Ψ | Θ ` τ <: τ1 ; 〈Θ<:
1 〉

Ψ | Θ ` τ <: τ2 ; 〈Θ<:
2 〉

Ψ | Θ ` τ <: τ1 ∩ τ2 ; 〈Θ<:
1 , Θ<:

2 〉

Shape Bound Inference Ψ | Θ ` σ <: σ ; 〈Θ<:〉

shape S〈ΘS〉 extends • {•} ∈ Ψ Ψ | Θ ` 〈~τ〉 <: 〈~τ′〉 : 〈ΘS〉; 〈Θ<:〉
Ψ | Θ ` S〈~τ〉 <: S〈~τ′〉; 〈Θ<:〉

shape S1〈Θ1〉 extends ..., S2〈~τ〉, ... {•} ∈ Ψ
shape S2〈Θ2〉 extends • {•} ∈ Ψ

Ψ | Θ ` 〈~τb~τ1/Θ1e〉 <: 〈~τ2〉 : 〈Θ2〉; 〈Θ<:〉
Ψ | Θ ` S1〈~τ1〉 <: S2〈~τ2〉; 〈Θ<:〉

Figure 8.7 (contd.)

300 towards inferable and gradualizable generics

Intersected Interface Bound Inference Ψ | Θ `I τ, ... <: 〈~τa〉; 〈Θ<:〉

Ψ | Θ ` 〈~τa〉; 〈~τ〉 | Θ! Ψ | Θ, Θ! `I ~τ1, I′〈~τ〉,~τ2 <: 〈~τa
I 〉; 〈Θ<:〉

Ψ | Θ `I ~τ1, I′〈~τa〉,~τ2 <: 〈~τa
I 〉; 〈Θ<:〉

interface I〈ΘI〉 extends • satisfies • {•} ∈ Ψ
Ψ | Θ ` 〈~τ1〉, ... <: 〈~τa

I 〉 : 〈ΘI〉; 〈Θ<:〉
Ψ | Θ `I I〈~τ1〉, ... <: 〈~τa

I 〉; 〈Θ<:〉

interface I′〈Θ′〉 extends ..., I〈~τ′〉, ... satisfies • {•} ∈ Ψ
Ψ | Θ `I ~τ1, I〈~τ′b~τ/Θ′e〉,~τ2 <: 〈~τa〉; 〈Θ<:〉

Ψ | Θ `I ~τ1, I′〈~τ〉,~τ2 <: 〈~τa
I 〉; 〈Θ<:〉

Ψ | Θ `I ~τ1,⊥,~τ2 <: 〈~τa
I 〉; 〈〉

Ψ | Θ `I ~τ1,~τ2 <: 〈~τa
I 〉; 〈Θ<:〉

Ψ | Θ `I ~τ1,>,~τ2 <: 〈~τa
I 〉; 〈Θ<:〉

Ψ | Θ `I ~τ1, τ1,~τ2 <: 〈~τa
I 〉; 〈Θ<:

1 〉
Ψ | Θ `I ~τ1, τ2,~τ2 <: 〈~τa

I 〉; 〈Θ<:
2 〉

Ψ | Θ `I ~τ1, τ1 ∪ τ2,~τ2 <: 〈~τa
I 〉; 〈Θ<:

1 , Θ<:
2 〉

Ψ | Θ `I ~τ1, τ1, τ2,~τ2 <: 〈~τa
I 〉; 〈Θ<:〉

Ψ | Θ `I ~τ1, τ1 ∩ τ2,~τ2 <: 〈~τa
I 〉; 〈Θ<:〉

Intersected Type-Arguments
Bound Inference

Ψ | Θ `〈Θ〉 〈~τ〉, ... <: 〈~τa〉; 〈Θ<:〉

Ψ | Θ `〈〉 〈〉, ... <: 〈〉; 〈〉

Ψ | Θ `〈Θ′〉 〈~τ1〉, ... <: 〈~τa〉; 〈Θ<:〉 Ψ | Θ `ν τ1, ... <: τa ; 〈Θ<:
α 〉

Ψ | Θ `〈Θ′,•<:να<:•〉 〈~τ1, τ1〉, ... <: 〈~τa, τa〉 :; 〈Θ<:, Θ<:
α 〉

Intersected Type-Argument Bound Inference Ψ | Θ `ν τ, ... <: τa ; 〈Θ<:〉

Ψ | Θ ` τ1 ∩ ... <: τ ; 〈Θ<:〉
Ψ | Θ `+ τ1, ... <: τ ; 〈Θ<:〉

Ψ | Θ ` τ <: τ1 ∪ ... ; 〈Θ<:〉
Ψ | Θ `− τ1, ... <: τ ; 〈Θ<:〉

Ψ | Θ ` τ <: τ1 ∪ ... ; 〈Θ<:
− 〉 Ψ | Θ ` τ1 ∩ ... <: τ ; 〈Θ<:

+ 〉
Ψ | Θ `! τ1, ... <: τ ; 〈Θ<:

− , Θ<:
+ 〉

Ψ | Θ ` τi <: τ1 ∪ ... ; 〈Θ<:
i 〉 Ψ | Θ ` τ1 ∩ ... <: τo ; 〈Θ<:

o 〉
Ψ | Θ `! τ1, ... <: in τi out τo ; 〈Θ<:

i , Θ<:
o 〉

Figure 8.7 (contd.)

8.4 shapes and satisfaction 301

As an example of an unsatisfiable premise, suppose the interface Values

extends Seq〈>〉. The type > is not equatable with anything; if it were it

would defeat the whole point of trying for type-safe equality. Consequently,

Values should not need to be equatable since its elements are not. This

is reflected in the fact that Ψ | ∅ | ς : >.Eq〈>〉 | ∅ ` ⊥ is provable in

our system, as formalized in Figure 8.7. In particular, since > satisfies no

shapes, the evidence ς is necessarily unconstructable and so the assumed

premise is in fact unsatisfiable.

Even if the premise is satisfiable, our system is able to infer some useful

conclusions from it. For example, suppose Graph〈L〉 extends Set〈Node〈L〉〉,

where Set〈E〉 is equatable with itself (using set equality) if E is, and

similarly Node〈L〉 is equatable with itself if L is. Because Graph〈L〉 ex-

tends Set〈Node〈L〉〉, it must be equatable with other sets of nodes pro-

vided Node〈L〉 is equatable with itself. Using the judgement Ψ | Θ | Στ |

∅ ` 〈Θ′〉[Σ′], our system is able to infer from the fact that Node〈L〉 is

presumed to be equatable with itself (i.e. ς : Node〈L〉.Eq〈Node〈L〉〉 is in Στ),

then the only way this can be true given the definition of Node is if L is

in fact equatable with itself (i.e. and so ς′ : L.Node〈L〉 can be in Σ′). Thus

Graph〈L〉 can satisfy its conditional shape inherited from Seq〈Node〈L〉〉 via

the declaration satisfies Eq〈Seq〈Node〈L〉〉〉(ς : L.Eq〈L〉).

Note that this reasoning relies on the fact that the only way evidence

can be constructed is through the declarations specified by interfaces.

This is not the case in systems that use implicit arguments [Odersky,

Altherr, et al., 2014, Chapter 7] or models [Zhang, Loring, et al., 2015]

to address the binary-method problem. The advantage of those systems

is that programmers can supply alternative notions of equality, such as

case-insensitive equality on strings, and expect reasonable support for

302 towards inferable and gradualizable generics

this common customization. The disadvantage is that implementations

of, say, a contains method cannot reliably optimize for the standard no-

tion of equality because they cannot be sure which notion of equality the

implementation of contains will need to support. For example, an imple-

mentation of Graph〈Integer〉 might want to take advantage of the fact that

its node-set is backed by a hashmap from integer labels to their respective

nodes. In our system it can, but in systems that permit alternative evidence

this implementation must always fall back on inefficient general-purpose

algorithms in case the given notion of equality on integers is, say, modulo

some prime number. Thus there is a design tradeoff here, and it would

be interesting future work to design a language that can conveniently

combine the functionalities and insights of both alternatives.

8.5 method signatures and type-argument inferability

With the infrastructure for types, subtyping, shapes, and shape satisfaction

in place, we now proceed to the final pass of hierarchy validation: method

signatures. This pass ensures that all method signatures have the property

that, for any given arguments, type arguments can always be inferred to

produce a principal return type (if there is a valid set of type arguments at

all). Using that property, this pass also ensures that interfaces provide the

methods required by the declared inherited interfaces and conditionally

satisfied shapes. (For simplicity, the formalization requires interfaces du-

plicate rather than simply reuse inherited method signatures.) Again, the

design of method signatures is nearly identical for the two calculi.

8.5 method signatures and type-argument inferability 303

Method Name m Program Variable x Function Variable f

Method Signature s ::= m〈Θ!〉[Θ](Γ)[Σ] : τ

Program Context Γ ::= p; ...
Program Parameter p ::= x : τ | f (τ, ...) : τ

Inhabitation ι ::= ↑ | ↓

Signatures Validity Ψ `s Ψ

Ψ `s ∅

Ψ `s Ψ′ Ψ | Θ | Σ ` s1 ...
Ψ | Θ | ∅ ` {s1; ...} v σ1 ...

Ψ `s Ψ′; shape S〈Θ〉 extends σ1, ... {s1; ...}

Ψ `s Ψ′ Ψ | Θ | ∅ ` s1 ...
Ψ | Θ | ∅ ` {s1; ...} v ~τ I Ψ | Θ, Θ1 | Σ1 ` {s1; ...} v σ1 ...

Ψ `s Ψ′; interface I〈Θ〉 extends ~τ I satisfies σ1[Θ1][Σ1], ... {s1; ...}

Method-Signature Validity Ψ | Θ | Σ ` s

Ψ | Θ ` 〈Θ!
e, Θi〉 ` 〈Θi〉; 〈Θ!

i〉
Ψ | Θ, Θ!

e, Θ!
i ` (Γm) Ψ | Θ, Θ!

e, Θ!
i | Σ ` [Σm] Ψ | Θ, Θ!

e, Θ!
i `+ τm

` 〈Θ〉; 〈Θ!〉 Ψ | Θ!, Θ!
e ` (Γm)[Σm] ; 〈Θi | ∅〉

Ψ | Θ | Σ ` m〈Θ!
e〉[Θi](Γm)[Σm] : τm

Method-Signature Inferability Ψ | Θ ` (Γ)[Σ] ; 〈Θ | Θ!〉

Ψ | Θ! ` ()[] ; 〈∅ | Θ!
u〉

Ψ | Θ! ` (Γ)[Σ] ; 〈Θi | Θ!
u〉 Ψ | Θ!, Θi, Θ!

u `− τ

Ψ | Θ! ` (Γ; x : τ)[Σ] ; 〈Θi | Θ!
u〉

Ψ | Θ! ` (Γ)[Σ] ; 〈Θi | Θ!
u〉

Ψ | Θ!, Θi `+ τ1 ... Ψ | Θ!, Θi, Θ!
u `− τ

Ψ | Θ! ` (Γ; f (τ1, ...) : τ)[Σ] ; 〈Θi | Θ!
u〉

Ψ | Θ! ` (Γ)[Σ] ; 〈Θi | Θ!
u〉 Θ!, Θi `+ α Ψ | Θ!, Θi, Θ!

u `− σ

Ψ | Θ! ` (Γ)[Σ, ς : α.σ] ; 〈Θi | Θ!
u〉

Ψ | Θ! ` (Γ)[Σ] ; 〈Θi | τ` <: !α <: τu, Θ!
u〉

Ψ | Θ!, Θi `+ τ` Ψ | Θ!, Θi `− τu

` 〈Θi〉; 〈Θ!
i〉 Ψ | Θ!, Θ!

i, τ` <: να <: τu, Θ!
u ` (Γ)[Σ] ; να

Ψ | Θ! ` (Γ)[Σ] ; 〈Θi, τ` <: να <: τu | Θ!
u〉

Figure 8.8: Method Signatures

304 towards inferable and gradualizable generics

Principal Inferability Ψ | Θ ` (Γ)[Σ] ; να

x : τ ∈ Γ
Ψ | Θ ` +τ↓; !α↑
Ψ | Θ ` (Γ)[Σ] ; !α

x : τ ∈ Γ
ς : α′.σ ∈ Σ Ψ | Θ ` +τ↓; να′↓

Ψ | Θ ` +σ↓; !α↑
Ψ | Θ ` (Γ)[Σ] ; !α

Ψ | Θ ` (Γ)[Σ] ; ν±α

Ψ | Θ ` (p1) ; ν±α ...
Ψ | Θ ` +σ1↑; ν±α↑ ...

Ψ | Θ ` (p1, ...)[α1.σ1, ...] ; ν±α

Parameter Inferability Ψ | Θ ` (p) ; ν±α

Ψ | Θ ` +τ↓; ν±α↑
Ψ | Θ ` (x : τ) ; ν±α

Ψ | Θ ` +τ↑; ν±α↑
Ψ | Θ ` (f (τ1, ...) : τ) ; ν±α

Type/Shape Inferability Ψ | Θ ` ντmι ; ναι

interface I〈ΘI〉 extends • satisfies • {•} ∈ Ψ
` ν ≤ + Ψ | Θ ` ν〈~τa〉ι : 〈ΘI〉; ναα

Ψ | Θ ` νI〈~τa〉ι ; ναα↑
Ψ | Θ `−∗ν±∗ν τ

Ψ | Θ ` ντι ; ν±α↑

shape S〈ΘS〉 extends • {•} ∈ Ψ
Ψ | Θ ` +〈~τa〉ι : 〈ΘS〉; ναα

Ψ | Θ ` +S〈~τa〉ι ; ναα↑
` ν ≤ να ι ` ια

Ψ | Θ ` ναι ; νααια

Ψ | Θ ` +τ1ι ; νααι1
Ψ | Θ ` +τ2ι ; νααι2 ι1, ι2 ` ια

Ψ | Θ ` +(τ1 ∩ τ2)ι ; νααια

Ψ | Θ ` −τ1↑; ν±α↑
Ψ | Θ ` −τ2↑; ν±α↑

Ψ | Θ ` −(τ1 ∪ τ2)↑; ν±α↑

Type-Arguments Inferability Ψ | Θ ` ν〈~τa〉ι : 〈Θ〉; να

Ψ | Θ ` ν〈〉ι : 〈〉; ν±α

Ψ | Θ ` ν〈~τa〉ι : 〈Θ′〉; ν±α Ψ | Θ ` (ν′ ∗ ν)τ↑; ν±α↑
Ψ | Θ ` ν〈~τa, τ〉ι : 〈Θ′, • <: ν′α′ <: •〉; ν±α

Ψ | Θ ` ν〈~τa〉ι : 〈Θ′〉; ν±α
Ψ | Θ ` (− ∗ ν)τi↑; ν±α↑ Ψ | Θ ` ντo↑; ν±α↑
Ψ | Θ ` ν〈~τa, in τi out τo〉ι : 〈Θ′, • <: !α′ <: •〉; ν±α

i ∈ {1, ...} Ψ | Θ ` (νi ∗ ν)τa
i ↑; !α↑

Ψ | Θ ` ν〈τa
1 , ...〉↓ : 〈• <: ν1α1 <: •, ...〉; !α

Figure 8.8 (contd.)

8.5 method signatures and type-argument inferability 305

Inhabitation ι, ... ` ι ι, ... ` ↑ ..., ↓, ... ` ↓

Interface Inheritance
Ψ | Θ | Σ ` {s; ...} v ~τ I

Ψ | Θ | Σ ` {s; ...} v τ I

Ψ | Θ | Σ ` {s; ...} v τ

Ψ | Θ | Σ ` {s1; ...} v ∅
Ψ | Θ | Σ ` {s1; ...} v τ I

1 ...

Ψ | Θ | Σ ` {s1; ...} v τ I
1 , ...

interface I〈ΘI〉 extends • satisfies • {s′1; ...} ∈ Ψ
Ψ | Θ | Σ ` {s1; ...} v s′1b~τ/ΘIe ...

Ψ | Θ | Σ ` {s1; ...} v I〈~τ〉

Shape Inheritance Ψ | Θ | Σ ` {s; ...} v σ

shape S〈ΘS〉 extends • {s′1; ...} ∈ Ψ
Ψ | Θ | Σ ` {s1; ...} v s′1b~τ/ΘSe ...

Ψ | Θ | Σ ` {s1; ...} v S〈~τ〉

Method Inheritance Ψ | Θ | Σ ` {s; ...} v sτ

Ψ | Θ, Θ!
e, Θi | Σ, Στ ` ⊥

Ψ | Θ | Σ ` {s1; ...} v m〈Θ!
e〉[Θi](Γ)[Στ] : τ

Ψ | Θ, Θ!
2, Θ2 | Σ, Στ

2 ` 〈Θ′〉[Σ′]
Θ!

2 = • <: ν1α1 <: •, ... Ψ | Θ′ `? 〈α1, ...〉 : 〈Θ!
1〉

Ψ | Θ′ `? 〈~τ〉 : 〈Θ1bα1,.../Θ!
1e〉 Ψ | Θ′ ` (Γ2) <: (Γ1bα1,...,~τ/Θ!

1,Θ1e)
Ψ | Θ′ | Σ′ ` Σ1bα1,...,~τ/Θ!

1,Θ1e Ψ | Θ′ ` τ1bα1,...,~τ/Θ!
1,Θ1e <: τ2

Ψ | Θ | Σ ` {...; m〈Θ!
1〉[Θ1](Γ1)[Σ1] : τ1; ...} v m〈Θ!

2〉[Θ2](Γ2)[Στ
2] : τ2

Program Context Validity Ψ | Θ ` (Γ) Ψ | Θ ` (p)

Ψ | Θ ` (p1) ...
Ψ | Θ ` (p1, ...)

Ψ | Θ `− τ

Ψ | Θ ` (x : τ)

Ψ | Θ `+ τ1 ... Ψ | Θ `− τ

Ψ | Θ ` (f (τ1, ...) : τ)

Program-Context Subtyping Ψ | Θ ` (Γ) <: (Γ) Ψ | Θ ` (p) <: (p)

Ψ | Θ ` (p1) <: (p′1) ...
Ψ | Θ ` (p1, ...) <: (p′1, ...)

Ψ | Θ ` τ <: τ′

Ψ | Θ ` (x : τ) <: (x : τ′)

Ψ | Θ ` τ′1 <: τ1 ... Ψ | Θ ` τ <: τ′

Ψ | Θ ` (f (τ1, ...) : τ) <: (f (τ′1, ...) : τ′)

Figure 8.8 (contd.)

306 towards inferable and gradualizable generics

8.5.1 Method Signatures

As shown in Figure 8.8, a method signature s is comprised of 6 parts:

the method name m, the explicit type parameters Θ!, the inferable type

parameters Θ, the explicit program parameters Γ, the inferable shape

evidence Σ, and the return type τ. In practice, many of these components

will often be empty and simply omitted. When invoking a method, the

inferable components will always be omitted because they will always

be guaranteed to be unambiguously inferable. So while the formalism

is complex, in practice much of this complexity is optional and will be

forgone except for precisely the cases that truly need it.

Notice that the grammar indicates that each inferable type parameter

has a specified variance. In practice, these variances can be inferred in all

but a few cases from how these type parameters are used elsewhere in the

signature, but for simplicity we make them explicit in our formalism. The

variance of an inferable type parameter specifies which inference strategy

to employ. For invariant type parameters, the signature must ensure that

the corresponding type argument will always be uniquely determined by

the types of the arguments. For covariant type parameters, constraints will

be collected and then the inferred type argument will be the minimal type

satisfying those constraints (if any). For contravariant type parameters,

upper-bound constraints will be collected and then the inferred type

argument will be the maximal type satisfying those constraints (if any).

In validating a method signature, the majority of the work is checking

that the various components are valid and have the appropriate variance

with respect to the type variables in the outer context, as is standard.

8.5 method signatures and type-argument inferability 307

Notice that the return type must be covariant with respect to the declared

variances on the inferable type parameter in addition to the outer context.

This means that the above inference strategies are guaranteed to produce

the most precise return type possible, thus ensuring a principal type for

any invocation of this signature.

With these strategies in mind, method-signature validity also checks that

the type parameters are principally inferable from the inputs to the method.

This check is done using the judgement Ψ | Θ ` (Γ)[Σ] ; 〈Θ | Θ!〉. The

purpose of this judgement is to ensure that there will be a principal type

argument for each type parameter given their declared inference strategies,

and to ensure that there is a computable sequential process for determining

these principal type arguments. But before we discuss inferability, we must

first discuss another oddity of our calculi.

8.5.2 Higher-Order Parameters

Lambda expressions have become omnipresent in major nominal object-

oriented languages. As such, any practical calculus for generics needs to

support them, or at least support the concept. Unfortunately, they pose a

key challenge for decidable type-checking. In particular, practicality seems

to necessitate handling lambda expressions with unannotated parameter

types. And while languages without subtyping can overcome this chal-

lenge by using unification [Hindley, 1969; Milner, 1978], the problem is in

general undecidable for languages with subtyping [Pierce, 1992].

We address this by making lambdas be arguments but not expressions.

That is, a method can specify a higher-order parameter f (τ1, ...) : τ, and

308 towards inferable and gradualizable generics

an invocation can then provide a (named) argument f (x, ...) 7→ e. This

compromise seems to be practical enough, given that C# and Java both

effectively restrict the use of lambda expressions to when such context

is available [ECMA TC39-TG2, 2017, §12.16] [Gosling, Joy, Steele, Bracha,

and Buckley, 2015, §15.27]. In fact, both Kotlin and Ceylon have adopted

a specialized syntax for higher-order parameters very much like our

own [JetBrains, 2019, Higher-Order Functions and Lambdas] [King, 2013,

§1.3.4]. This syntax has the added advantage that, since higher-order

parameters are not themselves values (e.g. do not have type>), the closures

providing higher-order arguments can be allocated on the stack by default

rather than the heap, making higher-order method invocation much more

efficient.

This syntax also makes it clear that higher-order parameters interact

differently with inference than do functional interfaces. For example, with

the higher-order parameter f (α) : β, the type variable α needs to be

covariantly (or invariantly) inferred so that a minimal type argument

for α provides a most-precise input type to the argument corresponding

to f , which can then be used to infer the type of β. On the other hand, a

parameter of type Fun〈α, β〉 can even be used to constrain a contravariantly

inferred type parameter α because the corresponding argument’s type will

necessarily have a known principal instantiation of Fun.

Another important constraint on using higher-order parameters is that

the input types must be completely inferable without the output type being

known. For example, the signature repeat〈T〉(init: T; step(T): T): T

in interface Nat is uninferable (regardless of what inference strategy one

uses for T). To see why, suppose nat is a Nat and consider the invo-

cation nat.repeat(init 7→ empty; step(s) 7→ singleton(s)), where

8.5 method signatures and type-argument inferability 309

empty has type Seq〈⊥〉, and where singleton has signature [+α](α) :

Seq〈α〉. One could infer T to be Seq〈>〉, but one could also infer T to be

Seq〈Seq〈>〉〉, which results in a more-precise return type. In fact, this

generalizes to an infinite chain of more-precise type arguments for T, but

there is no valid type argument that lower-bounds this chain. As such, it

is not simply that we cannot figure out how to infer the type argument

for repeat; there in fact is no principal type argument for repeat. So in

our system, T would have to be changed to an explicit type parameter.

Nonetheless, many other common and important examples like map have

completely inferable type parameters.

8.5.3 Inferability

Now we discuss the judgement Ψ | Θ ` (Γ)[Σ] ; 〈Θ | Θ!〉, which ensures

that one can always infer principal type arguments for the inferable type

parameters from the given program arguments due to the structure of

the program parameters Γ and shape evidence Σ. The first rule of this

judgement indicates that the validation process begins with no parameters,

no shape constraints, and all the type parameters in the uninferred bin

to the right. The remaining rules then process one component of the

signature at a time, until eventually the entire signature is determined to

be inferable.

The simplest component to add is a first-order parameter x : τ. The

one requirement is that the corresponding argument for this parameter

should not impose any new constraints that might have affected the type

parameters that have already been inferred. This is ensured by checking

310 towards inferable and gradualizable generics

that τ is contravariant with respect to those type parameters. Note that

the corresponding argument can still affect whether or not the inferred

type arguments are valid, but the contravariance of τ ensures that if the

type arguments are now made to be invalid, then there necessarily are no

type arguments that could be valid, and so the method invocation must

be rejected.

When adding a higher-order parameter f (τ1, ...) : τ, we first ensure

that the input types τ1 are covariant with respect to the inferred type

parameters and make no reference to the uninferred type parameters. This

means that, given the corresponding higher-order argument, we can infer

its return type from these inferred input types and use that to constrain the

remaining uninferred type parameters. So lastly we ensure that the return

type τ does not introduce any new constraints on the already inferred

type parameters.

When adding shape evidence ς : α.σ, we first ensure that α has already

been inferred. This allows us to determine its corresponding principal

instantiation of σ, whose determination we then ensure does not impose

new constraints on the already inferred type parameters.

When inferring a type parameter α, we first ensure that its bounds

are easier to satisfy the more precisely we infer type arguments for the

already inferred type parameters. The judgement Ψ | Θ ` (Γ)[Σ] ; να

then ensures that α is principally inferable based on how it occurs in the

determined argument and evidence types. For invariant type parameters,

α must occur in a uniquely-determining position of a type that is guaran-

teed to be inhabited when the method is called. (Unfortunately, α cannot

be inferred from possibly-uninhabited types due to the possibility of ⊥

being nested in the corresponding type argument). For co/contravariant

8.5 method signatures and type-argument inferability 311

arguments, we must check that the given argument and evidence types un-

ambiguously constrain α on the appropriate side. For Genα, this is always

the case, but for Gen∩ the presence of arbitrary union and intersection

types can cause ambiguities.

Altogether, the proof search for this judgement is decidable, and the

resulting proof precisely informs the type-checker and run-time system

how to determine the necessary type arguments, infer the parameters and

return types of the higher-order arguments, and construct the required

shape evidence. Note that multiple proofs are possible, resulting in dif-

ferent inference strategies, but all these strategies will result in the same

conclusion, thereby providing semantic coherence as needed for gradual

typing and for intersecting return types.

8.5.4 Inheritance

After checking that all the method signatures of a given interface or shape

are inferable, we then use judgements Ψ | Θ | Σ ` {s1; ...} v ~τ I/σ to

check that these signatures subsume the methods of inherited interfaces

or (conditionally satisfied) shapes. For this, we simply check whether the

invocation of the method signature would succeed given the environment

provided by the inherited method signature, relying on the fact that type-

argument inference for the method signature has already been guaranteed

to be decidable. This enables our system to be much more flexible in how

subinterfaces satisfy the requirements of superinterfaces.

For example, consider the following hierarchy (using shorthands):

312 towards inferable and gradualizable generics

shape Eq〈−T〉 { equals(T): Bool;}
interface Num satisfies Eq〈Num〉{ equals(Num): Bool;...;}
interface Int extends Num satisfies Eq〈Num〉 { equals(Num): Bool;...;}
interface Set〈+E〉 { contains[+F:>E](F)[F.Eq〈F〉]: Bool;...;}
interface BitSet extends Seq〈Int〉 { contains(Num): Bool;... }

Besides BitSet, this hierarchy is fairly standard among related work on

generics. The interface Set might seem to have a complex signature for

contains, but this complexity is necessary for two reasons. First, we want

Set to be covariant, which means it cannot have the method contains(E).

Second, one cannot properly implement contains without a proper notion

of equality. Parameterizing the method by a type variable lower-bounded

by E solves the first problem, and adding the Eq constraint or implicit/in-

ferred argument solves the second problem.

What is surprising is that BitSet’s signature for contains is allowed to

forgo all this complexity despite inheriting Set. This is for two reasons.

The first is that the inferred type arguments and constructed shape

evidence are not actually run-time arguments in our system; type argu-

ments are merely guaranteed to exist and can be constructed by the callee

(rather than the caller) if needed, and shape evidence merely guarantees

that methods can be invoked on instances of the appropriate type. This

dynamic inference is in fact necessary to address the problem we identified

with Singleton in Section 8.2.4 so that we can ensure semantic coherence

for gradual typing. And since many type parameters are inferable, this

means that our system can reify types much less frequently than prior

systems with reifable generics.

The second is that, because the type parameter F of the inherited method

is a supertype of E, which is Int for BitSet, and because F is assumed

to satisfy Eq〈F〉, our shape-simplification judgement can in fact infer that

8.5 method signatures and type-argument inferability 313

F must be also be a subtype of Num. This is because F’s lower bound,

Int, principally satisfies Eq〈Num〉, guaranteeing that Eq〈Num〉 is a subshape

of Eq〈F〉, which by contravariance can only be true if F is a subtype of Num.

Consequently, the inherited signature’s parameter of type F is necessarily

a valid argument of type Num.

So by combining insights from decidable type-argument inference and

the (dynamic) gradual guarantee, our system is able to permit BitSet

to have a simple, intuitive, and type-safe signature for contains that

furthermore supports the obvious efficient implementation a bit-set can

provide for containment of numbers with the standard notion of equality.

8.5.5 Practicality

One might wonder whether the inferability requirements we impose are

practical. We have evaluated their practicality in two ways. For our first

evaluation, we have conducted a corpus study, analyzing the inferability

of the generic methods in the collection libraries for Java, C#, Kotlin, and

Ceylon. We found that, of the 724 generic methods across these libraries,

84% would be inferable in our Gen∩ calculus, and 95% would be inferable

with some slight functional-preserving redesign. More details can be

found in Appendix D.1. For our second evaluation, we designed a simple

collection library specifically for our Gen∩ calculus. We were able to make

most methods inferable, and we could even add more the functionality

and stronger type-safety to the above existing collection libraries. Our

collection library can be found in Appendix D.2.

314 towards inferable and gradualizable generics

Expression e ::= x | f (e, ...) | let x := e in e | throw
| if eg then e else e | object x : I〈~τ〉 {d; ...}
| em.m〈~τ〉(a; ...) | capture e as x : I〈~α!〉 in e
| capture x as I〈~α!〉 in e

Guard Expression eg ::= α satisfies σ as ς | τ <: α | α <: τ

| e is x : τ | x is τ

Receiver Expression em ::= e | e@ς

Program Argument a ::= x 7→ e | f (x, ...) 7→ e
Capture Variables ~α! ::= α!, ...
Receiver Type τm ::= τ | σ

Method Definition d ::= s 7→ e
Capture Variable α! ::= α | _

Method-Definition Typing Ψ | Θ! | Σ | Γ ` d

Ψ | Θ! | Σ ` m〈Θ!
e〉[Θi](Γm)[Σm] : τ

` 〈Θi〉; 〈Θ!
i〉 Ψ | Θ!, Θ!

e, Θ!
i | Γ, Γm | Σ, Σm ` e : τ

Ψ | Θ! | Σ | Γ ` m〈Θ!
e〉[Θi](Γm)[Σm] : τ 7→ e

Method-Invocation Typing Ψ | Θ! | Σ ` τm.m〈~τ〉(Γ) : τ

Ψ | Θ! | Σ ` ⊥.m〈•〉(•) : ⊥ Ψ | Θ! | Σ ` •.m〈•〉(...; x : ⊥; ...) : ⊥

Ψ | Θ! | Σ ` τm.m〈~τ〉(Γ) : τ Ψ | Θ! | Σ ` τ′m.m〈~τ〉(Γ) : τ

Ψ | Θ! | Σ ` (τm ∪ τ′m).m〈~τ〉(Γ) : τ

Ψ | Θ! | Σ ` τm.m〈~τ〉(Γ) : τ Ψ | Θ! | Σ ` τ′m.m〈~τ〉(Γ) : τ′

Ψ | Θ! | Σ ` (τm ∩ τ′m).m〈~τ〉(Γ) : τ ∩ τ′

Ψ ` τm.m〈Θ!
m〉[Θm](Γm)[Στ

m] : τ Ψ | Θ! `? 〈~τ〉 : 〈Θ!
m〉

Ψ | Θ! `? 〈~τ′〉 : 〈Θmb~τ/Θ!
me〉 Ψ | Θ! | Σ ` Στ

mb~τ,~τ′/Θ!
m,Θme

Ψ | Θ! | Σ ` τm.m〈~τ〉(Γmb~τ,~τ′/Θ!
m,Θme) : τb~τ,~τ′/Θ!

m,Θme

Ψ | Θ! ` τm <: τ′m
Ψ | Θ! ` (Γ) <: (Γ′) Ψ | Θ! ` τ <: τ′ Ψ | Θ! | Σ ` τm.m〈~τ〉(Γ′) : τ

Ψ | Θ! | Σ ` τ′m.m〈~τ〉(Γ) : τ′

Figure 8.9: Expressions

8.6 expressions and type-checking 315

Expression Typing Ψ | Θ! | Σ | Γ ` e : τ Ψ | Θ! | Σ | Γ ` em : τm

Ψ | Θ! | Σ | Γ ` e : τ

Ψ | Θ! ` τ <: τ′

Ψ | Θ | Σ ` e : τ′

ς : α.σ ∈ Σ
Ψ | Θ! | Σ | Γ ` e : α

Ψ | Θ! | Σ | Γ ` e@ς : σ

x : τ ∈ Γ

Ψ | Θ! | Σ | Γ ` x : τ

f (τ1, ...) : τ ∈ Γ
Ψ | Θ! | Σ | Γ ` e1 : τ1 ...

Ψ | Θ! | Σ | Γ ` f (e1, ...) : τ

Ψ | Θ! | Σ | Γ ` ex : τx Ψ | Θ! | Σ | Γ; x : τx ` e : τ

Ψ | Θ! | Σ | Γ ` let x := ex in e : τ

Ψ | Θ! | Σ | Γ ` throw : ⊥

Ψ | Θ! | Σ | Γ ` eg : Θ!
g | Σg | Γg

Ψ | Θ!
g | Σg | Γg ` et Ψ | Θ! | Σ | Γ ` e f : τ

Ψ | Θ! | Σ | Γ ` if eg then et else e f : τ

Ψ | Θ! `? I〈~τ〉
Ψ | Θ! | Σ | Γ; x : I〈~τ〉 ` s1 7→ e1 ... Ψ | Θ! | Σ ` {s1; ...} v I〈~τ〉

Ψ | Θ! | Γ | Σ ` object x : I〈~τ〉 {s1 7→ e1; ...} : I〈~τ〉

Ψ | Θ! `? τ1 ... Ψ | Θ! | Σ | Γ ` (a1) : (p1) ...
Ψ | Θ! | Σ | Γ ` em : τm Ψ | Θ! | Σ ` τm.m〈τ1, ...〉(p1; ...) : τ

Ψ | Θ! | Σ | Γ ` em.m〈τ1, ...〉(a1; ...) : τ

Ψ | Θ! | Σ | Γ ` e : I〈~τa〉
` 〈~α!〉 := 〈~τa〉; 〈~τ〉 | Θ!

α Ψ | Θ!, Θ!
α | Σ | Γ; x : I〈~τ〉 ` ex : τ

Ψ | Θ! | Σ | Γ ` capture e as x : I〈~α!〉 in ex : τ

Ψ | Θ! ` τ <: I〈~τa〉
` 〈~α!〉 := 〈~τa〉; 〈~τ〉 | Θ!

α Ψ | Θ!, Θ!
α | Σ | Γ1; x : τ ∩ I〈~τ〉; Γ2 ` ex : τ

Ψ | Θ! | Σ | Γ1; x : τ; Γ2 ` capture x as I〈~α!〉 in ex : τ

Ψ | Θ! | Σ | Γ ` e : τ1 Ψ | Θ! | Σ | Γ ` e : τ2

Ψ | Θ! | Σ | Γ ` e : τ1 ∩ τ2

Figure 8.9 (contd.): Expressions (Generics)

316 towards inferable and gradualizable generics

Guard-Expression Typing Ψ | Θ! | Σ | Γ ` eg : Θ! | Σ | Γ

Ψ | Θ! | Σ ` [ς : α.σ]

Ψ | Θ! | Σ | Γ ` α satisfies σ as ς : Θ! | Σ, ς : α.σ | Γ

Θ! = Θ!
1, τ` <: !α <: τu, Θ!

2 Ψ | Θ!
1 `? τ Ψ | Θ!

1 ` τ` <: τ

Ψ | Θ!
1 ` τ <: τu Ψ | Θ!

1, τ <: !α <: τu, Θ!
2 | ∅ ` [Σ]

Ψ | Θ! | Σ | Γ ` τ <: α : Θ!
1, τ <: !α <: τu, Θ!

2 | Σ | Γ

Θ! = Θ!
1, τ` <: !α <: τu, Θ!

2 Ψ | Θ!
1 `? τ Ψ | Θ!

1 ` τ` <: τ

Ψ | Θ!
1 ` τ <: τu Ψ | Θ!

1, τ` <: !α <: τ, Θ!
2 | ∅ ` [Σ]

Ψ | Θ! | Σ | Γ ` α <: τ : Θ!
1, τ` <: !α <: τ, Θ!

2 | Σ | Γ

Ψ | Θ! | Σ | Γ ` e : >
Ψ | Θ! | Σ | Γ ` e is x : τ : Θ! | Σ | Γ; x : τ

Ψ | Θ! | Σ | Γ1; x : τ′; Γ2 ` x is τ : Θ! | Σ | Γ1; x : τ′ ∩ τ; Γ2

Method Lookup Ψ ` τm.sτ

interface I〈ΘI〉 extends • satisfies • {...; s; ...} ∈ Ψ
Ψ ` I〈~τ〉.sb~τ/ΘIe

shape S〈ΘI〉 extends • {...; s; ...} ∈ Ψ
Ψ ` S〈~τ〉.sb~τ/ΘSe

Program-Argument Typing Ψ | Θ! | Σ | Γ ` (a) : (p)

Ψ | Θ! | Σ | Γ ` e : τ

Ψ | Θ! | Σ | Γ ` (x 7→ e) : (x : τ)

Ψ | Θ! | Σ | Γ; x1 : τ1; ... ` e : τ

Ψ | Θ! | Σ | Γ ` (f (x1, ...) 7→ e) : (f (τ1, ...) : τ)

Figure 8.9 (contd.): Expressions (Generics)

8.6 expressions and type-checking 317

8.6 expressions and type-checking

At last, with the hierarchy in place and completely validated, we can finally

discuss expressions, i.e. the only part of the program that actually executes.

The grammar for our expressions is shown in Figure 8.9. There are of

course variables and calls to higher-order parameters. Because our calculi

have principal types, local (immutable) variables do not need any type

annotations. Our calculi have exceptions, not because they are particularly

interesting semantically here, but because they necessitate the ⊥ type (for

principal typing) and so impose an important constraint on the design of

the type system.

An object in our calculi is an implementation of an interface that simply

provides definitions of the necessary methods. These definitions can access

variables in the context, making objects effectively closures, as well as

the specified variable x representing the object itself. Checking whether

the method definitions provide sufficient functionality for the declared

interface is done just as with with interface inheritance. Note that, even

if an object provides more functionality than is needed by its interface,

its run-time type is its declared interface. Also note that objects know the

type arguments for their run-time type, thereby providing reified generics.

One unusual feature of our calculi is the ability to explicitly capture

the in out type arguments for a specific value as capture variables~α!. This

is primarily provided to support use-site variance, as needed by Genα

for joins, but it also illustrates some nice properties of the calculi. For

one, the bounds on the capture variables can be inferred from the type

of the expression due to principal typing, and the resulting kind context

318 towards inferable and gradualizable generics

and captured type are well-formed, ensuring that important invariants

for decidability are maintained. Similarly, even if the principal type of the

expression inside the capture references the capture variables, the variance

requirements on bounds to interface type parameters ensure that there

is a best way to approximate that principal type without reference to the

capture variables. In other words, when the capture variables go out of

scope, our calculus can automatically determine the best way to update

the type of the expression appropriately.

The reason for the two calculi have different syntax for capturing is

that Gen∩ can use intersection types to refine the type of the program

variable x in the context, thereby providing flow-sensitive typing or oc-

currence typing [Komondoor et al., 2005; Tobin-Hochstadt and Felleisen,

2008], whereas Genα needs to introduce a new program variable with the

captured type. This is also why they have different syntax for casting a

value. Guards in our calculi can extend the kind, shape, and program con-

texts for the then branch to reflect the successful satisfaction, subtyping,

or inhabitation check.

8.6.1 Method Invocation

Lastly, a method invocation specifies a receiver, the explicit type arguments,

and the program arguments. Importantly, an invocation does not specify

the inferable type arguments or the (inferable) shape evidence. A receiver

is an expression or, in the case of Genα, an expression annotated with an

evidence variable ς. In general, a type might be guaranteed to provide

methods through the interfaces it implements or through the shapes it

8.6 expressions and type-checking 319

satisfied. Sometimes a specific method can be provided through multiple

means, and as such Genα uses evidence variables ς to prevent ambiguities

about which means is intended by the programmer.

Gen∩ sidesteps this problem through its intersection expression-typing

rule shown in blue in Figure 8.9. This rule indicates that if an expression

can be given multiple types, then it can be given the intersection of those

types. For many languages, this rule would be unsound because different

typing proofs could result in different semantics, but the semantics of

our calculi are coherent and therefore soundly model this rule. From a

decidability perspective, this rule ensures principal types provided there

a finite number of types that cover all of the possibilities. Furthermore,

one needs to be able to determine what this finite cover is. In Gen∩,

the only points of variability come from shape evidence (which there is

a finite amount of) and (finite) intersection types, and the only points

where this variability can cause complications is method invocation and

capturing. Furthermore, principal-instantiation inheritance ensures that

many intersection types are equivalent to some non-intersection type, and

as such this rule is only needed in easy-to-recognize corner cases.

The rules for method-invocation typing are worth examining. Note

that these rules are written declaratively, not algorithmically, and as such

assume the argument types Γ have already been determined. The first

rule addresses the case where the receiver has type ⊥ and recognizes

that this is unreachable (since ⊥ is uninhabited in our calculi) by simply

returning ⊥. The second rule does the same but for first-order arguments,

which is important because the type of that type might be used to uniquely

determine an invariant type parameter, and ⊥ is the only type that does

not do so. The justification for the remaining rules should be straight-

320 towards inferable and gradualizable generics

forward from the discussion up to this point. The omitted rules for the

judgement Ψ ` τm.m〈Θ!〉[Θm](Γm)[Στ
m] : τ simply look up the method

signature declared by the interface or shape of the receiving type.

8.6.2 Decidable Type-Checking

Despite the fact that the typing rules for our calculi have been specified

declaratively, type-checking is in fact decidable. The algorithm is large

due to the sheer complexity of the calculi, but the high-level reasoning

is straightforward. First we ensure that subtyping is decidable, then we

ensure the subshaping is decidable, then we ensure that shape satisfac-

tion is decidable, then we ensure that method signatures or principally

inferable, then we ensure methods are inherited appropriately, and finally

we ensure that type-checking is unambiguous and locally inferable. Al-

though we have not emphasized it, local type inference is important for

inferring the return types of higher-order arguments from their inferred

parameter types, which subsequently constrain the type arguments to

a method. Thus, altogether type-checking, and indeed program validity

itself, is decidable.

Theorem 8.1. For all hierarchies Ψ and expressions e, the judgement ` Ψ; e is

decidable.

8.7 semantics and coherence

With the exception of method invocation, the semantics of the calculi are

overall unsurprising. They are, however, a little tedious to formalize. The

8.7 semantics and coherence 321

Term t ::= x | f (t, ...) | let x := t in t | throw
| if tg then t else t | object x : I〈~τ〉 {dt; ...}
| tm.m〈~τ〉(at; ...) | capture t as x : I〈~α!〉 in t
| capture x as I〈~α!〉 in t | capture v as I〈~α!〉 in t

Guard Term tg ::= τ satisfies σ as ς | τ <: τ | t is x : τ

| x is τ | v is τ

Receiver Term tm ::= t | t@ς

Argument Term at ::= x 7→ t | f (x, ...) 7→ t
Argument Value av ::= x 7→ v | f (x, ...) 7→ t
Term Context E ::= f (v, ..., E, t, ...) | let x := E in t

| if E is x : τ then t else t | E.m〈~τ〉(at; ...)
| v.m〈~τ〉(av; ...; x 7→ E; at; ...)
| capture E as x : I〈α, ...〉 in t | �

Method Term dt ::= sτ 7→ t
Method Premise sτ ::= m〈Θ!〉[Θ](Γ)(Στ)

Value v ::= object x : I〈~τ〉 {dt; ...}

Guard Reduction Ψ ` tg → > Ψ ` tg → ⊥

¬ Ψ | ∅ | ∅ ` τ.σ
Ψ ` τ satisfies σ as ς→ ⊥

Ψ | ∅ ` τ <: τ′

Ψ ` τ <: τ′ → >
¬ Ψ | ∅ ` τ <: τ′

Ψ ` τ <: τ′ → ⊥

¬ Ψ | ∅ ` I〈~τ〉 <: τ

Ψ ` object • : I〈~τ〉 {•} is x : τ → ⊥

Ψ | ∅ ` I〈~τ〉 <: τ

Ψ ` object • : I〈~τ〉 {•} is τ → >
¬ Ψ | ∅ ` I〈~τ〉 <: τ

Ψ ` object • : I〈~τ〉 {•} is τ → ⊥

Capture Reduction ` 〈~α!〉 := 〈~τ〉 → 〈~τ〉 : 〈Θ!〉

` 〈〉 := 〈〉 → 〈〉 : 〈〉
` 〈~α!〉 := 〈~τ〉 → 〈~τ′〉 : 〈Θ!〉
` 〈~α!, _〉 := 〈~τ, τ〉 → 〈~τ′〉 : 〈Θ!〉

` 〈~α!〉 := 〈~τ〉 → 〈~τ′〉 : 〈Θ!〉
` 〈~α!, α〉 := 〈~τ, τ〉 → 〈~τ′, τ〉 : 〈Θ!,⊥ <: !α <: >〉

Figure 8.10: Semantics

322 towards inferable and gradualizable generics

Term Reduction Ψ ` t→ t

Ψ ` t→ t′

Ψ ` E[t]→ E[t′] Ψ ` E[throw]→ throw

Ψ ` let x := v in t→ tbx 7→v/x:τe

Ψ ` tg → >
Ψ ` if tg then tt else t f → tt

Ψ ` tg → ⊥
Ψ ` if tg then tt else t f → t f

v = object • : I〈~τ〉 {•} Ψ | ∅ ` I〈~τ〉 <: τ

Ψ ` if v is x : τ then tt else t f → ttbx 7→v/x:τe
Ψ | ∅ | ∅ ` τ.σ

Ψ ` if τ satisfies σ as ς then tt else t f → ttbς : τ.σe

v = object x : I〈~τv〉 {...; m〈Θ!〉[Θ](p1, ...)[Στ] : • 7→ t; ...}
Ψ | ∅ `? 〈~τ′〉 : 〈Θb~τ/Θ!e〉 Ψ | ∅ | ∅ | ∅ ` (av

1) : (p1b~τ,~τ′/Θ!,Θe)
... Ψ | ∅ | ∅ ` Στb~τ,~τ′/Θ!,Θe

∀~τ′′.


Ψ | ∅ `? 〈~τ′′〉 : 〈Θb~τ/Θ!e〉

Ψ | ∅ | ∅ | ∅ ` (av
1) : (p1b~τ,~τ′′/Θ!,Θe)
...

Ψ | ∅ | ∅ ` Στb~τ,~τ′′/Θ!,Θe

 =⇒
Ψ | ∅
`

〈~τ′〉 <: 〈~τ′′〉 : 〈Θ〉

Ψ ` v.m〈~τ〉(av
1; ...)→ tb~τ,~τ′/Θ!,Θebx 7→v;av

1 ;.../x:I〈~τv〉;p1;...ebΣτb~τ,~τ′/Θ!,Θee

v = object • : Iv〈~τv〉 {•}
Ψ | ∅ ` Iv〈~τv〉 <: I〈~τ〉 ` 〈~α!〉 := 〈~τ〉 → 〈~τ′〉 | Θ!

Ψ ` capture v as x : I〈~α!〉 in t→ tbx 7→v/x:I〈~τ〉eb~τ′/Θ!e

v = object • : Iv〈~τv〉 {•}
Ψ | ∅ ` Iv〈~τv〉 <: I〈~τ〉 ` 〈~α!〉 := 〈~τ〉 → 〈~τ′〉 | Θ!

Ψ ` capture v as I〈~α!〉 in t→ tb~τ′/Θ!e

Figure 8.10 (contd.): Semantics (Generics)

8.7 semantics and coherence 323

t tb...e (where b...e as shorthand for b~τ/Θebav
1 ;.../ΓebΣτe)

x v where x 7→ v ∈ av
1; ...

x v where @v. x 7→ v ∈ av
a ; ...

f (t1, ...) let x1 := t1b...e in ... e where f (x1, ...) 7→ e ∈ av
1; ...

f (t1, ...) f (t1b...e, ...) where @x1, ..., e. f (x1, ...) 7→ e ∈ av
1; ...

throw throw

if tg then tt else t f if tgb...e then ttb...e else t f b...e
object x : I〈~τx〉 {dt

1; ...} object x : I〈~τxb~τ/Θe〉 {dt
1b...e; ...}

tm.m〈~τ〉(at
1; ...) tmb~τ/Θebav

1 ;.../Γe.m〈~τb~τ/Θe〉(at
1b...e; ...)

capture t as x : I〈~α!〉 in tx capture tb...e as x : I〈~α!〉 in txb...e
capture x as I〈~α!〉 in t capture xb...e as I〈~α!〉 in tb...e
capture v as I〈~α!〉 in t capture vb...e as I〈~α!〉 in tb...e
tg tgb...e (where b...e as shorthand for b~τ/Θebav

1 ;.../ΓebΣτe)
τ satisfies σ as ς τb~τ/Θe satisfies σb~τ/Θe as ς

τ` <: τu τ`b~τ/Θe <: τub~τ/Θe
t is x : τ tb...e is x : τb~τ/Θe
x is τ xb...e is τb~τ/Θe
v is τ vb...e is τb~τ/Θe
tm tmb...e (where b...e as shorthand for b~τ/Θebav

1 ;.../ΓebΣτe)
t@ς tb...e where ς : τ.σ ∈ Στ

t@ς tb...e@ς where @τ.σ. ς : τ.σ ∈ Στ

at atb...e (where b...e as shorthand for b~τ/Θebav
1 ;.../ΓebΣτe)

x 7→ t x 7→ tb...e
f (x1, ...) 7→ t f (x1, ...) 7→ tb...e
dt dtb...e (where b...e as shorthand for b~τ/Θebav

1 ;.../ΓebΣτe)
sτ 7→ t sτb~τ/Θe 7→ tb...e
sτ sτb~τ/Θe
m〈Θ!〉[Θ′](Γ)[Στ] : τ m〈Θ!b~τ/Θe〉[Θ′b~τ/Θe](Γb~τ/Θe)[Στb~τ/Θe] : τb~τ/Θe
Στ Στb~τ/Θe
ς1 : τ1.σ1, ... ς1 : τ1b~τ/Θe.σ1b~τ/Θe, ...

Figure 8.11: Program-Argument Substitution

324 towards inferable and gradualizable generics

issue is that exceptions were designed to ensure decidability, but once

the program has been type-checked, reducing the program can disrupt

some of the structures in expressions that we relied upon for decidability.

For example, the expression implementing a generic method can branch

on whether or not a type variable satisfies a given shape, updating the

shape context appropriately within the branch, but once that generic

method gets invoked with actual type arguments then that type variable

gets substituted with an actual type. Consequently, we introduce a new

grammar of terms t, defined in Figure Figure 8.10, that contains the

grammar of expressions by generalizing many uses of type variables to

arbitrary types. Similarly, because the typing rules for expressions were

designed to ensure both soundness and decidability, we introduce a more

relaxed typing judgement Ψ | Θ | Στ | Γ `t t for terms that only ensures

soundness and inferability of methods in objects (for reasons that will

become clear). These rules are straightforward adaptions of the rules for

expressions, so we defer them to Appendix D.4.

8.7.1 Method Invocation

The only oddity of our semantics is method invocation. Recall singleton

from the beginning of the chapter. At run time in C#, it returns a List

whose invariant type argument depends on the inferred type argument

to singleton, for which there are often multiple valid options. This means

whether later casts of the returned value will succeed or fail can depend

on the result of type-argument inference. For gradualizability, we want to

ensure semantic coherence, and Gen∩ even relies on semantic coherence

8.7 semantics and coherence 325

in order to achieve decidability via its intersection rule. Thus we cannot

use C#’s semantics for generic methods, and in fact we had to develop a

semantics for generic methods that to our knowledge is entirely new.

The biggest of the term reduction rules in Figure 8.10 is easier to describe

in words than with formulae. It says, using the object’s specification of

the method, to infer the principal instantiation of the type arguments

(according to their declared variances) for which the run-time types of the

program arguments are considered valid argument types and for which

the necessary shape evidence can be constructed. Any references to the

inferred type parameters within the expression implementing the method

are then substituted with these inferred type arguments. Notice that the

semantics refers to only run-time aspects of the invocation, meaning that

(unlike C#) the type arguments that were inferred at compile time are

semantically meaningless—they just ensured that the invocation was safe

and determined an upper bound on the run-time type of the returned

value.

One might worry that this semantics would be prohibitively expensive,

but frequently type parameters are not used in any way that is visible at

run time. In these cases, our semantics is in fact more efficient because

we are not constructing or passing around unused run-time arguments.

Even when they are used, often the type arguments that are inferred at

run time are simpler to construct than those at compile time because they

are developed with complete information whereas at compile time they

are more likely to be relying on constructs such as union and intersection

types in order to increase the polymorphic reusability of generic methods.

All in all, one could imagine either semantics performing better than

326 towards inferable and gradualizable generics

the other, varying by specific patterns in a code base, and it would be

interesting future work to experimentally evaluate their relative behaviors.

Lastly, as an anecdote, some years ago the Ceylon team encoun-

tered usability problems with the standard reification semantics. Users

were expecting the pair value ["Hello", 5] to have run-time type

Pair〈String, Integer〉 and were surprised to discover it could have run-

time type Pair〈Object, Object〉 depending on what was known of the

types of the contained values at compile time. Consequently, the Ceylon

team changed their semantics for tuples to dynamically determine their

type arguments based on their contained values. Since the type parameters

for Pair are covariantly inferable, this change actually coincides with our

semantics.

8.7.2 Progress, Preservation, and Semantic Coherence

Our semantics for method invocation is specified declaratively. That is,

our semantics does not specify an algorithm to use to compute the prin-

cipal type arguments, if one even exists. As such, one might worry that

well-typed programs might not reduce reliably. This issue is addressed

by the fact that method signatures, even of object terms, must satisfy

the previously discussed method-signature-inferability judgement, which

guarantees that principal type arguments always exist if any exist (which

in turn is guaranteed by typability of the term). Furthermore, a proof of

this judgement provides an algorithm to use to infer the principal type

arguments.

8.8 gradualizability 327

Theorem 8.2 (Progress). For all hierarchies Ψ and terms t, if `t Ψ; t holds then

either t is a value v, or t is an exception throw, or there exists a computable t′

such that Ψ ` t→ t′ holds.

One might worry that different proofs of inferability might provide

different algorithms. While technically true, the differences are simply

due to the fact that equivalent types can be syntactically different. The

judgement Ψ ` t ≈ t, formalized in Figure D.5, indicates that two terms are

equivalent modulo equivalence of types. Because principal type arguments

are unique up to equivalence, our semantics reduces equivalent terms to

equivalent terms.

Theorem 8.3 (Coherence). For all hierarchies Ψ and terms t1, t2, t′1, and t′2,

Ψ ` t1 ≈ t2 ∧ Ψ ` t1 → t′1 ∧ Ψ ` t2 → t′2 =⇒ Ψ ` t′1 ≈ t′2

This, in combination with the fact that our semantics is not specified

using any form of type-directed translation, guarantees that our semantics

is coherent. In the case of Gen∩, coherence is necessary for ensuring the

soundness of its intersection rule.

Theorem 8.4 (Preservation). For all hierarchies Ψ and terms t and t′,

`t Ψ; t ∧ Ψ ` t→ t′ =⇒ `t Ψ; t′

8.8 gradualizability

Type-argument inference is straightforwardly gradualizable for first-order

parameters in systems where every value knows it most precise type, as in

328 towards inferable and gradualizable generics

Nom in Chapter 5. However, there is a caveat with respect to higher-order

parameters: if the lambda given as a higher-order argument has a dynamic

return type, type arguments cannot be inferred from it. One way to address

this may be to distinguish type arguments that are erasable from those that

are not, and restrict higher-order parameters to only constrain erasable

arguments, which can be ignored at run time anyway. The downside of

this approach is that erasable arguments are both restricted in how they

can be used and on the other hand might leak into other parts of the code.

We leave this problem for future work.

8.9 summary

This chapter presented two calculi with decidable and largely gradualiz-

able generics, and our corpus and case studies suggest that the restrictions

these calculi (or at least Gen∩) impose are indeed practical. This was made

possible by changing to a declaration-site, rather than use-site, perspective

on type-argument inference, and by recognizing that there is a symbiotic

relationship between decidability and gradualizability. Furthermore, prior

works on subtyping and on the binary-method problem formed the foun-

dation for establish the invariants our strategy heavily relies upon. With

this infrastructure in place, we were able to provide many features that

are critical to how generics are used in industry while also maintaining

the principles advocated by the programming-languages research commu-

nity. Thus this work takes a major step towards practical decidable and

gradualizable generics, and yet there are still many more steps ahead.

9
E P I L O G U E

The previous sections of this dissertation presented several major improve-

ments on the state of the art in both gradual typing and type system

design in general. Yet, there is still much to do. In the following, we give

an overview of some particularly interesting challenges that lie ahead.

9.1 future work

9.1.1 Generics

As stated in Section 8.8, work on making generics practical is not quite

done yet. Besides making type-argument inference work in the face of

structural values and dynamic types in higher-order parameters, there is

also the question of whether it is possible to use generic types “raw” and

discover their type parameters later. One might imagine that programmers

writing untyped code would like to use the standard generic type List〈T〉

as just List, without having to specify the type argument immediately.

However, if they proceed to only fill that list with values of type String,

they might reasonably expect to be able to give this object to code that

expects a List〈String〉. This feature is supported by most other gradually

typed languages to date, but it is not immediately clear whether there

is a way to support it both soundly and efficiently, as current (sound)

329

330 epilogue

implementations either have to recursively check the whole structure or

allocate wrappers. It might be possible to have the instance monotonically

keep track of upper and lower bounds for its type variables based on

how it is used (covariant uses push upper bounds down, contravariant

uses push lower bounds up), and only raise an error if bounds go past

each other. Under such a scheme, a List could be cast to List〈String〉

if all previously added elements (representing contravariant uses) were

subtypes of String and no other code demanded to be able to read some

type from the list that is not a supertype of String (say by casting it

to Iterable〈Integer〉). However an instance of List with undetermined

type arguments would again not allow us to infer concrete instantiations

for type variables in generic type-argument inference.

A possible solution is to also allow these arguments to stay uninstan-

tiated for the moment and keep them around as unification variables,

because if, say, a typed generic method creates an instance of List〈T〉

based on an undetermined type argument T, any uses of the new instance

of List and the instance of List coming from untyped code now affect

both of them since their uses and instantiations of their type parameter

need to stay consistent. These dependency chains might become quite long,

but they might also be quite regular. More research and good benchmarks

would be needed to establish if this approach can be practical.

9.1.2 Branching based on run-time types

Many languages allow a programmer to determine the type of a value

at runtime and execute different code based on the result. For example,

9.1 future work 331

programmers may write the following code to handle different kinds of

values stored in variable x.

if(x instanceof A) { ... }

else { ... }

For any gradually-typed language with non-transparent, not immedi-

ately accountable casting, such as MonNom, this presents a problem: what

if x could be an instance of A if we cast it, but does not have to? Both the

then- and the else-branch are plausible options in that case, but in order

to satisfy the gradual guarantee, we have to assume that there is a version

of the program where a correct type annotation somewhere would force

our hand here, and we have to magically make that same decision, which

is impossible.

One way to address this issue might be to change the semantics of

if/instanceof constructs such that the programmer has to specify a

“preferred” branch, which the run-time will try to get into if it can by

casting the value appropriately. The gradual guarantee would also have to

be modified to allow divergences in the program result—more precise type

information would lead to values produced by more preferred branches.

This would be a significant change to the formulation of the gradual

guarantee, as the relationship between the results would now also be

based on how one obtained them, not just on what they are.

Explicit instanceof-checks are not the only construct with this problem.

With gradual typing, overloaded methods may have to be resolved at

run time in what is essentially an instanceof-based decision tree, where

a value may again be compatible with multiple different overloadings

of a method. Preferences between overloadings that might be defined at

332 epilogue

points in the code that are distant from each other would be harder to

conveniently specify, so overloading may have to be restricted further.

9.1.3 Optimizations

In Chapter 6 we purposefully omitted several well-known optimization

techniques that might endager the validity of our small number of bench-

marks. However, there are many more specialized optimization techniques

that are worth exploring. The most interesting one would be to dynami-

cally recompile the code of structural values that have been monotonically

cast if it turns out that the now available type information can be used

to optimize the code. This might not be useful for every piece of code,

but many modern virtual machines already make decisions of what code

to (re-)compile and optimize based on run-time statistics. One would

expect that, in particular, many simple lambdas could benefit from such

an optimization; that is, lambdas of the form λx.x, λx.x + n, λx.x. f oo(5),

and so on.

9.1.4 Gradualizability

Some authors have previously explored more or less automatically adding

gradual typing to typed languages [Cimini and Siek, 2016, 2017; Garcia,

Clark, and Tanter, 2016], along with other meta-properties of gradual

typing [New and Ahmed, 2018; New, Licata, and Ahmed, 2019; Siek,

Vitousek, Cimini, and Boyland, 2015; Toro, Labrada, and Tanter, 2019]. In

this dissertation, we have shown that there are several important type-

9.2 conclusion 333

system features for which this is simply not possible, at least not without

substantially changing the design of the particular feature. It would be

interesting to have a theory of gradualizability to inform us more generally

about which type-system features are gradualizable and what makes them

so.

9.2 conclusion

There is still much to do before sound gradual typing can be added to a

modern object-oriented programming language in a way that is usable

in industry. However, the work in this dissertation makes us hopeful

that sound gradual typing is not dead, and has a real chance of one day

becoming an integral part of major general-purpose languages. This is by

far not the only challenge, but it seems to be the biggest remaining one. In

particular, we know that with careful design, making sure that the selected

language features work well with each other and gradual typing and can

be efficiently implemented, a gradually typed language can have the major

theoretical properties that have been formalized so far and be efficient.

Part IV

A P P E N D I C E S

A
S H A P E A N A LY S I S

Owner Shape

drjava-r5756 Finalizable

drools-core AbstractBaseLinkedListNode

drools-core Entry

drools-core LinkedList

drools-core LinkedListNode

drools-core TraitableBean

findbugs-1.3.9 AbstractEdge

findbugs-1.3.9 GraphEdge

findbugs-1.3.9 GraphVertex

findbugs-1.3.9 AbstractVertex

findbugs-1.3.9 AnnotationEnueration

hadoop-1.1.2 WritableComparable

informa-0.7.0-alpha2 WithChildrenMIF

jre-1.6.0 Comparable

jre-1.6.0 Enum

junit-4.10 FrameworkMember

pmd-4.2.5 MemberNode

Figure A.1: Table of all shapes found by our analysis

337

338 shape analysis

Project Name JRE Version LOC # C # I

android-async 1.7 2719 29 1

antlr-3.4 1.6.0 50625 93 13

AoIsrc281 1.5.0_22 112161 460 27

apache-ant-1.9.2 1.6.0 106072 1078 94

argouml 1.7.0 176428 2028 565

castor-1.3.3 1.6.0 235466 1648 151

checkstyle-src-5.1 1.5.0_22 61530 286 18

chunk-templates-2.4 1.7.0 12823 97 5

disruptor 1.7 3135 38 21

drjava-r5756 1.7 90753 848 95

drools-core 1.7 146139 1693 316

eclipse_SDK-3.7.1 1.6.0 2489153 20954 3459

findbugs-1.3.9 1.5.0_22 110932 1111 124

fitnesse 1.6.0 64459 1143 77

freecol 1.6.0 106412 724 32

freecs-1.3.20100406 1.5.0_22 24453 130 16

geogit-core 1.7.0 44553 436 24

geotools-9.2 1.6.0 961944 6794 1494

gitblit 1.7 54057 514 41

hadoop-1.1.2 1.7.0 313519 3522 183

heritrix-1.14.4 1.5.0_22 64916 599 51

informa-0.7.0-alpha2 1.5.0_22 13874 115 45

javacc-5.0 1.5.0_22 21299 209 8

java2objc 1.7.0 3720 86 0

jboss-5.1.0 1.7.0 557866 2588 495

jbrowser-1.9.1 1.7.0 11163 128 27

jEdit 1.5.0_22 109516 876 63

jfin 1.5.0_22 3999 45 2

jgrapht-0.8.1 1.6.0 17233 201 33

JGroups-2.10.0.GA.src 1.6.0 96404 933 80

Figure A.2: Table of projects, JRE version used in development, total lines of code
(LOC), number of classes (C), and number of interfaces (I). Class and
interface counts include nested declarations.

shape analysis 339

Project Name JRE Version LOC # C # I

joptsimple 1.7.0 1943 40 5

jzmq 1.7 931 17 0

jre-1.6.0 1.6.0 884435 7896 1700

jRuby-1.7.9 1.7.0 270537 1693 140

jspwiki-2.8.4 1.5.0_22 60250 392 36

junit-4.10 1.5.0_22 6850 137 11

lucene-3.5.0 1.6.0 296778 739 41

marauroa-3.8.1 1.5.0_22 17734 178 13

megamek-0.35.18 1.6.0 242836 1760 64

MyJDownloaderClient 1.7.0 3803 97 16

netbeans-7.3 1.6.0 4631942 36105 4211

openjdk-7-fcs/langtools 1.7.0 93533 844 237

picasso 1.7 2781 79 8

picocontainer 1.5.0_22 9254 173 29

pmd-4.2.5 1.5.0_22 60062 792 52

poi-3.6 1.5.0_22 9254 2136 131

retrofit 1.7 7664 65 25

sablecc-3.7 1.6.0 29496 215 5

springframework-3.0.5 1.6.0 323008 2511 419

sprinkles 1.7 1261 24 5

struts-2.2.1 1.5.0_22 143311 1965 167

sunflow 1.5.0_22 21970 185 19

tapestry-core 1.5.0_22 67390 572 232

trove-2.1.0 1.5.0_22 5846 45 9

wct-1.5.2 1.6.0 245849 487 62

weka 1.6.0 52297 1383 148

Figure A.3: Table of projects, JRE version used in development, total lines of code
(LOC), number of classes (C), and number of interfaces (I). Class and
interface counts include nested declarations (contd.).

B
M O R E O N N O M

b.1 inferring dispatch modes

Dynamic dispatch is an important part of object-oriented programming

languages. As such, we need it to be implemented efficiently in a well-

behaved manner. For efficiency, the core challenge is devising a quick

and uniform process for looking up a specific object’s implementation of

a method without knowing which of a wide variety of objects is being

accessed. For behavior, the core challenge is that the caller of a method may

view it differently than the implementor of the method due to features

such as inheritance and subtyping. While these challenges need to be

addressed by all object-oriented languages, gradual typing introduces new

layers of complexity to each of them.

In our calculus, we demonstrate that our strategy for addressing these

challenges is to use dispatch modes. This is really an extension of what is

already done for nominally typed object-oriented languages. When the

dispatch mode is a class, the mode indicates that we can and will look up

a method’s implementation by accessing a fixed offset within the object’s

virtual-method table, taking advantage of the fact that full Nom enforces

single class inheritance. When the dispatch mode is an interface, the mode

indicates that we can and will look up a method’s implementation by

first looking up the address of the appropriate interface-method table

341

342 more on nom

within the object’s interface table and then accessing a fixed offset within

that interface-method table. These dispatch modes capture how dynamic

dispatch is implemented in nominally typed object-oriented languages.

To efficiently extend this approach to gradual typing, we introduce a

dyn dispatch mode. When the dispatch mode is dyn, the mode indicates

that we will look up a method’s implementation by accessing the object’s

dynamic-dispatch hashtable, failing if no appropriate entry exists. This

is how dynamic dispatch is implemented by dynamically typed object-

oriented languages. Thus our dispatch modes combine the implementation

strategies for both statically typed and dynamically typed languages.

In our calculus, these dispatch modes are already specified. However, in

a real gradually typed object-oriented language, they would be inferred

at compile time, as we do in Nom. We have already shown that our

annotated language is well-behaved, so here we discuss how to make the

unannotated language be similarly well-behaved.

b.1.1 Restricting Dispatch Modes

Observe that, in theory, one could always infer the dyn dispatch mode.

However, this would mean the type-checker could never reject a method

invocation. Conceptually, although dyn provides a way to make our type-

checker more optimistic, we only want to rely on optimism when so

directed by the programmer. Thus, if the receiver of a method invocation

has a pessimistic type, i.e. a type besides dyn, then the invocation should

be valid only if there exists a pessimistic dispatch mode for which the

B.1 inferring dispatch modes 343

receiver and arguments are optimistically acceptable. We call such an

invocation pessimistically dispatchable.

b.1.2 Resolving Ambiguities

Consider the following hierarchy:

interface I1 {

Integer foo1(Integer a1, dynamic a2);

}

class C1 implements I1 {

Integer foo1(dynamic a1, Integer a2) {...}

}

class Sub1 extends C1 {

Integer foo1(Number a1, Number a2) {...}

}

Suppose we have a call to foo1 on a receiver expression of type C1 and

with two argument expressions each of type dyn. The question is what

dispatch mode, if any, should be inferred for this invocation. First observe

that it is pessimistically dispatchable, as evidenced by both the C1 and

I1 dispatch modes. Thus, we should infer some dispatch mode for this

invocation.

The question, then, is which dispatch mode should be inferred, since we

have already seen that there are multiple optimistically typed candidates.

The problem is that each dispatch mode imposes a different cast on the

arguments. I1 requires the first argument to be cast to Integer, whereas

C1 requires the second argument to be cast. Thus the choice of inferred

344 more on nom

dispatch mode can affect the semantics of the program. We want the

semantics to be easy to predict by a non-expert user, and we want the

semantics to be stable under simple program transformations that most

users would expect to be inconsequential (such as weakening the static

type of the receiver to be just I1). So to rectify this problem, here we must

turn to design tradeoffs.

One possible solution is to determine the dispatch mode at run time

based on the the run-time types of the arguments. If the first argument

is an Integer, then use the I1 dispatch mode. If the second argument

is an Integer, then use the C1 dispatch mode. If both arguments are

Integers, then either dispatch mode can be chosen without affecting the

semantics of that particular run-time invocation. If neither argument is an

Integer, then indicate a run-time type failure, much like a failed cast or

a failed dynamic method lookup. The advantage of this solution is that

the run-time semantics precisely reflects the semantics of the statically

typed language: the gradually typed expression executes just as if it were

statically typed, but with its dyn components filled in with their run-time

types. This is the approach implemented by C# [Bierman, Meijer, and

Torgersen, 2010] and advocated for by Garcia, Clark, and Tanter [2016].

The disadvantage, though, is poor performance due to heavy branching

on run-time type information. That is, it essentially amounts to deferring

compilation of the method invocation until run time, despite the fact

that everything we need to know to compile this method is available

to us at compile-time except simply which casts to insert. Thus another

possible solution is to simply use the dyn dispatch mode in such ambiguous

cases. This way we can go straight to the dynamic dispatcher, which will

simply redirect to the method’s implementation along with precompiled

B.1 inferring dispatch modes 345

checks that the arguments are valid. Note that this shows that even when

the receiver has a pessimistic type, it can still be appropriate to use the

dyn dispatch mode. This solution is more efficient, but it does have a

disadvantage. In particular, suppose the run-time type of the receiver was

Sub1, and the run-time types of the arguments were both Float. Then this

solution would allow execution to proceed even though neither of the

statically available dispatch modes would accept those arguments.

It is worth noting that we encountered multiple situations forcing this

design tradeoff between precise reflection of the statically typed language

and efficient implementation of mixed-type code. The criteria discussed in

this chapter, including the gradual guarantee, provide no insights into how

to make this tradeoff. For Nom, we considered each situation separately,

rather than always appealing to one extreme or the other. For example,

with method overloading, which we do not discuss in the chapter, we

allow an overriding of an overloading to proceed with more lax arguments,

as above, but we prevent invocations from proceeding with an overload-

ing that is unrelated to the overloadings that were statically available.

We do this because we view unrelated overloadings as having possibly

unrelated specifications, whereas we view overridden overloadings as

having related specifications with possibly relaxed requirements. Thus

our semantics guarantees that execution proceeds only with a statically

available overriding specification, although possibly a variant with more

relaxed requirements.

346 more on nom

b.1.3 Aggregating Return Types

Now consider the following hierarchy:

interface I2 {

Integer foo2();

}

class C2 implements I2 {

dynamic foo2() {...}

}

Suppose we have a variable x2 of type C2, and suppose we call foo2 on x2

and print the result to the console. This is pessimistically dispatchable,

and neither dispatch mode imposes any casts on any arguments (since

there are no arguments), so we can use either one. Virtual-method tables

are more efficient, so we choose to use the C2 dispatch mode.

Now suppose the implementation of foo2 returns a String. According

to the semantics of our calculus, this would succeed with the C2 dispatch

mode and the String would proceed to be printed to the console. However,

suppose we make the seemingly harmless transformation of changing the

declared type of x2 to be just I2 instead of C2. Now the inferred dispatch

mode would be I2, whose implementation would cast the returned value

to Integer, which would fail. Thus this seemingly innocuous change

would in fact significantly change the semantics of the program. And

interestingly, this is perfectly acceptable for the gradual guarantee, since

we are replacing a static type with a different static type, not a dynamic

type.

B.2 proof of soundness 347

Nonetheless, we believe this would be unacceptable to many program-

mers. So to address this problem, Nom aggregates the return types of

inherited method specifications. This can be implemented in the language

specification either by requiring return types to be pessimistic subtypes of

inherited return types, or by inserting casts to inherited return types into

the method definition. The downside of the former implementation is that

it occasionally requires untyped classes implementing typed interfaces to

explicitly state a return type. The downside of the latter implementation is

that the pessimistic semantics of untyped method implementations need

to be revised to incorporate inherited return types, a layer of indirection

that may not be obvious to programmers. Nom implements the latter so

that untyped code can remain untouched. Overall, our experience with

dispatch modes points at a non-trivial design space that is to be further

explored.

b.2 proof of soundness

The use of evaluation contexts in our operational semantics often com-

plicate proofs unnecessarily. In Figure B.1, we present formalizations of

bad-cast and erroneous without evaluation contexts, as well as introduce

a new judgement Ψ ` e erroneous ε indicating that ε is the particular

error indicated by e. These formalizations of bad-cast and erroneous are

equivalent to the ones in Figure 5.6, so we abuse notation and denote both

pairs of judgements in the same manner. In Figure B.2, we present a for-

malization of our reduction rules without evaluation contexts in Figure B.2.

348 more on nom

Errors without Evaluation Contexts
Ψ ` e erroneous
Ψ ` e bad-cast

Ψ ` e erroneous cast v to C
Ψ ` e bad-cast

Ψ ` e erroneous ε

Ψ ` e erroneous

Ψ `◂ v v = C(. . .) ¬ Ψ ` C ◂ C′

Ψ ` cast v to C′ erroneous cast v to C′

Ψ `◂ v v = C(. . .) class C(f 1, . . .) ∈ Ψ @i. f = f i

Ψ ` v. fdyn erroneous v. fdyn

Ψ `◂ v
∀i. Ψ `◂ vi v = C(. . .) @τ, τ1, . . . , τn. τ C.m(τ1, . . . , τn) ∈ Ψ

Ψ ` v.mdyn(v1, . . . , vn) erroneous v.mdyn(v1, . . . , vn)

Ψ ` e erroneous ε

Ψ ` let τ x := e in e′ erroneous ε

class C(τ1, . . . , τn) ∈ Ψ ∀j. Ψ ` vj ◂ τj Ψ ` ei+1 erroneous ε

Ψ ` C(v1, . . . , vi, ei+1, . . . , en) erroneous ε

Ψ ` e erroneous ε

Ψ ` e. fδ erroneous ε

Ψ ` e erroneous ε

Ψ ` e.mδ(e1, . . . , en) erroneous ε

Ψ ` δ.m(τ1, . . . , τn) : τ
Ψ ` v ◂ δ ∀j. Ψ ` vj ◂ τj Ψ ` ei+1 erroneous ε

Ψ ` v.mδ(v1, . . . , vi, ei+1, . . . , en) erroneous ε

Ψ ` e erroneous ε

Ψ ` cast e to τ erroneous ε

Figure B.1: Errors without Evaluation Contexts

B.2 proof of soundness 349

Reduction Rules without Evaluation Contexts e R e

Ψ̄ ` ex R e′x
Ψ̄ ` let τ x := ex in e R let τ x := e′x in e

(Ψ̄ ` v ◃ τ)

Ψ̄ ` let τ x := v in e R e[x 7→ v]

Ψ̄ ` ei+1 R e′i+1
(class C(τ1, . . . , τn) ∈ Ψ̄)

(∀j. Ψ̄ ` vj ◃ τj)

Ψ̄ ` C(v1, . . . , vi, ei+1, . . . , en) R C(v1, . . . , vi, e′i+1, . . . , en)

Ψ̄ ` e R e′

Ψ̄ ` e. fδ R e′. fδ

v = C(v1, . . .)
class C(f 1, . . .) ∈ Ψ̄ (Ψ̄ ` v ◃ δ)

Ψ̄ ` v. f i
δ R vi

Ψ̄ ` e R e′

Ψ̄ ` e.mδ(e1, . . . , en) R e′.mδ(e1, . . . , en)

Ψ̄ ` ei+1 R e′i+1
(Ψ̄ ` δ.m(τ1, . . . , τn) : τ) (Ψ̄ ` v ◃ δ) (∀j. Ψ̄ ` vj ◃ τj)

Ψ̄ ` v.mδ(v1, . . . , vi, ei+1, . . . , en) R Ψ̄ ` v.mδ(v1, . . . , vi, e′i+1, . . . , en)

v = C(. . .)
C.mδ(τ1 x1, . . . , τn xn) 7→ e ∈ Ψ̄ (Ψ̄ ` v ◃ δ) (∀i. Ψ̄ ` vi ◃ τi)

Ψ̄ ` v.mδ(v1, . . . , vn) R e[this 7→ v, x1 7→ v1, . . . , xn 7→ vn]

Ψ̄ ` e R e′

Ψ̄ ` cast e to τ R cast e′ to τ

v = C(. . .)
Ψ̄ ` C ◂ τ (Ψ̄ ` v ◃ >)

Ψ̄ ` cast v to τ R v

Figure B.2: Reduction Rules without Evaluation Contexts, where R is either opti-
mistic −▹ (ignoring parenthesized assumptions) or pessimistic −▸ (as-
serting parenthesized assumptions) reduction

350 more on nom

This formalization is also equivalent to the one in Figure 5.6, so we abuse

notation again and denote both judgements in the same manner.

b.2.1 Progress

Lemma B.1. For every environment Ψ where ` Ψ holds,

∀v, τ. Ψ ` v ◃ τ =⇒ Ψ ` v ◂ τ

Proof. By induction on the proof of Ψ ` v ◃ τ, applying the fact that

Ψ ` C ◃ τ implies Ψ ` C ◂ τ for any Ψ, C, and τ.

Lemma B.2. For every environment Ψ and implementation Ψ̄ where ` Ψ and

Ψ `S Ψ̄ hold,

∀e, τ. Ψ ` e S τ =⇒

∃v. e = v ∧ Ψ ` v ◂ τ

or

∃ε. Ψ ` e erroneous ε

or

∃e′. Ψ̄ ` e R e′

where S is either optimistic ◃ or pessimistic ◂ subtyping, and R is either opti-

mistic −▹ or pessimistic −▸ reduction.

Proof. By induction on the proof of Ψ ` e S τ, applying Lemma B.1

when necessary. Note that the first two cases combined are simply Ψ `

e terminal τ.

B.2 proof of soundness 351

Lemma B.3. For every environment Ψ and implementation Ψ̄ where ` Ψ and

Ψ `S Ψ̄ hold,

∀Ψ, e, τ. Ψ ` e terminal τ =⇒ @e′. Ψ̄ ` e R e′

where S is either optimistic ◃ or pessimistic ◂ subtyping, and R is either opti-

mistic −▹ or pessimistic −▸ reduction.

Proof. By induction on the two cases of Ψ ` e terminal τ.

Theorem 5.5.1 (Progress). For every environment Ψ and implementation Ψ̄

where ` Ψ and Ψ `S Ψ̄ hold,

∀e, τ. Ψ ` e S τ =⇒ Ψ ` e terminal τ xor ∃e′. Ψ̄ ` e R e′

where S is either optimistic ◃ or pessimistic ◂ subtyping, and R is either opti-

mistic −▹ or pessimistic −▸ reduction.

Proof. Corollary of Lemmas B.2 and B.3.

b.2.2 Pessimistic-Type Preservation

Lemma B.4. For every environment Ψ where ` Ψ holds,

∀τ, τ′, τ′′. Ψ ` τ ◂ τ′ ∧ Ψ ` τ′ ◂ τ′′ =⇒ Ψ ` τ ◂ τ′′

Proof. By consideration of the cases of both Ψ ` τ ◂ τ′ and Ψ ` τ′ ◂ τ′′.

Lemma B.5. For every environment Ψ where ` Ψ holds,

∀Γ, e, τ, τ′. Ψ | Γ ` e ◂ τ ∧ Ψ ` τ ◂ τ′ =⇒ Ψ | Γ ` e ◂ τ′

352 more on nom

Proof. By induction on the proof of Ψ | Γ ` e ◂ τ, regularly applying

Lemma B.4.

Lemma B.6. For every environment Ψ where ` Ψ holds, and for all Γ, τx, x, e,

τ, and ex,

Ψ | Γ, τx x ` e ◂ τ ∧ Ψ | Γ ` ex ◂ τx =⇒ Ψ | Γ ` e[x 7→ ex] ◂ τ

Proof. By induction on the proof of Ψ | Γ, τx x ` e ◂ τ, applying Lemma B.5

in the case where e is x.

Theorem 5.5.2 (Pessimistic-Type Preservation). For every environment Ψ

and implementation Ψ̄ where ` Ψ and Ψ `◂ Ψ̄ hold,

∀τ, e, e′. Ψ ` τ ∧ Ψ ` e ◂ τ ∧ Ψ̄ ` e R e′ =⇒ Ψ ` e′ ◂ τ

where R is either optimistic −▹ or pessimistic −▸ reduction.

Proof. By induction on the proof of Ψ̄ ` e R e′, applying Lemma B.6 in

cases with variable substitutions.

b.2.3 Pessimistic Identification

Lemma B.7. For every environment Ψ and implementation Ψ̄ where ` Ψ and

Ψ `S Ψ̄ hold,

∀e, τ. Ψ ` e S τ =⇒ ∀e′. Ψ̄ ` e −▹ e′ ⇐⇒ Ψ̄ ` e −▸ e′

where S is either optimistic ◃ or pessimistic ◂ subtyping.

B.3 proof of semantic preservation 353

Proof. Pessimistic reduction always implies optimistic reduction trivially

from the respective definitions. When the term being reduced is optimisti-

cally typed, optimistic reduction implies pessimistic reduction because the

only additional requirements of pessimistic reduction are that the compo-

nents of the expression that are relevant to the reduction are appropriately

typed, which trivially holds when the entire expression is optimistically

typed. When the term being reduced is pessimistically typed, it is trivially

also optimistically typed, so the same reasoning applies.

Theorem 5.5.3 (Pessimistic Identification). For every environment Ψ and

implementation Ψ̄ where ` Ψ and Ψ `◂ Ψ̄ hold,

∀e, τ. Ψ ` e ◂ τ =⇒ ∀ν. Ψ̄ ` e −▹∞ ν : τ ⇐⇒ Ψ̄ ` e −▸∞ ν : τ

Proof. Corollary of Lemma B.7 and Theorem 5.5.2.

b.3 proof of semantic preservation

The full rules for program refinement are presented in Figure B.3.

b.3.1 Translation Irrelevance

Theorem 5.6.1 (Translation Irrelevance). For every Ψ, Ψ̄1, Ψ̄2, e, ẽ1, ẽ2, and τ,

 ` Ψ | e Ψ̄1 | ẽ1 : τ

` Ψ | e Ψ̄2 | ẽ2 : τ

 =⇒ ∀ν. Ψ̄1 ` ẽ1 R∞ ν : τ ⇐⇒ Ψ̄2 ` ẽ2 R∞ ν : τ

where R is either optimistic −▹ or pessimistic −▸ reduction.

354 more on nom

Expression Refinement Ψ ` e � e : τ

Ψ ` x � x : τ

Ψ ` ex � ẽx : τx Ψ ` e � ẽ : τ

Ψ ` let τx x := ex in e � let τx x := ẽx in ẽ : τ

class C(τ1, ..., τn) ∈ Ψ ∀i. Ψ ` ei � ẽi : τi

Ψ ` C(e1, . . . , en) � C(ẽ1, . . . , ẽn) : τ

Ψ ` e � ẽ : δ

Ψ ` e. fδ � ẽ. fδ : τ

Ψ ` δ.m(τ1, ..., τn) : τ Ψ ` e � ẽ : δ ∀i. Ψ ` ei � ẽi : τi

Ψ ` e.mδ(e1, . . . , en) � ẽ.mδ(ẽ1, . . . , ẽn) : τ′

Ψ ` e � ẽ : >
Ψ ` cast e to τ � cast ẽ to τ : τ′

Ψ ` e � ẽ : τ

Ψ ` e � cast ẽ to τ : τ

Ψ ` e � ẽ : τ e 6= ẽ
Ψ ` e ≺ ẽ : τ

Program Refinement Ψ ` Ψ � Ψ

Ψ ` · � ·
Ψ ` Ψ̄ � Ψ̄′

Ψ ` Ψ̄, i � Ψ̄′, i
Ψ ` Ψ̄ � Ψ̄′ Ψ ` c̄ � c̄′

Ψ ` Ψ̄, c̄ � Ψ̄′, c̄′

Class Refinement Ψ ` c̄ � c̄

c̄ = class C(τ1 f1, . . .) implements C1, ... {d̄1; . . . }
c̄′ = class C(τ1 f1, . . .) implements C1, ... {d̄′1; . . . } ∀i. Ψ ` d̄i � d̄′i

Ψ ` c̄ � c̄′

Method Refinement Ψ ` d̄ � d̄

Ψ ` e � ẽ : τ

Ψ ` τ mδ(Γ) 7→ e � τ mδ(Γ) 7→ ẽ

Figure B.3: Program Refinement

B.3 proof of semantic preservation 355

Proof. Given two refinements ẽ and ẽ′ of an expression e, one can con-

struct an expression ẽ′′ that is a refinement of both ẽ and ẽ′. Likewise,

given two implementations Ψ̄ and Ψ̄′ of an environment Ψ, one can con-

struct an implementation Ψ̄′′ that is a refinement of both Ψ̄ and Ψ̄′. One

can generalize the lemmas of this appendix to also relate the semantics

between refinements of implementations. A corollary of those generaliza-

tions, specifically the generalizations of Lemmas B.12 and B.17, is that

a pessimistically typed program will have the exact same semantics as

any of its refinements due to Theorem 5.5.2. Thus ẽ must have the same

semantics as its refinement ẽ′′, which must have the same semantics as ẽ′,

implying ẽ and ẽ′ have the same semantics.

b.3.2 Translation Existence

Theorem 5.6.2 (Translation Existence). For every environment Ψ, expression e,

and type τ,

` Ψ ∧ Ψ ` τ ∧ Ψ ` e ◃ τ =⇒ ∃Ψ̄, ẽ. ` Ψ | e Ψ̄ | ẽ : τ

Proof. An algorithm for developing well-formed translations is presented

in Figure B.4. Note that this algorithm is naïve in that it nearly always

inserts casts regardless of whether they may actually be necessary. The

only major exception is the case of class constructors, in which the fact

that the expression optimistically has the expected return type implies C is

a pessimistic subtype of the expected return type. Regardless, even though

there are more complex algorithms that would produce more efficient

translations, this one is still correct.

356 more on nom

Expression Translation Ψ | Γ ` e e : τ

Ψ | Γ ` x cast x to τ : τ

Ψ | Γ ` ex ẽx : τ Ψ | Γ, τ x ` e ẽ : τ′

Ψ | Γ ` let τ x := ex in e let τ x := ẽx in ẽ : τ′

class C(τ1, ..., τn) ∈ Ψ ∀i. Ψ | Γ ` ei ẽi : τi

Ψ | Γ ` C(e1, . . . , en) C(ẽ1, . . . , ẽn) : τ

Ψ | Γ ` e ẽ : δ

Ψ | Γ ` e. fδ cast ẽ. fδ to τ : τ

Ψ ` δ.m(τ1, . . . , τn) : τ Ψ | Γ ` e ẽ : δ ∀i. Ψ | Γ ` ei ẽi : τi

Ψ | Γ ` e.mδ(e1, . . . , en) cast ẽ.mδ(ẽ1, . . . , ẽn) to τ′ : τ′

Ψ | Γ ` e ẽ : >
Ψ | Γ ` cast e to τ cast cast ẽ to τ to τ′ : τ′

Program Translation ` Ψ Ψ Ψ ` Ψ Ψ

Ψ ` Ψ Ψ̄
` Ψ Ψ̄ Ψ ` · ·

Ψ ` Ψ′ Ψ̄
Ψ ` Ψ′, i Ψ̄, i

Ψ ` Ψ′ Ψ̄ Ψ ` c c̄
Ψ ` Ψ′, c Ψ̄, c̄

Class Translation Ψ ` c c̄

c = class C(τ1 f1, . . .) implements C1, . . . {d1; . . . }
c̄ = class C(τ1 f1, . . .) implements C1, . . . {

⋃
δ∈{C,dyn,C1,... } d̄δ

1; . . . }
∀i. Ψ | C ` di d̄C

i : di

∀i. Ψ | C ` di d̄dyni : dyn ∀i. interface Ci {si
1; . . . } ∈ Ψ

∀i. ∀j. ∀k. Ψ ` dk : si
j =⇒ Ψ | C ` dk d̄Ci

k :Ci si
j

Ψ ` c c̄

Figure B.4: Program Translation

B.3 proof of semantic preservation 357

Method Translation
Ψ | C ` d d̄ : d
Ψ | C ` d d̄ : dyn
Ψ | C ` d δ d̄ : s

Ψ | C ` d C d̄ : s
Ψ | C ` d d̄ : s 7→ e

Ψ | C ` τ m(τ1 x1, . . . , τn xn) 7→ e dyn d̄ : dyn m(dyn x1, . . . , dyn xn)

Ψ | C ` τ m(τ1 x1, . . . , τn xn) 7→ e d̄ : dyn

d = τ m(τ1 x1, . . . , τn xn) 7→ e
d̄ = τ′ mδ(τ

′
1 x1, . . . , τ′n xn) 7→ let τ′ x := ẽ in x

e′ = let τ1 x1 := x1 in . . . let τn xn := xn in let τ x := e in x
Ψ | C this, τ′1 x1, . . . , τ′n xn ` e′ ẽ : τ′

Ψ | C ` d δ d̄ : τ′ m(τ′1 x1, . . . , τ′n xn)

Figure B.4 (contd.): Program Translation

b.3.3 Pessimistic-Valuation Preservation

Lemma B.8. For every environment Ψ and implementation Ψ̄ where ` Ψ and

Ψ `◂ Ψ̄ hold,

∀v, ẽ, τ. Ψ ` v ◃ τ ∧ Ψ ` v � ẽ : τ =⇒ Ψ̄ ` ẽ −▸∗ v

Proof. Because v is an optimistically typed value, Lemma B.1 tells us that

v is also pessimistically typed. Using that fact, the remainder is proven by

induction on the proof of Ψ ` v � ẽ : τ.

358 more on nom

Lemma B.9. For every environment Ψ and implementation Ψ̄ where ` Ψ and

Ψ `◂ Ψ̄ hold,

∀ε, e, ẽ, τ.

Ψ ` e erroneous ε

Ψ ` e � ẽ : τ

 =⇒ ∃ẽ′.

 Ψ̄ ` ẽ′ erroneous ε

Ψ̄ ` ẽ −▸∗ ẽ′


Proof. By induction on the proof of Ψ ` e � ẽ : τ, applying Lemma B.8 to

reduce values.

Lemma B.10. For every environment Ψ where ` Ψ holds,

∀e, ẽ, τ, x, v. Ψ ` e � ẽ : τ =⇒ Ψ ` e[x 7→ v] � ẽ[x 7→ v] : τ

Proof. By induction on the proof of Ψ ` e � ẽ : τ.

Lemma B.11. For every environment Ψ and implementation Ψ̄ where ` Ψ and

Ψ `◂ Ψ̄ hold,

∀τ, e, ẽ, e′.

Ψ ` e � ẽ : τ

Ψ ` e −▸ e′

 =⇒ ∃ẽ′.

Ψ ` e′ � ẽ′ : τ

Ψ̄ ` ẽ −▸+ ẽ′


Proof. By induction on the proof of Ψ ` e � ẽ : τ, applying Lemma B.8

and the assertions of pessimistic reduction to reduce values, and applying

Lemma B.10 in cases with variable substitutions.

Note that the case of method-invocation refinement relies on a particular

formal detail of implementations. Suppose e is of the form v.mδ(v1, . . . , vn),

where v is an instance of class C, and e pessimistically steps. The fact that

this pessimistically steps informs us that each value has its expected

type, so we can apply Lemma B.8 to show that ẽ pessimistically reduces

to v.mδ(v1, . . . , vn). It may seem trivial that this then steps to the same

B.3 proof of semantic preservation 359

expression that e steps to, but recall that we are reducing e in implemen-

tation Ψ but ẽ in implementation Ψ̄. Our definition of implementation

validation in Figure 5.7 ensures that e steps to let τδ
m x := eC

m in x, where

eC
m is essentially C’s definition of m (with arguments substituted), and τδ

m

is δ’s return type for m. Furthermore, our definition of implementation

validation ensures that ẽ steps to let τδ
m x := ẽδ

m in x, where ẽδ
m is a

refinement of eC
m under type τδ

m. Consequently, our definition of imple-

mentation validation makes it trivial to show that let τδ
m x := ẽδ

m in x

is a refinement of let τδ
m x := eC

m in x under τ, as required for our goal.

However, had our definition of implementation validation elided the use

of let τδ
m x := • in x and instead just used •, we would have a problem

since ẽδ
m is a refinement of eC

m under τδ
m but not under the type τ required

for our goal. Thus this formal detail is critical to this lemma, but overall it

seems to be simply an artifact of our choice of strategy for formalization

rather than anything with deep significance.

Lemma B.12. For every Ψ, Ψ̄, e, ẽ, and τ where ` Ψ | e Ψ̄ | ẽ : τ holds,

∀ν. Ψ ` e −▸∞ ν : τ =⇒ Ψ̄ ` ẽ R∞ ν : τ

where R is either optimistic −▹ or pessimistic −▸ reduction.

Proof. Since ẽ is pessimistically typed, by Theorem 5.5.3 we only need to

prove this for the case where R is pessimistic reduction. This case is a

corollary of Lemma B.11, applying Lemma B.8 for the case where ν is a

value, and Lemma B.9 for the case where ν is erroneous, and noting that

Lemma B.11 guarantees the translation makes at least one step for every

step of the original program for the case where ν is non-termination.

360 more on nom

Theorem 5.6.3 (Pessimistic-Valuation Preservation). For every environ-

ment Ψ, expression e, and type τ where ` Ψ and Ψ ` τ and Ψ ` e ◃ τ

hold,

∀ν. Ψ ` e −▸∞ ν : τ =⇒ Ψ ` e ∞ ν : τ

Proof. Corollary of Theorem 5.6.2 and Lemma B.12.

b.3.4 Optimistic-Valuation Reflection

The use of negation in our definition of lapses often complicate proofs

unnecessarily. In Figure B.5, we present a formalization of lapses without

negation except for optimistic subtyping. This formalization is equivalent

to the one in Figure 5.5, so we abuse notation and denote both judgements

in the same manner.

Lemma B.13. For every environment Ψ where ` Ψ holds,

∀e, v, τ. Ψ ` e � v : τ =⇒ e = v

Proof. By induction on the proof of Ψ ` e � v : τ.

Lemma B.14. For every environment Ψ and implementation Ψ̄ where ` Ψ and

Ψ `◂ Ψ̄ hold, and for all e, ẽ, τ, and ẽ′,

Ψ ` e � ẽ : τ ∧ Ψ̄ ` ẽ R ẽ′ =⇒

Ψ ` e � ẽ′ : τ ∧ Ψ ` ẽ′ ≺ ẽ : τ

or

∃e′. Ψ e R e′ ∧ Ψ ` e′ � ẽ′ : τ

where R is either optimistic −▹ or pessimistic −▸ reduction.

B.3 proof of semantic preservation 361

Lapses without Reduction Ψ ` e lapse τ

Ψ ` e lapse τ

Ψ ` let τ x := e in e′ lapse τ′
@τ1, . . . , τn. class C(τ1, . . . , τn) ∈ Ψ

Ψ ` C(e1, . . . , en) lapse τ

class C(τ1, . . . , τn) ∈ Ψ
∀j. Ψ ` vj ◃ τj Ψ ` ei+1 lapse τi+1

Ψ ` C(v1, . . . , vi, ei+1, . . . , en) lapse τ′

class C(τ1, . . . , τn) ∈ Ψ
∀i. Ψ ` vi ◃ τi ¬ Ψ ` C ◃ τ

Ψ ` C(v1, . . . , vn) lapse τ

Ψ ` e lapse δ

Ψ ` e. fδ lapse τ

Ψ ` e lapse δ

Ψ ` e.mδ(e1, . . . , en) lapse τ

Ψ ` v ◃ δ @τ1, . . . , τn, τ. Ψ ` δ.m(τ1, . . . , τn) : τ

Ψ ` v.mδ(e1, . . . , en) lapse τ′

Ψ ` δ.m(τ1, . . . , τn) : τ
Ψ ` v ◃ δ ∀j. Ψ ` vj ◃ τj Ψ ` ei+1 lapse τi+1

Ψ ` v.mδ(v1, . . . , vi, ei+1, . . . , en) lapse τ′

Ψ ` e lapse >
Ψ ` cast e to τ lapse τ′

Figure B.5: Lapses without Reduction

Proof. Proof by induction on the proof of Ψ ` e � ẽ : τ, applying

Lemma B.13 to get values, and applying Lemma B.10 in cases with variable

substitutions. The case for method invocation relies on the same detail of

implementations as Lemma B.11, and the proof is nearly identical. Note

that the fact that this lemma holds for pessimistic reduction, not just opti-

mistic reduction, is the stronger property of our system that enables us to

achieve immediacy.

362 more on nom

Lemma B.15. For every environment Ψ and implementation Ψ̄ where ` Ψ and

Ψ `◂ Ψ̄ hold, and for each ε, e, ẽ, and τ,

 Ψ̄ ` ẽ erroneous ε

Ψ ` e � ẽ : τ

 =⇒

Ψ ` e erroneous ε

or

Ψ ` ε bad-cast ∧ Ψ ` e lapse τ

Proof. By induction on the proof of Ψ ` e � ẽ : τ, applying Lemma B.13 to

get values.

Lemma B.16. For every environment Ψ and type τ where ` Ψ and Ψ ` τ hold,

the binary relation Ψ ` e ≺ e′ : τ is well-founded.

Proof. Given any e and e′ such that Ψ ` e � e′ : τ holds, we can show by

induction on the proof of Ψ ` e � e′ : τ that either the syntactic height

of e is strictly less than the syntactic height of e′ or the expressions e

and e′ are syntactically identical. Consequently, for any e and e′ such that

Ψ ` e ≺ e′ : τ holds, the expressions e and e′ are by definition distinct, so

the syntactic height of e must be strictly less than the syntactic height of e′,

ensuring well-foundedness.

Lemma B.17. For every Ψ, Ψ̄, e, ẽ, and τ where ` Ψ | e Ψ̄ | ẽ : τ holds,

∀ν. Ψ ` ẽ R∞ ν : τ =⇒

Ψ ` e R∞ ν : τ

xor

Ψ ` ν bad-cast ∧ Ψ ` e R∗ lapse τ

where R is either optimistic −▹ or pessimistic −▸ reduction.

Proof. Proof by consideration of the cases of Ψ ` ẽ R∞ ν : τ, applying

Lemma B.14 in all cases. In the case of a value, one furthermore applies

B.4 proof of guarantees 363

Lemma B.13. In the case of an error, one furthermore applies Lemma B.15.

In the case of non-termination, one furthermore applies Lemma B.16.

Theorem 5.6.4 (Optimistic-Valuation Reflection). For every environment Ψ,

expression e, and type τ where ` Ψ and Ψ ` τ and Ψ ` e ◃ τ hold,

∀ν. Ψ ` e ∞ ν : τ =⇒

Ψ ` e −▹∞ ν : τ

or

Ψ ` ν bad-cast ∧ Ψ ` e −▹∗ lapse τ

Proof. Corollary of Lemma B.17.

b.4 proof of guarantees

b.4.1 Immediacy

Theorem 5.7.1 (Immediacy). For every Ψ, Ψ̄, e, ẽ, and τ where ` Ψ | e Ψ̄ |

ẽ : τ holds,

∀e′.

 Ψ ` e −▸∗ e′

Ψ ` e′ lapse τ

 =⇒ ∃ẽ′.

 Ψ̄ ` ẽ −▹∗ ẽ′

Ψ̄ ` ẽ′ bad-cast

 ∧ Ψ ` e′ � ẽ′ : τ

Proof. By Lemma B.11, ẽ must pessimistically (and therefore optimisti-

cally) reduce to some ẽ′0 that is a refinement of e′. By Theorem 5.5.2, ẽ′0 is

pessimistically typed since ẽ is pessimistically typed. By combining Lem-

mas B.14 and B.16, because ẽ′0 is a pessimistically typed refinement of a

pessimistically irreducible expression e′, there must exist a pessimistically

irreducible expression ẽ′ such that Ψ̄ ` ẽ′0 −▸∗ ẽ′ and Ψ ` e′ � ẽ′ hold. By

364 more on nom

Theorem 5.5.2, ẽ′ is also pessimistically typed and so, by Theorem 5.5.1,

also terminal.

Now first suppose ẽ′ were a value of type τ. Then, by Lemma B.13,

e′ would have to be that same value of type τ. However, by assumption

e′ is not a terminal of type τ and so cannot be such a value. Thus ẽ′ must be

erroneous. Since ẽ′ is a refinement of e′, but e′ is itself not erroneous (since

it is not terminal), Lemma B.15 informs us that ẽ′ must be specifically a

bad cast, proving our theorem.

Corollary B.1. For every environment Ψ, expression e, and type τ where ` Ψ,

Ψ ` τ, and Ψ ` e ◃ τ hold,

Ψ ` e −▸∗ lapse τ =⇒ ∃ε. Ψ ` e ∞ ε : τ ∧ Ψ ` ε bad-cast

Proof. Corollary of Theorem 5.7.1.

Lemma B.18. For every environment Ψ,

∀e, e′. Ψ ` e −▹ e′ =⇒

Ψ ` e −▸ e′

or

∀τ. Ψ ` e lapse τ

Proof. By induction on the proof of Ψ ` e −▹ e′.

Lemma B.19 (Pessimistic-Valuation Reflection). For every environment Ψ,

expression e, and type τ where ` Ψ and Ψ ` τ and Ψ ` e ◃ τ hold,

∀ν. Ψ ` e ∞ ν : τ =⇒

Ψ ` e −▸∞ ν : τ

or

Ψ ` ν bad-cast ∧ Ψ ` e −▸∗ lapse τ

B.4 proof of guarantees 365

Proof. Note that this can be proven as a corollary of Theorem 5.5.3 and

Lemma B.17. However, the proof of Lemma B.17 with pessimistic reduc-

tion relies on the fact that Lemma B.14 holds with pessimistic reduction.

For many gradual type systems, Lemma B.14 only holds for optimistic

reduction. So our goal here is to show that pessimistic-valuation reflection

can proven from just immediacy and properties we expect to hold of any

sound gradual type system.

Given Ψ ` e ∞ ν : τ, Theorem 5.6.4 tells us that either e optimistically

results in ν or ν is a bad cast and e optimistically reduces to a lapse. In

more detail, optimistic-valuation reflection tells us that for each sequence

ẽ0 −▹ . . . of single-step optimistic reductions, where ẽ0 is a pessimistically

typed refinement of e, there is a corresponding sequence e0 −▹? . . . of

single-or-no-step optimistic reductions, where e0 is e and each ẽi is a

refinement of ei. Furthermore, if the first sequence terminates with a value,

then the second sequence terminates with that same value. And if the first

sequence continues forever, then the second sequence continues forever

and contains enough single-step reductions to correspond to an infinite

digression. And if the first sequence terminates with an error, then either

the second sequence terminates with that error, or the error is a bad cast

and the second sequence terminates with some lapse.

Now suppose every optimistic reduction in the second sequence is also

a pessimistic reduction. Then the optimistic valuation or lapse of e is also

a pessimistic result of e, achieving our goal.

The alternative then, is that there is some single-step optimistic reduction

in the second sequence that is not also a pessimistic reduction. Let i be such

that ei −▹ ei+1 is the first such single-step reduction. Since i is the first such

reduction, by definition e pessimistically reduces to ei. By Lemma B.18,

366 more on nom

ei furthermore lapses. And since ei is optimistically reducible, it cannot

be a value. Thus we can apply Theorem 5.7.1. In more detail, immediacy

tells us that ẽi, being a pessimistically typed refinement of a lapse ei,

necessarily optimistically reduces to a bad cast that is itself a refinement

of ei. In particular, immediacy tells us that the first sequence terminates and

every single-or-no-step reduction after ei is actually a no-step reduction.

In particular, ei −▹? ei+1 must be a no-step reduction, contradicting our

definition of i. Thus, no such i can exist, guaranteeing that every optimistic

reduction in the second sequence is also a pessimistic reduction.

b.4.2 Gradual Optimism

Lemma B.20. For every environment Ψ and Ψ′,

Ψ v Ψ′ =⇒ ∀τ, τ′. Ψ ` τ S τ′ =⇒ Ψ′ ` τ S τ′

where S is either optimistic ◃ or pessimistic ◂ subtyping.

Proof. By induction on Ψ v Ψ′, since precision does not affect the inheri-

tance hierarchy.

Lemma B.21. For every environment Ψ,

∀τ1, τ′1, τ2, τ′2. τ1 v τ′1 ∧ τ2 v τ′2 ∧ Ψ ` τ1 ◃ τ2 =⇒ Ψ ` τ′1 ◃ τ′2

Proof. By consideration of the cases of τ1 v τ′1, τ2 v τ′2, and Ψ ` τ1 ◃

τ2.

B.4 proof of guarantees 367

Theorem 5.7.2 (Gradual Optimism).

∀



Ψ, Ψ′

Γ, Γ′

τ, τ′

e, e′


.



` Ψ

Ψ ` Γ

Ψ ` τ

Ψ | Γ ` e ◃ τ


∧



Ψ v Ψ′

Γ v Γ′

τ v τ′

e v e′


=⇒



` Ψ′

Ψ′ ` Γ′

Ψ′ ` τ′

Ψ′ | Γ′ ` e′ ◃ τ′


Proof. Each typing conclusion is proven by induction on the corresponding

typing assumption, regularly applying Lemmas B.20 and B.21.

b.4.3 Gradual Preservation

Lemma B.22.

∀v, e′. v v e′ =⇒ e′ = v

Proof. By induction on the proof of v v e′.

Lemma B.23.

∀e, e′, x, v. e v e′ =⇒ e[x 7→ v] v e′[x 7→ v]

Proof. By induction on the proof of e v e′.

Lemma B.24. For every environment Ψ,

∀τ1, τ2, τ′2. τ2 v τ′2 ∧ Ψ ` τ1 ◂ τ2 =⇒ Ψ ` τ1 ◂ τ′2

Proof. By consideration of the cases of τ2 v τ′2 and Ψ ` τ1 ◂ τ2.

368 more on nom

Lemma B.25. For every Ψ and Ψ′ where Ψ v Ψ′ holds,

∀e1, e′1, e2. e1 v e′1 ∧ Ψ ` e1 R e2 =⇒ ∃e′2. Ψ′ ` e′1 R e′2 ∧ e2 v e′2

where R is either optimistic −▹ or pessimistic −▸ reduction.

Proof. By induction on the proof of Ψ ` e1 R e2, applying Lemma B.22 to

get values, applying Theorem 5.7.2 to ensure those values are still typed

in the case of pessimistic reduction, applying Lemma B.23 in cases with

variable substitutions, and applying Lemmas B.20 and B.24 in the case of

cast reduction.

Lemma B.26. For every Ψ and Ψ′ where Ψ v Ψ holds,

∀ε, e, e′.

Ψ ` e erroneous ε

e v e′

 =⇒

Ψ′ ` e′ erroneous ε

or

Ψ ` ε bad-cast

Proof. By induction on the proof of Ψ ` e erroneous ε, applying Theo-

rem 5.7.2 and Lemmas B.22 and B.1 for values.

Corollary B.2. For every Ψ and Ψ′ where Ψ v Ψ′ holds,

∀e, e′, ν, τ. Ψ ` e R∞ ν : τ ∧ e v e′ =⇒

Ψ′ ` e′ R∞ ν : τ

or

Ψ ` ν bad-cast

where R is either optimistic −▹ or pessimistic −▸ reduction.

Proof. Proof by consideration of the cases of Ψ ` e R∞ ν : τ, applying

Lemma B.25 in all cases. In the case of a value, one furthermore applies

B.4 proof of guarantees 369

Lemma B.22. In the case of an error, one furthermore applies Lemma B.26.

Theorem 5.7.3 (Gradual Preservation). For every Ψ, Ψ′, e, e′, τ, and τ′ such

that ` Ψ, ` Ψ′, Ψ ` τ, Ψ′ ` τ′, Ψ ` e ◃ τ, and Ψ′ ` e′ ◃ τ′ hold,

∀ν.



Ψ ` e ∞ ν : τ

Ψ v Ψ′

τ v τ′

e v e′


=⇒

∃ν′.

Ψ′ ` e′ ∞ ν′ : τ′

ν v ν′


or

Ψ ` ν bad-cast

Proof. By Lemma B.19, Ψ ` e ∞ ν : τ implies either ν is a bad cast or

Ψ ` e −▸∞ ν : τ holds. In the former case, we are done. In the latter case,

Corollary B.2 implies either ν is a bad cast or Ψ′ ` e′ −▸∞ ν : τ holds.

Again, in the former case we are done. In the latter case, Theorem 5.6.3

implies Ψ′ ` e′ ∞ ν : τ holds. Applying Lemma B.24 and the assumption

that τ v τ′ holds, one can easily show this achieves our goal.

b.4.4 Gradual Reflection

Lemma B.27.

∀e, v. e v v =⇒ e = v

Proof. By induction on the proof of e v v.

370 more on nom

Lemma B.28. For every Ψ and Ψ′ where Ψ v Ψ′ holds, and for all e1, e′1, and e′2,

e1 v e′1 ∧ Ψ′ ` e′1 R e′2 =⇒

∃e2. Ψ ` e1 R e2 ∧ e2 v e′2

or

Ψ ` e1 bad-cast

or

∀τ. Ψ ` e1 lapse τ

Proof. By induction on the proof of Ψ ` e′1 R e′2, applying Lemma B.27 to

get values, and applying Lemma B.23 in cases with variable substitutions.

Lemma B.29. For every Ψ and Ψ′ where Ψ v Ψ holds,

∀ε, e, e′.

 e v e′

Ψ′ ` e′ erroneous ε

 =⇒

Ψ ` e erroneous ε

or

∀τ. Ψ ` e lapse τ

Proof. By induction on the proof of Ψ′ ` e′ erroneous ε, applying

Lemma B.27 to get values.

Lemma B.30. For every Ψ and Ψ′ where Ψ v Ψ′ holds, and for all e, e′, ν′,

and τ′,

 e v e′

Ψ′ ` e′ −▹∞ ν′ : τ′

 =⇒

Ψ ` e −▸∞ ν′ : τ′

or

∃ε. Ψ ` ε bad-cast ∧ ∀τ. Ψ ` e −▸∞ ε : τ

or

∀τ. Ψ ` e −▸∗ lapse τ

B.4 proof of guarantees 371

Proof. In the case where ν′ is ∞, Lemma B.28 implies either Ψ ` e −▹∞ ∞ :

τ′ or e optimistically reduces to some bad cast or a lapse of any type τ.

Lemma B.18 then implies that either those optimistic reductions are also

pessimistic reductions or e pessimistically reduces to a lapse of any type τ.

Any of the resulting cases achieve our goal.

In the case where ν′ is some value v of type τ′, Lemmas B.28 and B.27

imply either Ψ ` e −▹∞ v : τ′ or e optimistically reduces to some bad

cast or a lapse of any type τ. Lemma B.18 then implies that either those

optimistic reductions are also pessimistic reductions or e pessimistically

reduces to a lapse of any type τ. Any of the resulting cases achieve our

goal.

In the case where ν′ is some error ε, Lemmas B.28 and B.29 imply

either Ψ ` e −▹∞ ε : τ′ or e optimistically reduces to some bad cast or a

lapse of any type τ. Lemma B.18 then implies that either those optimistic

reductions are also pessimistic reductions or e pessimistically reduces to a

lapse of any type τ. Any of the resulting cases achieve our goal.

Lemma B.31. For every Ψ and Ψ′ where Ψ v Ψ′ holds,

∀e, e′, τ, τ′. e v e′ ∧ τ v τ′ ∧ Ψ′ ` e′ lapse τ′ =⇒ Ψ ` e lapse τ

Proof. By induction on the proof of Ψ′ ` e′ lapse τ′.

372 more on nom

Theorem 5.7.4 (Gradual Reflection). For every Ψ, Ψ′, e, e′, τ, and τ′ such

that ` Ψ, ` Ψ′, Ψ ` τ, Ψ′ ` τ′, Ψ ` e ◃ τ, and Ψ′ ` e′ ◃ τ′ hold,

∀ν′.



Ψ v Ψ′

τ v τ′

e v e′

Ψ′ ` e′ ∞ ν′ : τ′


=⇒ ∃ν. Ψ ` e ∞ ν : τ ∧

ν v ν′

or

Ψ ` ν bad-cast

Proof. By Theorem 5.6.4, Ψ′ ` e′ ∞ ν′ : τ′ implies either Ψ′ ` e′ −▹∗

lapse τ′ or Ψ′ ` e′ −▹∞ ν′ : τ′ hold. In the former case, Lemma B.28

followed by Lemmas B.18 and B.31 imply e pessimistically reduces to

some bad cast or to a lapse of type τ. In the latter case, Lemma B.30

implies Ψ ` e −▸∞ ν′ : τ′ holds or e pessimistically reduces to some bad

cast or to a lapse of type τ. Altogether, this leaves us with three cases to

consider. In the case where e pessimistically reduces to some bad cast, this

achieves our goal, so we consider the other two cases.

Suppose e pessimistically reduces to a lapse of type τ. Theorem 5.7.1

implies any pessimistically typed refinement of e with respect to τ will

optimistically reduce to some bad cast. By definition, this means Ψ ` e ∞

ν : τ holds for some bad cast ν, achieving our goal. Note that Theorem 5.7.1

is stronger than necessary for this. In particular, we do not need to know

that a bad cast will be identified immediately if reduction of the original

program becomes optimistically ill-typed; we only need to know that one

will be identified eventually.

Suppose instead that Ψ ` e −▸∞ ν′ : τ′ holds. In the case where ν′ is ∞

or some error ε, then Ψ ` e −▸∞ ν′ : τ holds as well, achieving our goal.

In the case where ν′ is some value v, then either v has type τ or not.

B.4 proof of guarantees 373

If it does, then Ψ ` e −▸∞ ν′ : τ holds, achieving our goal. If it does

not, then Ψ ` v lapse τ holds, implying e pessimistically reduces to a

lapse of type τ. As above, we can then apply Thoerem 5.7.1 to show that

Ψ ` e ∞ ν : τ holds for some bad cast ν, achieving our goal.

C
M O R E O N M O N N O M

c.1 benchmark result charts

Figure C.1: Bar Graph for MonNom Sieve Results. Versions are labeled U (Un-
typed Structural), S (Typed Structural), or N (Nominal), and ordered
alphabetically (Main, Stream).; Intersort: Iterator, List, ListNode).

375

376 more on monnom

Figure C.2: Bar Graph for MonNom Intersort Results. Versions are labeled U (Un-
typed Structural), S (Typed Structural), or N (Nominal), and ordered
alphabetically (Iterator, List, ListNode).

D
M O R E O N G E N E R I C S

d.1 corpus study

As discussed in Section 8.2, the current major object-oriented programming

languages use type-argument inference algorithms in a somewhat ad-hoc

fashion, and their libraries are designed accordingly. However, they heavily

use generics to provide rich APIs in particular for their Collections-related

libraries, establishing a good baseline for the kinds of methods a reasonable

system needs to support. So while back-patching our requirements for

inferable type parameters – which include things like null not being a

member of every type and principal instantiation inheritance – onto these

existing languages is infeasible, we can nonetheless analyze their APIs

and try to translate them into our System, if necessary with some minor

modifications.

In this section, we therefore analyze the Collections-related libraries

of C# [ECMA TC39-TG2, 2017], Ceylon [King, 2013], Java [Gosling, Joy,

Steele, Bracha, and Buckley, 2015], and Kotlin [JetBrains, 2019], which

are usually the main use case of generics. All of those languages feature

and heavily use multiple interface inheritance, so we analyzed them by

translating the relevant method signatures to Gen∩ as closely as possible.

Wherever plausible, we translated function/delegate types to higher-order

parameters.

377

378 more on generics

Each of the following subsections lists what namespaces/libraries and

what kind of members of those were analyzed, along with statistics about

the numbers of inferable parameters with and without simple redesigns,

and elaborations on a few of the more interesting cases. Inferable parame-

ters are split up by the variance with which they can be inferred, where

± indicates that a parameter can be inferred either co- or contravariantly.

While this may not make a difference to the inference algorithm, it does

make a difference for the code that uses the inferred type parameters;

in fact, for some methods, inferring the type parameters at all would be

unwise even though it is possible (see an example below).

d.1.1 C#

The following tables shows the results for the libraries System.Linq,

System.Collections.Immutable, and a slightly redesigned version of the latter,

once grouped by individual type parameters and once grouped by the

methods that they are parameters for. The various kinds of inferability

refer to the variances with which the type parameters are inferred, where

± means a parameter could be inferred either co- or contravariantly.

Library #
Inferable

Uninferable
+ - ! ±

System.Linq 293 218 2 8 32 33
System.Collections.Immutable 272 22 0 101 33 116
System.Collections.ImmutableR 272 163 0 33 56 20

Table D.1: Inferability of Type Parameters in C# Collections

D.1 corpus study 379

Library #
Inferable

Uninferable
Fully Partially

System.Linq 204 182 9 13
System.Collections.Immutable 195 115 14 66
System.Collections.ImmutableR 195 181 7 7

Table D.2: Inferability of Method Signatures in C# Collections

d.1.1.1 System.Linq

This library contains most extension methods for IEnumerable<+T>, most

importantly C#’s version of map (Select), fold (Aggregate), and filter (Where).

The only methods with uninferable type parameters in System.Linq are

various overloadings of Aggregate, ToArray, ToList, ToLookup, ToHashSet, and

ToDictionary. The first, Aggregate, is uninferable because the aggregator

function (in its general form of type (α, β) → α) should be a higher-

order parameter, which leads to a dependency cycle, as it requires α to

be inferred covariantly to have the best input types, but in order for α to

be inferred covariantly, the output type of the function, which depends

on the input types, would have to already be known. All other methods

with uninferable type parameters return instances of invariant classes

for good reason, so given that they only have covariant input, there is

no way to infer the type arguments for these methods in a principled

way. However, in particular uses of ToArray and ToList are often called

just to force the evaluation of otherwise lazily evaluated other extension

methods of IEnumerable. For these use cases, additional extension methods

like ToReadOnlyList (whose result would be covariant) would suffice, and

their type arguments would be inferable.

380 more on generics

There are a few methods whose parameters are technically inferable,

but that would be ill-advised. For example, consider the extension method

IEnumerable<T>.Cast<S>() : IEnumerable<S>. The type parameter S is inferable

covariantly, and because there is nothing to constrain it, it will always be

inferred to be ⊥. The purpose of the method is to return an enumerable

where all the elements were cast to S, in this case ⊥, which will always fail.

d.1.1.2 System.Collections.Immutable

This library has a lot more uninferable type parameters. The reason for

this is that all the immutable versions of data structures ImmutableArray,

ImmutableDictionary, etc. are invariant, as they are classes and also inherit

from invariant interfaces. This is unnecessary, as their implementation

of relevant mutating operations throw exceptions (i.e., they offer meth-

ods like void Add(E elem)); instead, they provide functional versions of

those mutating operations (e.g. ImmutableList<E> Add(E elem)). In our cal-

culus, all of this is compatible with making the type parameter of the

relevant classes/interfaces covariant. Thus, the re-designed version of

System.Collections.Immutable, where the type parameter declarations on the

immutable data structures were changed from invariant to covariant moves

most of the previously uninferable type parameters into the covariant col-

umn (along with most of the previously uniquely determined, invariant

type parameters).

D.1 corpus study 381

d.1.2 Ceylon

Ceylon’s collection libraries were built with generics in mind, and thus is

the closest match to our calculus. The package ceylon.collections itself is

fairly sparse, only containing eight functions at the top level. The package

ceylon.language contains a lot more top-level function, many if which are

related to collections, in addition to some higher-order functions like

currying. For the latter, Ceylon supports type-level tuples and what is

essentially a strong form of variadic type arguments. Our calculus does

not have a direct equivalent, so for the below results we assumed that a list

of type parameters was just a single parameter; the results generalize for

any amount of type parameters positioned and constrained in the same

way. Unlike C# and Kotlin, Ceylon specifies the basic list operations like

filter, fold, and map directly in the Iterable interface, which is therefore

also included here.

Namespace #
Inferable

Uninferable
+ - ! ±

ceylon.language 109 86 16 0 1 6
ceylon.collection 11 8 0 0 0 3
ceylon.language.Iterable 21 14 1 0 0 5

Table D.3: Inferability of Type Parameters in Ceylon Collections

In the libraries analyzed here, only a few parameters would not be

inferable based on our calculus. The reasons for that fall into one of three

categories:

• fold methods where, as in the other languages, the type parameter

representing the accumulator appears on both sides of a higher-order

382 more on generics

Namespace #
Inferable

Uninferable
Fully Partially

ceylon.language 59 51 3 5
ceylon.collection 8 6 0 2
ceylon.language.Iterable 17 12 0 5

Table D.4: Inferability of Method Signatures in Ceylon Collections

parameter. A special case here is the method set<E <: Object>(stream

: Iterable<E, Null>, choosing(E earlier, E later) : E) : Set<E>

This method goes through stream and creates a set, using the method

choosing to disambiguate which of two objects to put in the set if two

or more equal values are in stream. Treating choosing as a higher-order

parameter means that the type parameter E cannot be inferred.

• Returning invariant types based on covariant collection values

• Otherwise covariantly inferable type parameters occurring in union

types. Two (Iterable.group and Iterable.summarize) of the three occur-

rences of this are caused by nullable types, which in Ceylon mean

E ∪ Null. Our calculus will treat E as not inferable if a parameter has

the above type. However, a slight extension of our calculus based

on more elaborate disjointness reasoning could infer E covariantly in

the two methods here, as they are also restricted two be subtypes of

Object, creating a disjoint union.

d.1.3 Java

In Java, we focus on translating the methods in the java.util.Collections

interface as well as the java.util.Stream interface, which contains the more

D.1 corpus study 383

modern higher-order facilities like map, filter, and fold. The following

tables show the results. As Java does not feature declaration-site variance,

we made some assumptions about some of the most basic interfaces being

covariant:

• Enumerable<+T>

• Stream<+T>

• Iterator<+T>

As discussed below, it makes sense for a number of other types to be covari-

ant, altough that would require some minor redesign work - represented

in Tables D.5 and D.6 as java.util.CollectionsR.

Namespace #
Inferable

Uninferable
+ - ! ±

java.util.Collections 65 8 2 31 3 21
java.util.CollectionsR 65 29 2 31 3 0
java.util.Stream 15 10 0 2 1 2

Table D.5: Inferability of Type Parameters in Java Collections

Namespace #
Inferable

Uninferable
Fully Partially

java.util.Collections 55 36 0 19
java.util.CollectionsR 55 55 0 0
java.util.Stream 14 12 0 2

Table D.6: Inferability of Method Signatures in Java Collections

The biggest source of uninferability in java.util.Collections is that many

methods in specifically return immutable objects, yet are treated as being

invariant. Thus, we can imagine redesigning the system such that these

384 more on generics

immutable objects are treated covariantly as in a setting with declaration-

site variance, which would allow our system to successfully infer the

corresponding type arguments. As an example, the method <T> List<T>

nCopies(int n, T o) is not inferable since the return type is invariant in T

while the argument is covariant in T. However, this method’s specification

stipulates that the returned list is immutable; thus, we could redesign

the system to return an object of a type representing immutable lists,

which could then be covariant, allowing the method to be inferable with T

covariant. This redesign of java.util.Collections leave no type parameters

uninferable.

Finally, the Stream<T> interface has similarities to collections interfaces in

other languages and was thus included. By treating Stream<T> covariantly,

we are able to infer most methods in the class. The one method not infer-

able is <T> Stream.Builder<T> builder(), since making the builder covariant

would not be in the spirit of the builder pattern.

d.1.4 Kotlin

Kotlin, like C#, implements most collection functionality in extension

methods, which are specified in kotlin.collections. There were two

small groups of uninferable parameters that could have been inferable

if two orthogonal issues (one for each group) would be solved. One is a

simple re-design of the Map interface to be covariant in both parameters

(redesign “R”), and the other is an extension of our calculus to allow

extended reasoning about union types (redesign “?”). Tables D.7 and D.8

D.2 case study 385

show the original results plus both redesigns and a combination of the

two.

Namespace #
Inferable

Uninferable
+ - ! ±

kotlin.collections 244 188 0 4 27 25
kotlin.collectionsR 244 194 0 4 27 19
kotlin.collections? 244 194 0 4 27 19
kotlin.collectionsR? 244 200 0 4 27 13

Table D.7: Inferability of Type Parameters in Kotlin Collections

Namespace #
Inferable

Uninferable
Fully Partially

kotlin.collections 172 147 21 4
kotlin.collectionsR 172 153 15 4
kotlin.collections? 172 153 15 4
kotlin.collectionsR? 172 159 9 4

Table D.8: Inferability of Method Signatures in Kotlin Collections

d.2 case study

In this section, we sketch a standard library that is built using our calculus,

demonstrating some of its more advanced features.

d.2.1 Extensions

We assume a few extensions to our calculus to make it more convenient to

use, most importantly mutable fields.

386 more on generics

d.2.1.1 Inheritance

For simplicity, the formalization in the chapter demands that each in-

terface/shape explicitly declares all of its methods, which are then

checked for whether they satisfy the requirements of the declared super-

interfaces/shapes. Similarly, the conditionally satisfied shapes have to be

re-declared for each interface. Here, we assume that method declarations

and conditionally satisfied shapes can be inherited and would only have

to be explicitly declared in cases where two non-identical specifications of

the same thing would be inherited.

d.2.1.2 Mutable Fields

The formalization in this dissertation passes around immutable object

values. We assume a straightforward extension of this where instead,

everything is a reference to a heap-allocated object, and objects can have

mutable fields that are only accessible from within them. The key point

of the accessibility restriction is to allow field types to refer to co- and

contravariant type variables - while the variable is effectively invariant

within the object itself, an outside view of the object may use a super- or

subtype of the actual type argument, respectively, and thus it would be

unsound to write to or read from the field, respectively. While this can

easily be relaxed, for our purposes, getter- and setter-methods can provide

outside access to fields as long as they respect co/contravariance.

There are two new kinds of expressions: value field assignments x := e; e,

where the first expression evaluates to the value assigned to the field x

(same namespace as local variables for convenience, but only fields are

mutable) and the second expression evaluates to the result of the expres-

D.2 case study 387

sion as a whole, and function field assignments f := f ; e, which assigns

the value of a function field or a function variable to the specified func-

tion field (again same namespace for convenience, but function variables

are immutable) and returns the result of the second expression. Variable

expressions double as potential read expressions; these variables are only

substituted with their value as needed, while all other (immutable) vari-

ables are still substituted globally. Furthermore, a declaration of an object

now has added field declarations and initialization expressions:

object x : I〈~τ〉 {p := e; ...; d; ...}

As stated above, the mutable fields of an object are only accessible from

within that object. With respect to that, the field initialization expressions

count as being within the object whose code is creating the new object

and can thus access the fields of the outer object, but not those of the one

being created, while the expressions in method definitions cannot access

fields of the outer object, only those of the object being created.

d.2.1.3 Static/Top-Level Methods/Fields

Since a program is just a number of interface/shape definitions and an

expression, that expression can be wrapped in an initial let-expression that

defines a special object (e.g. “Static”) that defines the top-level methods

and contains the top-level fields and corresponding getters and setters,

along with a special interface that specifies its signature. This also provides

an easy way to create constructors for “Classes” (see our object “New”

below), which are just static methods that return newly constructed objects.

388 more on generics

d.2.1.4 Mixed Named and Positional Arguments

The calculus uses explicitly named arguments everywhere, but that is not a

strict requirement. In the code below, we simply use positional arguments

as one would expect.

d.2.2 Library

d.2.2.1 Shapes

The library starts with a collection of standard shapes, most notably Eq<-E>,

which forms the top of a hierarchy of types related to comparability. The

library also contains two different shapes for clonability - one for deep and

one for shallow copies. Lastly, we provide some binary operator shapes

for standard operations.

// Shape for types that can be equated

shape Eq<-E> {

Equals(than : E) : Boolean;

}

// Shape for types where equal instances have the same hash

shape HashEq<-E> extends Eq<E> {

Hash() : Nat;

}

// Shape for partially ordered types

shape PComparable<-E> extends Eq<E> {

IsLessThan(that : E) : Boolean;

Compare(to : E) : PComparison;

}

D.2 case study 389

// Shape for totally ordered types

shape Comparable<-E> extends PComparable<E> {

Compare(to : E) : Comparison;

}

// Shape for types whose values have joins

shape Joinable<!E> extends PComparable<E> {

Join(with : E) : E;

}

// Shape for types whose values have meets

shape Meetable<!E> extends PComparable<E> {

Meet(with : E) : E;

}

// Shape for shallowly clonable types

shape SCloneable<+E> {

SClone() : E;

}

// Shape for deeply clonable types

shape DCloneable<+E> {

DClone() : E;

}

// Shape for summable types

shape Summable<!E> {

Add(right : E) : E;

}

// Shape for summable types whose addition is commutative

shape CommSummable<!E> extends Summable<E> {

390 more on generics

}

// Shape for subtractable types

shape Subtractable<!E> extends CommSummable<E> {

Subtract(subtrahend : E) : E;

}

// Shape for multipliable types

shape Multipliable<!E> {

Multiply(right : E) : E;

}

// Shape for divisible types

shape Divisible<!E> extends Multipliable<E> {

Divide(divisor : E) : E;

}

// Shape for multipliable types whose multiplication is commutative

shape CommMultipliable<!E> extends Multipliable<E> {

}

// Shape for exponentiable types

shape Exponentiable<!E> extends Multipliable<E> {

Exponentiate(exponent : E) : E;

}

// Short-hand shape for primitive types

shape Primitive<!E> extends Joinable<E>, Meetable<E>, SCloneable<Unit>,

DCloneable<E> {

}

D.2 case study 391

d.2.2.2 Basic Types

Next we specify some of the basic types in the library. Note that while

we are specifying even the most basic types as interfaces, a more practical

version of the language can easily incorporate optimized primitives. The

only method here whose type parameters are not inferable is Number.Repeat,

since T occurs covariantly in both the arguments and the return type of

step. Various versions of case/if-then-else on the other hand are completely

inferable.

// Unit

interface Unit satisfies Primitive<Unit> {

}

// Boolean

interface Boolean satisfies Primitive<Boolean> {

IfThenElse[+T](thencont() : T, elsecont() : T);

}

// Numbers

interface Number satisfies Primitive<Number>, Subtractable<Number>,

Divisible<Number>, CommMultipliable<Number>, Exponentiable<Number> {

}

// Natural Numbers

interface Nat extends Number satisfies DCloneable<Nat>[][],

SCloneable<Nat>[][] {

Repeat<T>(init : T, step(T) : T);

}

// Tagged Sum

392 more on generics

interface Either<+T, +S> satisfies DCloneable<Either<V, W>>[T <: +V, S <:

+W][T.DCloneable<V>, S.DCloneable<W>], SCloneable<Either<T,S>>[][]

{

Bind[+V,+W](left(T) : V, right(S) : W) : Either<V, W>;

Case[+V](left(T) : V, right(S) : V) : V;

}

// Option

interface Option<+T> extends Either<T, Unit> satisfies

DCloneable<Option<S>>[T <: +S][T.Cloneable<S>],

SCloneable<Option<S>>[][] {

BindOption[+S](some(T) : S) : Option<S>;

CaseOption[+S](some(T) : S, none() : S) : S;

}

// Pair

interface Pair<+T, +S> satisfies Eq<Pair<V, W>>[T <: -V, S <: -W][T.Eq<V>,

S.Eq<W>], HashEq<Pair<V, W>>[T <: -V, S <: -W][T.HashEq<V>,

S.HashEq<W>], SCloneable<Pair<T,S>>[][] {

Left() : T;

Right() : S;

}

// Function

interface Function<-I, +O> {

Invoke(i : I) : O;

}

// Result type for comparisons of PComparable

interface PComparison {

IsLessThan() : Boolean;

IsEqual() : Boolean;

IsGreaterThan() : Boolean;

D.2 case study 393

IsIncomparable() : Boolean;

Case[+T](lessThan() : T, equalTo() : T, greaterThan() : T, incomparable()

: T) : T;

}

// Result type for comparisons of Comparable

interface Comparison {

Case[+T](lessThan() : T, equalTo() : T, greaterThan() : T) : T;

}

d.2.2.3 Collections

Collections are one of the main use-cases of generics. An important design

principle here was to keep the interface hierarchy covariant for as long as

possibe - since our calculus support lower bounds on type variables, we

can use them to get around many of the limiations that covariance would

usually come with. Note the heavy use of shape evidence to condition-

ally provide methods depending on the generic arguments in especially

Collection. ImmutableLinkedList demonstrates the principle behind the re-

design of the C# System.Collections.Immutable library.

// Iterator

interface Iterator<+E> {

MoveNext() : Boolean;

Current() : E;

}

// Enumerable

interface Enumerable<+E> {

IsEmpty() : Boolean;

GetIterator() : Iterator<E>;

FoldShortcut<T>[+S](start : T, step(T, E) : Either<T, S>) : Either<T, S>;

394 more on generics

}

// Collection

interface Collection<+E> extends Enumerable<E> {

Fold<T>(start : T, step(T, E) : T) : T;

FoldFirst<T>[+R](first(E) : T, empty() : R, step(T, E) : T, result(T) : R)

: R ;

Count() : Nat;

CountOf[E <: +T](elem : T)[E.Eq<T>] : Nat;

Contains[E <: +T](elem : T)[E.Eq<T>] : Boolean;

Equals[E <: +T](Collection<T> other)[E.Eq<T>] : Boolean;

Hash()[E.HashEq<E>] : Nat;

Sum[E <: !T](start : T)[T.Summable<T>] : T;

Product[E <: !T](start : T)[T.Multipliable<T>] : T;

Join[E <: !T](start : T)[T.Joinable<T>] : T;

Meet[E <: !T](start : T)[T.Meetable<T>] : T;

}

// Set

interface Set<+E> extends Collection<E> satisfies

Eq<Set<T>>[E<:-T][E.Eq<T>], HashEq<Set<T>>[E<:-T][E.HashEq<T>] { ... }

// Multiset

interface Multiset<+E> extends Collection<Pair<E, Nat>>

Eq<Multiset<T>>[E<:-T][E.Eq<T>],

HashEq<Multiset<T>>[E<:-T][E.HashEq<T>] { ... }

// Sequence

interface Sequence<+E> extends Collection<E> satisfies

Eq<Sequence<T>>[E<:-T][E.Eq<T>],

HashEq<Sequence<T>>[E<:-T][E.HashEq<T>] {

First() : E;

Last() : E;

D.2 case study 395

ElementAt(index : Nat) : E;

IndexOf[E <: +T](T elem)[E.Eq<T>] : Option<Nat>;

LastIndexOf[E <: +T](T elem)[E.Eq<T>] : Option<Nat>;

}

// Map

interface Map<+K, +E> {

ContainsKey[K <: +T](T key)[K.Eq<T>] : Boolean;

Lookup[K <: +T](T key)[K.Eq<T>] : Option<E>;

}

// FiniteMap

interface FiniteMap<+K, +E> extends Collection<Pair<K,E>>, Map<K,E> {

GetKeys() : Collection<K>;

GetValues() : Collection<E>;

}

// ImmutableLinkedList

interface ImmutableLinkedList<+E> extends Sequence<E> {

Cons[E <: +T](elem : T) : ImmutableLinkedList<T>;

Insert[E <: +T](index : Nat, elem : T) : ImmutableLinkedList<T>;

Remove[E <: +T](elem : T)[E.Eq<T>] : ImmutableLinkedList<E>;

RemoveAll(where(E) : Boolean) : ImmutableLinkedList<E>;

RemoveAt(index : Nat) : ImmutableLinkedList<E>;

Replace[E <: +T, E <: +S](oldElem : T, newElem : S)[E.Eq<T>] :

ImmutableLinkedList<S>;

SetElementAt[E <: +T](index : Nat, elem : T) : ImmutableLinkedList<T>;

}

// ImmutableMap

interface ImmutableMap<+K, +E> extends Map<K,E> {

MapTo[K <: +T, E <: +S](key : T, elem: S) : ImmutableMap<T,S>;

...

396 more on generics

}

// MutableSet

interface MutableSet<!E> extends Set<E> {

Add(elem : E) : Unit;

Remove(elem : E) : Unit;

...

}

// MutableList

interface MutableList<!E> extends Sequence<E> satisfies

DCloneable<MutableList<E>>[][E.DCloneable<E>],

SCloneable<MutableList<E>>[][]{

Add(elem : E) : Unit;

Insert(index : Nat, elem : E) : Unit;

Remove(elem : E)[E.Eq<E>] : Unit;

RemoveAll(where(E) : Boolean) : Unit;

RemoveAt(index : Nat) : Unit;

Replace(oldElem : E, newElem : E)[E.Eq<E>] : Unit;

Splice(index : Nat, count : Nat, elems : Enumerable<E>) : Unit;

}

d.2.2.4 Implementation

We wrap any program in a let-expression that defines the New-object,

which contains the various constructors for our types. We start with the

constructors for ImmutableLinkedList, which are straightforward, providing

the cases for nil and cons. Next, the constructors for sets construct various

implementations for sets; the interesting case is BitSet, as already discussed

in Section 8.5.4, the signature of its Contains method can be written a lot

simpler than its original specification in Collection would have suggested.

D.2 case study 397

Last, there are three kinds of examples of how dynamic satisfaction and

subtyping checks on types can help implement several optimized classes

while still maintaining predictable semantics.

1. Set() and Map() reason dynamically about the given argument type to

deduce the most fitting implementation of a set or map depending

on the kinds of equalities or comparisons the given type supports.

2. Memoize() takes a higher-order parameter and wraps it in a Function

interface. In addition, if the argument type supports at least basic

equality, some form of Map (chosen by whatever equalities or com-

parisons are supported) will remember all computed values and try

to look them up instead of calling the function a second time.

3. SummedList() creates a list of Summable objects. By Collection’s interface

definition, that means that SummedList() has a Sum() function that is

supposed to return the sum of all its elements. This might be an

expensive operation to do all the time, so SummedList tries to keep

track of what the sum should be in an extra field. The value is first

generated when Sum() is called the first time, and will be updated

when values are added or removed to the list so it stays up-to-date.

There’s a catch here: if the elements of the list can be added up, but

addition is not commutative, then we cannot correctly update our

memorized sum value when inserting an element into the middle of

the list by just adding its value to our sum value. In this case, we have

to erase the memorized sum value and re-compute it next time Sum()

is called. However, if addition is commutative, that is, if the type

argument satisfies CommSummable, then we can just add the value to our

memorized sum value and do not need to completely recompute it.

398 more on generics

Similarly, removing an element while keeping the memorized sum

up-to-date requires that the element type be Subtractable. All of this

can be expressed in our calculus in a type-safe, principled manner.

interface New { ... }

let New : New := object New : New {

ImmutableLinkedList() : ImmutableLinkedList<⊥> 7→

object this : ImmutableLinkedList<⊥> {

}

ImmutableLinkedList[+E](first : E, rest : ImmutableLinkedList<E>) :

ImmutableLinkedList<E> 7→

object this : ImmutableLinkedList<E> {

}

HashSet<E>()[E.HashEq<E>] : MutableSet<E> 7→

object this : MutableSet<E> { ... }

TreeSet<E>()[E.Comparable<E>] : MutableSet<E> 7→

object this : MutableSet<E> { ... }

ArraySet<E>()[E.Comparable<E>] : MutableSet<E> 7→

object this : MutableSet<E> { ... }

BitSet() : MutableSet<Nat> 7→

object this : BitSet {

...

// Implements Collection<Nat>.Contains

Contains(elem : Nat) : Boolean 7→ ...

...

}

...

//Creates a mutable Set that’s using the most

//fitting implementation depending on the level of

//equality/comparability of the element type.

Set<E>()[E.Eq<E>] : MutableSet<E> 7→

if E <: Nat then

New.BitSet()

D.2 case study 399

else

if E satisfies HashEq<E> then

New.HashSet<E>()

else

if E satisfies Comparable<E> then

New.TreeSet<E>()

else

New.ArraySet<E>();

//Creates a mutable Map that’s using the most

//fitting implementation depending on the level of

//equality/comparability of the key type.

Map<K,E>()[K.Eq<K>] : MutableMap<K,E> 7→

if E satisfies HashEq<E> then

New.HashMap<K, E>()

else

if E satisfies Comparable<E> then

New.TreeMap<K, E>()

else

New.ArrayMap<K, E>();

//Takes a function and creates a memoized version of it

//if the parameter type is at least equatable, otherwise

//just wraps it in a Function object

Memoize<I>[+O](fun(I) : O) : Function<I, O> 7→

if I satisfies Eq<I> then

object this : Function<I, O> {

f(I) : O := fun;

map : MutableMap<I,O> := New.Map<I,O>();

Invoke(i : I) : O 7→

map.Lookup(i).CaseOption(

(o) 7→o,

() 7→

400 more on generics

let o := f(i) in

let x := map.Add(o) in o)

}

else

object this : Function<I, O> {

f(I) : O := fun;

Invoke(i : I) : O 7→ f(i)

};

// Creates a mutable list of summable items that tries to

// keep the current sum in memory to avoid recomputing it

// every time

SummedList<E>()[E.Summable<E>] : MutableList<E> 7→

object this : MutableList<E> {

sum : Optional<E> := New.None();

list : MutableList<E> := New.ArrayList();

// Returns the sum of all the elements in the list,

// either from memory or recomputes the sum of all the

// elements in the list and stores the result in memory

Sum(start : E) : E 7→

sum.CaseOption(

(v) 7→ start.Add(v),

() 7→

list.FoldFirst<E>(

(e) 7→ e,

() 7→ New.None(),

(acc, e) 7→ acc.Add(e),

(r) 7→ New.Some(r)).CaseOption(

(v) 7→ sum := v; start.Add(v),

() 7→ start));

// Called whenever an element is added at the end. Will add

D.2 case study 401

// the element’s value to current sum, if applicable

Add(elem : E) : Unit 7→

let u := list.Add(elem) in

sum := sum.BindOption((v) 7→ v.Add(elem)); u;

// Called whenever an element is inserted. Will try to add

// the element’s value to current sum if possible, otherwise

// resets current sum

Insert(index : Nat, elem : E) : E 7→

if E satisfies CommSummable<E> then

sum := sum.BindOption((v) 7→ v.Add(elem)); list.Insert(index,

elem);

else

sum := New.None(); list.Insert(index, elem);

// Called whenever an element is removed. Will try to subtract

// the element’s value from current sum if possible, otherwise

// resets current sum

Remove(elem : E) : E 7→

if E satisfies Subtractable<E> then

sum := sum.BindOption((v) 7→ v.Subtract(elem)); list.Remove(elem);

else

sum := New.None(); list.Remove(elem);

... // Implementations of all other MutableList<E> methods

};

} in //[Your Program Here]

402 more on generics

d.3 formalization index

Hierarchy Ψ ::= c; ...
Confluence c ::= cI | cS

Interface Name I
Interface Declaration cI ::= interface I〈Θ〉 extends ~τ I

satisfies~σI{s; ...}
Kind Context Θ ::= τ <: να <: τ, ...
Inherited Interfaces ~τ I ::= ∅ | τ I | τ I , ...
Inherited Interface τ I ::= I〈α, ...〉 | I〈~τ〉
Type Variable α

Types ~τ ::= τ, ...
Type τ ::= ⊥ | > | I〈~τa〉 | α | τ ∪ τ | τ ∩ τ

Type Arguments ~τa ::= τa, ...
Type Argument τa ::= τ | in τ out τ

Signed Variance ν± ::= + | −
Ignorable Variance ν? ::= ν | ?
Variance ν ::= ν± | !

Shape Name S
Shape Declaration cS ::= SSΘσ, ...s; ...
Shape σ ::= S〈~τ〉
Evidence Variable ς

Conditionally Satisfied Shapes~σI ::= σI , ...
Conditionally Satisfied Shape σI ::= σ[Θ][Σ]
Shape Context Σ ::= ς : α.σ, ...
Shape Premise Στ ::= ς : τ.σ, ...
Shape Conclusion Σ<: ::= ⊥ | 〈Θ〉[Σ]
Inferred Bounds Θ<: ::= ∅ | Θ<:, τ <: α | Θ<:, α <: τ

Inhabitation ι ::= ↑ | ↓

Figure D.1: Full Grammar

D.3 formalization index 403

Method Name m
Program Variable x
Function Variable f
Method Signature s ::= m〈Θ!〉[Θ](Γ)[Σ] : τ

Method Premise sτ ::= m〈Θ!〉[Θ](Γ)[Στ] : τ

Invariant Kind Context Θ! ::= τ <: !α <: τ, ...
Program Context Γ ::= p; ...
Program Parameter p ::= x : τ | f (τ, ...) : τ

Expression e ::= x | f (e, ...) | let x := e in e |
| throw | if eg then e else e
| object x : I〈~τ〉 {d; ...} | em.m〈~τ〉(a; ...)
| capture e as x : I〈~α!〉 in e
| | capture x as I〈~α!〉 in e

Guard Expression eg ::= α satisfies σ as ς | τ <: α

| α <: τ | e is x : τ | x is τ

Receiver Expression em ::= e | e@ς

Program Argument a ::= x 7→ e | f (x, ...) 7→ e
Method Definition d ::= s 7→ e
Receiver Type τm ::= τ | σ

Capture Variables ~α! ::= α!, ...
Capture Variable α! ::= α | _

Term t ::= x | f (t, ...) | let x := t in t | throw
| if tg then t else t | object x : I〈~τ〉 {dt; ...}
| tm.m〈~τ〉(at; ...) | capture t as x : I〈~α!〉 in t
| capture x as I〈~α!〉 in t | capture v as I〈~α!〉 in t

Guard Term tg ::= τ satisfies σ as ς | τ <: τ | t is x : τ

| x is τ | v is τ

Receiver Term tm ::= t | t@ς

Argument Term at ::= x 7→ t | f (x, ...) 7→ t
Method Term dt ::= sτ 7→ t
Value v ::= object x : I〈~τ〉 {dt; ...}
Argument Value av ::= x 7→ v | f (x, ...) 7→ t
Term Context E ::= f (v, ..., E, t, ...) | let x := E in t

| | if E is x : τ then t else t | Em.m〈~τ〉(at; ...)
| v.m〈~τ〉(av; ...; x 7→ E; at; ...)
| | capture E as x : I〈~α!〉 in t | �

Figure D.1 (contd.): Full Grammar (Generics)

404 more on generics

D
efi

ni
ti

on
s

Figure 8.3: Variance ν ∗ ν?

Figure 8.4:
Type

Argument

Substitution

b~τ/Θe

Ju
dg

em
en

ts

Figure 8.1:
Programs and

Hierarchies

` Ψ; e

` Ψ

Figure 8.2: Interfaces
`I Ψ

Ψ `I 〈Θ〉
Ψ | Ψ | Θ `I ~τ I Ψ | Ψ | Θ `I τ I

Figure 8.3: Variance ` ν ≤ ν?

Figure 8.3: Types

Ψ | Θ `ν? τ Ψ | Θ `ν? τ I

Ψ | Θ `ν? 〈~τ〉 : 〈Θ〉
Ψ | Θ ` 〈~τa〉; 〈~τ〉 | Θ!

` 〈~α!〉 := 〈~τa〉; 〈~τ〉 | Θ!

Figure 8.3: Subtyping

Ψ | Θ ` τ <: τ Ψ | Θ ` τ I <: τ I

Ψ | Θ ` 〈~τ〉 <: 〈~τ〉 : 〈Θ〉
Ψ | Θ ` 〈τ〉 <: 〈τ〉 : 〈ν〉
Ψ | Θ ` 〈~τ〉 ∩ 〈~τ〉 <: 〈~τ〉 : 〈Θ〉
Ψ | Θ ` 〈τ〉 ∩ 〈τ〉 <: 〈τ〉 : 〈ν〉

Figure 8.5: Shapes

Ψ `S Ψ

Ψ `S 〈Θ〉
Ψ | Ψ | Θ `S σ, ...

Ψ | Ψ | Θ `S σ, ... v σ

Ψ | Θ `ν? σ

Ψ | Θ ` σ <: σ

Figure 8.6:
Conditionally

Satisfied

Shapes

Ψ `σ Ψ

Ψ | Ψ | Ψ | Θ `σ ~σI

Ψ | Θ `σ ~σI v τ I

Ψ | Θ | Σ `σ ~σI v
Ψ | Θ | Σ ` [Σ]

Figure D.2: Static-Formalization Index

D.3 formalization index 405

Ju
dg

em
en

ts

Figure 8.7: Satisfaction
Ψ | Θ | Σ | Θ<: ` Σ<:

Ψ | Θ | Σ ` Στ Ψ | Θ | Σ ` τ.σ

Figure 8.7: Kind Contexts
` 〈Θ〉; 〈Θ! 〉

Ψ | Θ ` 〈Θ〉
Ψ | Θ<: ` 〈Θ〉; 〈Θ〉

Figure 8.7: Bound Inference

Ψ | Θ ` τ <: τ ; 〈Θ<:〉
Ψ | Θ ` σ <: σ ; 〈Θ<:〉
Ψ | Θ `I τ, ... <: 〈~τ〉 ; 〈Θ<:〉
Ψ | Θ `〈Θ〉 〈~τ〉, ... <: 〈~τa〉; 〈Θ<:〉
Ψ | Θ `ν τ, ... <: τa ; 〈Θ<:〉

Figure 8.8: Inferability

Ψ | Θ ` (Γ)[Σ] ; 〈Θ | Θ!〉
Ψ | Θ ` (Γ)[Σ] ; να

Ψ | Θ ` (p) ; ν±α

Ψ | Θ ` ντm ι ; ναι

Ψ | Θ ` ν〈~τ〉ι : 〈Θ〉; να

Figure 8.8:
Method

Signatures

Ψ `s Ψ

Ψ | Θ | Σ ` s

Ψ | Θ ` (Γ) Ψ | Θ ` (p)

Figure 8.8: Inheritance

ι, ... ` ι

Ψ | Θ | Σ ` {s; ...} v τ Ψ | Θ | Σ ` {s; ...} v ~τ I

Ψ | Θ | Σ ` {s; ...} v σ

Ψ | Θ | Σ ` {s; ...} v sτ

Ψ | Θ ` (Γ) <: (Γ) Ψ | Θ ` (p) <: (p)

Figure 8.9: Expressions
Ψ | Θ! | Σ | Γ ` e : τ Ψ | Θ! | Σ | Γ ` em : τm

Ψ | Θ! | Σ | Γ ` (a) : (p)

Ψ | Θ! | Σ | Γ ` d

Figure 8.9: Guard Expressions Ψ | Θ! | Σ | Γ ` eg : Θ! | Σ | Γ

Figure 8.9:
Method

Invocation

Ψ | Θ! | Σ ` τm.m〈~τ〉(Γ) : τ

Ψ ` τm.sτ

Figure D.2 (contd.): Static-Formalization Index

406 more on generics

d.4 term typing and equivalence

Term Typing Ψ | Θ! | Στ | Γ `t t : τ Ψ | Θ! | Στ | Γ `t tm : τm

Ψ | Θ! | Στ | Γ `t t : τ

Ψ | Θ! ` τ <: τ′

Ψ | Θ | Στ `t t : τ′

ς : τ.σ ∈ Στ

Ψ | Θ! | Στ | Γ `t t : τ

Ψ | Θ! | Στ | Γ `t t@ς : σ

x : τ ∈ Γ

Ψ | Θ! | Στ | Γ `t x : τ

f (τ1, ...) : τ ∈ Γ
Ψ | Θ! | Στ | Γ `t t1 : τ1 ...

Ψ | Θ! | Στ | Γ `t f (t1, ...) : τ

Ψ | Θ! | Στ | Γ `t tx : τx

Ψ | Θ! | Στ | Γ; x : τx `t t : τ

Ψ | Θ! | Στ | Γ `t let x := tx in t : τ

Ψ | Θ! | Στ | Γ ` throw : ⊥

Ψ | Θ! | Στ | Γ `t tg : Θ!
g | Στ

g | Γg

Ψ | Θ!
g | Στ

g | Γg `t tt Ψ | Θ! | Στ | Γ `t t f : τ

Ψ | Θ! | Στ | Γ `t if tg then tt else t f : τ

Ψ | Θ! `? I〈~τ〉 Ψ | Θ! | Στ | Γ; x : I〈~τ〉 `t sτ
1 7→ t1 ...

Ψ | Θ! | Στ `t {st
1; ...} v I〈~τ〉

Ψ | Θ! | Γ | Στ `t object x : I〈~τ〉 {st
1 7→ t1; ...} : I〈~τ〉

Ψ | Θ! `? τ1 ... Ψ | Θ! | Στ | Γ `t (at
1) : (p1) ...

Ψ | Θ! | Στ | Γ `t tm : τm Ψ | Θ! | Στ ` τm.m〈τ1, ...〉(p1; ...) : τ

Ψ | Θ! | Στ | Γ `t tm.m〈τ1, ...〉(at
1; ...) : τ

Ψ | Θ! | Σσ | Γ `t t : I〈~τa〉
` 〈~α!〉 := 〈~τa〉; 〈~τ〉 | Θ!

α Ψ | Θ!, Θ!
α | Στ | Γ; x : I〈~τ〉 ` tx : τ

Ψ | Θ! | Στ | Γ `t capture t as x : I〈~α!〉 in tx : τ

Ψ | Θ! ` τ <: I〈~τa〉
` 〈~α!〉 := 〈~τa〉; 〈~τ〉 | Θ!

α Ψ | Θ!, Θ!
α | Στ | Γ1; x : τ ∩ I〈~τ〉; Γ2 ` tx : τ

Ψ | Θ! | Στ | Γ1; x : τ; Γ2 `t capture x as I〈~α!〉 in tx : τ

Ψ | Θ! | Στ | Γ `t t : τ1 Ψ | Θ! | Στ | Γ `t t : τ2

Ψ | Θ! | Στ | Γ `t t : τ1 ∩ τ2

Figure D.3: Term Typing

D.4 term typing and equivalence 407

Method-Term Typing Ψ | Θ! | Στ | Γ `t dt

Ψ | Θ! | Στ `t m〈Θ!
e〉[Θi](Γm)[Στ

m] : τ

` 〈Θi〉; 〈Θ!
i〉 Ψ | Θ!, Θ!

e, Θ!
i | Γ, Γm | Στ, Στ

m `t t : τ

Ψ | Θ! | Στ | Γ `t m〈Θ!
e〉[Θi](Γm)[Στ

m] : τ 7→ t

Argument-Term Typing Ψ | Θ! | Στ | Γ `t (at) : (p)

Ψ | Θ! | Στ | Γ `t t : τ

Ψ | Θ! | Στ | Γ `t (x 7→ t) : (x : τ)

Ψ | Θ! | Στ | Γ; x1 : τ1; ... `t t : τ

Ψ | Θ! | Στ | Γ `t (f (x1, ...) 7→ t) : (f (τ1, ...) : τ)

Guard-Term Typing Ψ | Θ! | Στ | Γ `t tg : Θ! | Στ | Γ

Ψ | Θ! `t [ς : τ.σ]

Ψ | Θ! | Στ | Γ `t τ satisfies σ as ς : Θ! | Στ, ς : τ.σ | Γ

Θ! = Θ!
1, τ` <: !α <: τu, Θ!

2
Ψ | Θ!

1 `? τ Ψ | Θ!
1 ` τ` <: τ Ψ | Θ!

1 ` τ <: τu

Ψ | Θ! | Στ | Γ `t τ <: α : Θ!
1, τ <: !α <: τu, Θ!

2 | Στ | Γ

Θ! = Θ!
1, τ` <: !α <: τu, Θ!

2
Ψ | Θ!

1 `? τ Ψ | Θ!
1 ` τ` <: τ Ψ | Θ!

1 ` τ <: τu

Ψ | Θ! | Στ | Γ `t α <: τ : Θ!
1, τ` <: !α <: τ, Θ!

2 | Στ | Γ

Ψ | Θ! `? τ` Ψ | Θ! `? τu

Ψ | Θ! | Στ | Γ `t τ` <: τu : Θ! | Στ | Γ

Ψ | Θ! | Στ | Γ `t t : >
Ψ | Θ! | Στ | Γ `t t is x : τ : Θ! | Στ | Γ; x : τ

Ψ | Θ! | Στ | Γ1; x : τ′; Γ2 ` x is τ : Θ! | Στ | Γ1; x : τ′ ∩ τ; Γ2

Ψ | Θ! | Στ | Γ ` v : >
Ψ | Θ! | Στ | Γ ` v is τ : Θ! | Στ | Γ

Figure D.3 (contd.): Term Typing (Generics)

408 more on generics

Term-Invocation Typing Ψ | Θ! | Στ `t τm.m〈~τ〉(Γ) : τ

Ψ | Θ! | Στ `t ⊥.m〈•〉(•) : ⊥ Ψ | Θ! | Στ `t •.m〈•〉(...; x : ⊥; ...) : ⊥

Ψ | Θ! | Στ `t τm.m〈~τ〉(Γ) : τ Ψ | Θ! | Στ `t τ′m.m〈~τ〉(Γ) : τ

Ψ | Θ! | Στ `t (τm ∪ τ′m).m〈~τ〉(Γ) : τ

Ψ | Θ! | Στ `t τm.m〈~τ〉(Γ) : τ Ψ | Θ! | Στ `t τ′m.m〈~τ〉(Γ) : τ′

Ψ | Θ! | Στ `t (τm ∩ τ′m).m〈~τ〉(Γ) : τ ∩ τ′

Ψ ` τm.m〈Θ!
m〉[Θm](Γm)[Στ

m] : τ Ψ | Θ! `? 〈~τ〉 : 〈Θ!
m〉

Ψ | Θ! `? 〈~τ′〉 : 〈Θmb~τ/Θ!
me〉 Ψ | Θ! | Στ `t Στ

mb~τ,~τ′/Θ!
m,Θme

Ψ | Θ! | Στ `t τm.m〈~τ〉(Γmb~τ,~τ′/Θ!
m,Θme) : τb~τ,~τ′/Θ!

m,Θme

Ψ | Θ! ` τm <: τ′m Ψ | Θ! ` (Γ) <: (Γ′)
Ψ | Θ! ` τ <: τ′ Ψ | Θ! | Στ ` τm.m〈~τ〉(Γ′) : τ

Ψ | Θ! | Στ ` τ′m.m〈~τ〉(Γ) : τ′

Shape-Premise Term Validity Ψ | Θ! `t [Στ]

Ψ | Θ! `? τ1 ... Ψ | Θ! `? σ1 ...

Ψ | Θ! ` [ς : τ1.σ1, ...]

Term Satisfaction Ψ | Θ! | Στ `t Στ Ψ | Θ! | Στ `t τ.σ

Ψ | Θ! | Στ `t τ1.σ1 ...

Ψ | Θ! | Στ `t ς1 : τ1.σ1, ...

Ψ | Θ! | Στ `t τ.σ
Ψ | Θ! ` τ′ <: τ Ψ | Θ! ` σ <: σ′

Ψ | Θ! | Στ `t τ′.σ′

ς : τ.σ ∈ Στ

Ψ | Θ! | Στ `t τ.σ Ψ | Θ! | Στ `t ⊥.σ

Ψ | Θ! | Στ `t τ1.σ
Ψ | Θ! | Στ `t τ2.σ

Ψ | Θ! | Στ `t (τ1 ∪ τ2).σ

interface I〈ΘI〉 extends • satisfies ..., σ′[Θ′][Σ′], ... {•} ∈ Ψ
Ψ | Θ! ` 〈~τa〉; 〈~τ〉 | Θ!

a Ψ | Θ!, Θ!
a `? 〈~τ′〉 : 〈Θ′b~τ/ΘIe〉

Ψ | Θ!, Θ!
a | Στ `t Σ′b~τ,~τ′/ΘI ,Θ′e Ψ | Θ!, Θ!

a ` σ′b~τ,~τ′/ΘI ,Θ′e <: σ

Ψ | Θ! | Στ `t I〈~τa〉.σ

shape S〈ΘS〉 extends • {•} ∈ Ψ Ψ | Θ! | Στ `t τ.S〈~τ1〉
Ψ | Θ! | Στ `t τ.S〈~τ2〉 Ψ | Θ! ` 〈~τ1〉 ∩ 〈~τ2〉 <: 〈~τ〉 : 〈ΘS〉

Ψ | Θ! | Στ `t τ.S〈~τ〉

Figure D.3 (contd.): Term Typing (Generics)

D.4 term typing and equivalence 409

Method-Premise Validity Ψ | Θ! | Στ `t sτ

Ψ | Θ! ` 〈Θ!
e, Θi〉

` 〈Θi〉; 〈Θ!
i〉 Ψ | Θ!, Θ!

e, Θ!
i ` (Γm) Ψ | Θ!, Θ!

e, Θ!
i `t [Στ

m]
Ψ | Θ!, Θ!

e, Θ!
i `+ τm Ψ | Θ!, Θ!

e ` (Γm)[Σm] ; 〈Θi | ∅〉
Ψ | Θ! | Στ `t m〈Θ!

e〉[Θi](Γm)[Στ
m] : τm

Term Inheritance Ψ | Θ! | Στ `t {sτ; ...} v τ

interface I〈ΘI〉 extends • satisfies • {s′1; ...} ∈ Ψ
Ψ | Θ! | Στ `t {sτ

1 ; ...} v s′1b~τ/ΘIe ...

Ψ | Θ! | Στ `t {sτ
1 ; ...} v I〈~τ〉

Method-Premise Inheritance Ψ | Θ! | Στ ` {sτ; ...} v sτ

Ψ | Θ!, Θ!
e, Θi | Στ, Στ

m ` ⊥
Ψ | Θ! | Στ ` {s1; ...} v m〈Θ!

e〉[Θi](Γ)[Στ
m] : τ

m〈Θ!
1〉[Θ1](Γ1)[Στ

1] : τ1 ∈ {sτ
1 ; ...} Ψ | Θ!, Θ!

2, Θ2 | Στ, Στ
2 ` 〈Θ′〉[Σ′]

Θ!
2 = • <: ν1α1 <: •, ... Ψ | Θ′ `? 〈α1, ...〉 : 〈Θ!

1〉
Ψ | Θ′ `? 〈~τ〉 : 〈Θ1bα1,.../Θ!

1e〉 Ψ | Θ′ ` (Γ2) <: (Γ1bα1,...,~τ/Θ!
1,Θ1e)

Ψ | Θ′ | Σ′ ` Στ
1bα1,...,~τ/Θ!

1,Θ1e Ψ | Θ′ ` τ1bα1,...,~τ/Θ!
1,Θ1e <: τ2

Ψ | Θ! | Στ ` {sτ
1 ; ...} v m〈Θ!

2〉[Θ2](Γ2)[Στ
2] : τ2

Program-Term Typing Ψ `t t

` Ψ Ψ | ∅ | ∅ | ∅ `t t : >
`t Ψ; t

Figure D.3 (contd.): Term Typing (Generics)

410 more on generics

Type Equivalence Ψ ` τ ≈ τ Ψ ` τa ≈ τa

Ψ ` α ≈ α

Ψ | ∅ `? τ
Ψ | ∅ `? τ′ Ψ | ∅ ` τ <: τ′ Ψ | ∅ ` τ′ <: τ

Ψ ` τ ≈ τ′

Ψ ` τi ≈ τ′i Ψ ` τo ≈ τ′o
Ψ ` in τi out τo ≈ in τ′i out τ′o

Ψ ` 〈~τa
1 〉 ≈ 〈~τa

2 〉
Ψ ` I〈~τa

1 〉 ≈ I〈~τa
2 〉

Ψ ` τ1 ≈ τ′1 Ψ ` τ2 ≈ τ′2
Ψ ` τ1 ∪ τ2 ≈ τ′1 ∪ τ′2

Ψ ` τ1 ≈ τ′1 Ψ ` τ2 ≈ τ′2
Ψ ` τ1 ∩ τ2 ≈ τ′1 ∩ τ′2

Type-Arguments Equivalence Ψ ` 〈~τa〉 ≈ 〈~τa〉

Ψ ` τa
1 ≈ τa′

1 ...
Ψ ` 〈τa

1 , ...〉 ≈ 〈τa′
1 , ...〉

Shape Equivalence Ψ ` σ ≈ σ

Ψ ` 〈~τ〉 ≈ 〈~τ′〉
Ψ ` S〈~τ〉 ≈ S〈~τ′〉

Kind-Context Equivalence Ψ ` 〈Θ〉 ≈ 〈Θ〉

Ψ ` 〈〉 ≈ 〈〉
Ψ ` 〈Θ〉 ≈ 〈Θ′〉 Ψ ` τ` ≈ τ′` Ψ ` τu ≈ τ′u

Ψ ` 〈Θ, τ` <: να <: τu〉 ≈ 〈Θ′, τ′` <: να <: τ′u〉

Program-Context Equivalence Ψ ` (Γ) ≈ (Γ) Ψ ` (p) ≈ (p)

Ψ ` (p1) ≈ (p′1) ...
Ψ ` (p1; ...) ≈ (p′1; ...)

Ψ ` τ ≈ τ′

Ψ ` (x : τ) ≈ (x : τ′)

Ψ ` τ1 ≈ τ′1 ... Ψ ` τ ≈ τ′

Ψ ` (f (τ1, ...) : τ) ≈ (f (τ′1, ...) : τ′)

Figure D.4: Type Equivalence

D.4 term typing and equivalence 411

Shape-Context Equivalence Ψ ` [Στ] ≈ [Στ]

Ψ ` τ1 ≈ τ′1 ... Ψ ` σ1 ≈ σ′1 ...
Ψ ` [ς : τ1.σ1, ...] ≈ [ς : τ′1.σ′1, ...]

Signature Equivalence Ψ ` sτ ≈ sτ

Ψ ` 〈Θ!
1〉 ≈ 〈Θ!

2〉 Ψ ` 〈Θ1〉 ≈ 〈Θ2〉
Ψ ` (Γ1) ≈ (Γ2) Ψ ` [Στ

1] ≈ [Στ
2] Ψ ` τ1 ≈ τ2

Ψ ` m〈Θ!
1〉[Θ1](Γ1)[Στ

1] : τ1 ≈ m〈Θ!
2〉[Θ2](Γ2)[Στ

2] : τ2

Term Equivalence Ψ ` t ≈ t Ψ ` tm ≈ tm

Ψ ` x ≈ x
Ψ ` t1 ≈ t′1 ...

Ψ ` f (t1, ...) ≈ f (t′1, ...) Ψ ` throw ≈ throw

Ψ ` tg
1 ≈ tg

2 Ψ ` tt ≈ t′t Ψ ` t f ≈ t′f
Ψ ` if tg

1 then tt else t f ≈ if tg
2 then t′t else t′f

Ψ ` 〈~τ〉 ≈ 〈~τ′〉 Ψ ` dt
1 ≈ dt′

1 ...

Ψ ` object x : I〈~τ〉 {dt
1; ...} ≈ object x : I〈~τ′〉 {dt′

1 ; ...}

Ψ ` tm
1 ≈ tm

2 Ψ ` 〈~τ〉 ≈ 〈~τ′〉 Ψ ` at
1 ≈ at′

1 ...

Ψ ` tm
1 .m〈~τ〉(at

1; ...) ≈ tm
2 .m〈~τ′〉(at′

1 ; ...)

Ψ ` t ≈ t′

Ψ ` t@ς ≈ t′@ς

Ψ ` t ≈ t′ Ψ ` tx ≈ t′x
Ψ ` capture t as x : I〈~α!〉 in tx ≈ capture t′ as x : I〈~α!〉 in t′x

Ψ ` t ≈ t′

Ψ ` capture x as I〈~α!〉 in t ≈ capture x as I〈~α!〉 in t′

Ψ ` v ≈ v′ Ψ ` t ≈ t′

Ψ ` capture v as I〈~α!〉 in t ≈ capture v′ as I〈~α!〉 in t′

Figure D.5: Term Equivalence

412 more on generics

Guard Equivalence Ψ ` tg ≈ tg

Ψ ` τ ≈ τ′ Ψ ` σ ≈ σ′

Ψ ` τ satisfies σ as ς ≈ τ′ satisfies σ′ as ς

Ψ ` τ` ≈ τ′` Ψ ` τu ≈ τ′u
Ψ ` τ` <: τu ≈ τ′` <: τ′u

Ψ ` t ≈ t′ Ψ ` τ ≈ τ′

Ψ ` t is x : τ ≈ t′ is x : τ′

Ψ ` τ ≈ τ′

Ψ ` x is τ ≈ x is τ′
Ψ ` v ≈ v′ Ψ ` τ ≈ τ′

Ψ ` v is τ ≈ v′ is τ′

Definition Equivalence Ψ ` dt ≈ dt

Ψ ` sτ
1 ≈ sτ

2 Ψ ` t1 ≈ t2

Ψ ` sτ
1 7→ t1 ≈ sτ

2 7→ t2

Argument Equivalence Ψ ` at ≈ at

Ψ ` t ≈ t′

Ψ ` x 7→ t ≈ x 7→ t′
Ψ ` t ≈ t′

Ψ ` f (x1, ...) 7→ t ≈ f (x1, ...) 7→ t′

Figure D.5 (contd.): Term Equivalence (Generics)

B I B L I O G R A P H Y

Acay, Coşku and Frank Pfenning (2017). “Intersections and Unions of

Session Types.” In: Electronic Proceedings in Theoretical Computer Science

242.ITRS, pp. 4–19. doi: 10.4204/EPTCS.242.3 (cit. on p. 127).

Ahmed, Amal, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler

(2011). “Blame for All.” In: POPL 2011. Austin, Texas, USA: ACM,

pp. 201–214. isbn: 978-1-4503-0490-0. doi: 10.1145/1926385.1926409

(cit. on pp. 139, 176).

Ahn, Wonsun, Jiho Choi, Thomas Shull, María J. Garzarán, and Josep

Torrellas (2014). “Improving JavaScript Performance by Deconstructing

the Type System.” In: PLDI 2014. Edinburgh, United Kingdom: ACM,

pp. 496–507. isbn: 978-1-4503-2784-8. doi: 10.1145/2594291.2594332

(cit. on p. 183).

Aiken, Alexander and Edward L. Wimmers (1993). “Type Inclusion Con-

straints and Type Inference.” In: FPCA 1993. Copenhagen, Denmark:

ACM, pp. 31–41. isbn: 0-89791-595-X. doi: 10.1145/165180.165188

(cit. on pp. 92, 128).

Allende, Esteban, Oscar Callaú, Johan Fabry, Éric Tanter, and Marcus

Denker (2014). “Gradual Typing for Smalltalk.” In: Science of Computer

Programming 96. Special issue on Advances in Smalltalk based Systems,

pp. 52–69. issn: 0167-6423. doi: 10.1016/j.scico.2013.06.006 (cit. on

pp. 5, 8, 144, 148, 183, 193).

413

https://doi.org/10.4204/EPTCS.242.3
https://doi.org/10.1145/1926385.1926409
https://doi.org/10.1145/2594291.2594332
https://doi.org/10.1145/165180.165188
https://doi.org/10.1016/j.scico.2013.06.006

414 bibliography

Allende, Esteban, Johan Fabry, and Éric Tanter (2013). “Cast Insertion

Strategies for Gradually-Typed Objects.” In: DLS 2013. Indianapolis,

Indiana, USA: ACM, pp. 27–36. isbn: 978-1-4503-2433-5. doi: 10.1145/

2508168.2508171 (cit. on p. 183).

Amin, Nada and Ross Tate (2016). “Java and Scala’s Type Systems are

Unsound: The Existential Crisis of Null Pointers.” In: OOPSLA 2016.

Amsterdam, Netherlands: ACM, pp. 838–848. isbn: 978-1-4503-4444-9.

doi: 10.1145/2983990.2984004 (cit. on pp. 152, 283).

Ancona, Davide and Andrea Corradi (2016). “Semantic Subtyping for

Imperative Object-oriented Languages.” In: OOPSLA 2016. Amsterdam,

Netherlands: ACM, pp. 568–587. isbn: 978-1-4503-4444-9. doi: 10.1145/

2983990.2983992 (cit. on pp. 20, 69, 92, 127, 128).

Anderson, Carolyn Jane, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin,

Dexter Kozen, Cole Schlesinger, and David Walker (2014). “NetKAT:

Semantic Foundations for Networks.” In: POPL 2014. San Diego, Cali-

fornia, USA: ACM, pp. 113–126. isbn: 978-1-4503-2544-8. doi: 10.1145/

2535838.2535862 (cit. on p. 127).

Anderson, Christopher and Sophia Drossopoulou (2003). “BabyJ: From

Object Based to Class Based Programming via Types.” In: WOOD 2003.

Amsterdam, Netherlands: Elsevier Science Publishers B. V., pp. 53–81.

doi: 10.1016/S1571-0661(04)80802-8 (cit. on p. 150).

Baader, Franz, Wayne Snyder, Paliath Narendran, Manfred Schmidt-

Schauss, and Klaus Schulz (2001). “Chapter 8 - Unification Theory.” In:

Handbook of Automated Reasoning. Handbook of Automated Reasoning.

Amsterdam, Netherlands: North-Holland, pp. 445–533. isbn: 978-0-444-

50813-3. doi: 10.1016/B978-044450813-3/50010-2 (cit. on p. 23).

https://doi.org/10.1145/2508168.2508171
https://doi.org/10.1145/2508168.2508171
https://doi.org/10.1145/2983990.2984004
https://doi.org/10.1145/2983990.2983992
https://doi.org/10.1145/2983990.2983992
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1016/S1571-0661(04)80802-8
https://doi.org/10.1016/B978-044450813-3/50010-2

bibliography 415

Bakel, Steffen van, Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and

Yoko Motohama (2000). The Minimal Relevant Logic and the Call-by-Value

Lambda Calculus. Tech. rep. TR-ARP-05-2000. Australian National Uni-

versity (cit. on p. 119).

Balsters, Herman and Maarten M. Fokkinga (1991). “Subtyping can have a

simple semantics.” In: Theoretical Computer Science 87.1, pp. 81–96. issn:

0304-3975. doi: 10.1016/S0304-3975(06)80005-8 (cit. on p. 273).

Barbanera, Franco, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro

(1995). “Intersection and Union Types: Syntax and Semantics.” In: In-

formation and Computation 119.2, pp. 202–230. issn: 0890-5401. doi: 10.

1006/inco.1995.1086 (cit. on p. 120).

Bauman, Spenser, Carl Friedrich Bolz-Tereick, Jeremy Siek, and Sam Tobin-

Hochstadt (2017). “Sound Gradual Typing: Only Mostly Dead.” In:

PACMPL 1.OOPSLA, 54:1–54:24. issn: 2475-1421. doi: 10.1145/3133878

(cit. on pp. 6, 143).

Bezanson, Jeff, Alan Edelman, Stefan Karpinski, and Viral B. Shah (2017).

“Julia: A Fresh Approach to Numerical Computing.” In: SIAM Review

59.1, pp. 65–98. doi: 10.1137/141000671 (cit. on pp. 69, 126).

Bierman, Gavin, Martín Abadi, and Mads Torgersen (2014). “Understand-

ing TypeScript.” In: ECOOP 2014. Berlin, Heidelberg, Germany: Springer

Berlin Heidelberg, pp. 257–281. isbn: 978-3-662-44202-9. doi: 10.1007/

978-3-662-44202-9_11 (cit. on p. 69).

Bierman, Gavin, Erik Meijer, and Mads Torgersen (2010). “Adding Dy-

namic Types to C#.” In: ECOOP 2010. Maribor, Slovenia: Springer Berlin

Heidelberg, pp. 76–100. isbn: 978-3-642-14107-2. doi: 10.1007/978-3-

642-14107-2_5 (cit. on pp. 6, 144, 146–148, 193, 344).

https://doi.org/10.1016/S0304-3975(06)80005-8
https://doi.org/10.1006/inco.1995.1086
https://doi.org/10.1006/inco.1995.1086
https://doi.org/10.1145/3133878
https://doi.org/10.1137/141000671
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1007/978-3-642-14107-2_5
https://doi.org/10.1007/978-3-642-14107-2_5

416 bibliography

Bonchi, Filippo and Damien Pous (2013). “Checking NFA Equivalence with

Bisimulations Up to Congruence.” In: POPL 2013. Rome, Italy: ACM,

pp. 457–468. isbn: 978-1-4503-1832-7. doi: 10.1145/2429069.2429124

(cit. on p. 127).

Bracha, Gilad (2004). “Pluggable Type Systems.” In Workshop on Revival

of Dynamic Languages (OOPSLA 2004). url: http : / / bracha . org /

pluggableTypesPosition.pdf (cit. on p. 148).

Brandt, Michael and Fritz Henglein (1997). “Coinductive axiomatization of

recursive type equality and subtyping.” In: pp. 63–81. doi: 10.1007/3-

540-62688-3_29 (cit. on p. 127).

Bruce, Kim B., Jonathan Crabtree, and Gerald Kanapathy (1994). “An

operational semantics for TOOPLE: A statically-typed object-oriented

programming language.” In: MFPS 1994. Berlin, Heidelberg, Germany:

Springer Berlin Heidelberg, pp. 603–626. isbn: 978-3-540-48419-6. doi:

10.1007/3-540-58027-1_30 (cit. on p. 273).

Bruce, Kim B., Martin Odersky, and Philip Wadler (1998). “A Statically

Safe Alternative to Virtual Types.” In: ECOOP 1998. Berlin, Heidelberg:

Springer Berlin Heidelberg, pp. 523–549. isbn: 978-3-540-69064-1. doi:

10.1007/BFb0054106 (cit. on pp. 32, 64).

Canning, Peter S., William R. Cook, Walter L. Hill, Walter G. Olthoff,

and John C. Mitchell (1989). “F-Bounded Polymorphism for Object-

Oriented Programming.” In: FPCA 1989. Imperial College, London,

United Kingdom: ACM, pp. 273–280. isbn: 0-89791-328-0. doi: 10.1145/

99370.99392 (cit. on pp. 23, 24, 32, 270).

Castagna, Giuseppe and Zhiwu Xu (2011). “Set-Theoretic Foundation

of Parametric Polymorphism and Subtyping.” In: ICFP 2011. Tokyo,

https://doi.org/10.1145/2429069.2429124
http://bracha.org/pluggableTypesPosition.pdf
http://bracha.org/pluggableTypesPosition.pdf
https://doi.org/10.1007/3-540-62688-3_29
https://doi.org/10.1007/3-540-62688-3_29
https://doi.org/10.1007/3-540-58027-1_30
https://doi.org/10.1007/BFb0054106
https://doi.org/10.1145/99370.99392
https://doi.org/10.1145/99370.99392

bibliography 417

Japan: ACM, pp. 94–106. isbn: 978-1-4503-0865-6. doi: 10.1145/2034773.

2034788 (cit. on pp. 20, 69, 128).

Chambers, C., D. Ungar, and E. Lee (1989). “An Efficient Implementation

of SELF a Dynamically-typed Object-oriented Language Based on Proto-

types.” In: OOPSLA 1989. New Orleans, Louisiana, USA: ACM, pp. 49–

70. isbn: 0-89791-333-7. doi: 10.1145/74877.74884 (cit. on p. 241).

Chung, Benjamin, Paley Li, Francesco Zappa Nardelli, and Jan Vitek

(2018). “KafKa: Gradual Typing for Objects.” In: ECOOP 2018. Vol. 109.

Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

12:1–12:24. isbn: 978-3-95977-079-8. doi: 10.4230/LIPIcs.ECOOP.2018.

12 (cit. on p. 13).

Cimini, Matteo and Jeremy G. Siek (2016). “The Gradualizer: A Methodol-

ogy and Algorithm for Generating Gradual Type Systems.” In: POPL

2016. St. Petersburg, FL, USA: ACM, pp. 443–455. isbn: 978-1-4503-3549-

2. doi: 10.1145/2837614.2837632 (cit. on pp. 148, 161, 193, 332).

Cimini, Matteo and Jeremy G. Siek (2017). “Automatically Generating

the Dynamic Semantics of Gradually Typed Languages.” In: POPL

2017. Paris, France: ACM, pp. 789–803. isbn: 978-1-4503-4660-3. doi:

10.1145/3009837.3009863 (cit. on p. 332).

Clebsch, Sylvan, Sophia Drossopoulou, Sebastian Blessing, and Andy

McNeil (2015). “Deny Capabilities for Safe, Fast Actors.” In: AGERE!

2015. Pittsburgh, PA, USA: ACM, pp. 1–12. isbn: 978-1-4503-3901-8. doi:

10.1145/2824815.2824816 (cit. on p. 68).

Coppo, Mario and Mariangiola Dezani-Ciancaglini (1978). “A New

Type Assignment for λ-Terms.” In: Archiv für Mathematische Logik und

Grundlagenforschung 19.1, pp. 139–156. issn: 1432-0665. doi: 10.1007/

BF02011875 (cit. on p. 118).

https://doi.org/10.1145/2034773.2034788
https://doi.org/10.1145/2034773.2034788
https://doi.org/10.1145/74877.74884
https://doi.org/10.4230/LIPIcs.ECOOP.2018.12
https://doi.org/10.4230/LIPIcs.ECOOP.2018.12
https://doi.org/10.1145/2837614.2837632
https://doi.org/10.1145/3009837.3009863
https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1007/BF02011875
https://doi.org/10.1007/BF02011875

418 bibliography

Coppo, Mario, Mariangiola Dezani-Ciancaglini, and Patrick Sallé (1979).

“Functional Characterization of Some Semantic Equalities Inside λ-

Calculus.” In: Automata, Languages and Programming. LNCS 71, pp. 133–

146. doi: 10.1007/3-540-09510-1_11 (cit. on p. 118).

Curien, Pierre-Louis and Giorgio Ghelli (1992). “Coherence of Sub-

sumption, Minimum Typing and Type-Checking in F≤.” In: Mathe-

matical Structures in Computer Science 2.1, pp. 55–91. doi: 10 .1017 /

S0960129500001134 (cit. on p. 72).

Damas, Luís and Robin Milner (1982). “Principal Type-Schemes for Func-

tional Programs.” In: POPL 1982. Albuquerque, New Mexico: ACM,

pp. 207–212. isbn: 0-89791-065-6. doi: 10.1145/582153.582176 (cit. on

pp. 71, 273).

Dardha, Ornela, Daniele Gorla, and Daniele Varacca (2013). “Semantic

Subtyping for Objects and Classes.” In: FMOODS/FORTE 2013. Berlin,

Heidelberg: Springer Berlin Heidelberg, pp. 66–82. isbn: 978-3-642-38592-

6. doi: 10.1007/978-3-642-38592-6_6 (cit. on pp. 20, 128, 129).

Demers, Alan, Mark Weiser, Barry Hayes, Hans Boehm, Daniel Bobrow,

and Scott Shenker (1990). “Combining Generational and Conservative

Garbage Collection: Framework and Implementations.” In: POPL 1990.

San Francisco, California, USA: ACM, pp. 261–269. isbn: 0-89791-343-4.

doi: 10.1145/96709.96735 (cit. on pp. 183, 240).

Deutsch, L. Peter and Allan M. Schiffman (1984). “Efficient Implementation

of the Smalltalk-80 System.” In: POPL 1984. Salt Lake City, Utah, USA:

ACM, pp. 297–302. isbn: 0-89791-125-3. doi: 10.1145/800017.800542

(cit. on p. 183).

https://doi.org/10.1007/3-540-09510-1_11
https://doi.org/10.1017/S0960129500001134
https://doi.org/10.1017/S0960129500001134
https://doi.org/10.1145/582153.582176
https://doi.org/10.1007/978-3-642-38592-6_6
https://doi.org/10.1145/96709.96735
https://doi.org/10.1145/800017.800542

bibliography 419

Dürig, Michael (2010). Scala Type Level Encoding of the SKI Calculus. url:

http://michid.wordpress.com/2010/01/29/scala- type- level-

encoding-of-the-ski-calculus/ (cit. on p. 19).

ECMA (June 2019). ECMAScript(R) 2019 Language Specification.

http://www.ecma-international.org/ecma-262/. Version 10.0 (cit. on

p. 3).

ECMA TC39-TG2 (2017). C# Language Specification, 5th edition. ECMA (cit.

on pp. 276, 308, 377).

Ernst, Erik (2001). “Family Polymorphism.” In: ECOOP 2001. Berlin, Hei-

delberg: Springer Berlin Heidelberg, pp. 303–326. isbn: 978-3-540-45337-6.

doi: 10.1007/3-540-45337-7_17 (cit. on p. 32).

Facebook (2014). The Flow Static Type Checker Documentation. url: http:

//flow.org/ (cit. on pp. 4, 8, 68).

Facebook (2016). The Hack Language Specification, Version 1.1. url: https:

//github.com/hhvm/hack-langspec (cit. on pp. 4, 8, 148).

Feltey, Daniel, Ben Greenman, Christophe Scholliers, Robert Bruce Findler,

and Vincent St-Amour (2018). “Collapsible Contracts: Fixing a Pathology

of Gradual Typing.” In: PACMPL 2.OOPSLA, 133:1–133:27. issn: 2475-

1421. doi: 10.1145/3276503 (cit. on pp. 6, 143, 256).

Findler, Robert Bruce and Matthias Felleisen (2002). “Contracts for Higher-

Order Functions.” In: ICFP 2002. Pittsburgh, PA, USA: ACM, pp. 48–59.

isbn: 1-58113-487-8. doi: 10.1145/581478.581484 (cit. on p. 169).

Frisch, Alain, Giuseppe Castagna, and Véronique Benzaken (July 2002).

“Semantic Subtyping.” In: LICS 2002. Washington, DC, USA: IEEE,

pp. 137–146. doi: 10 . 1109 / LICS . 2002 . 1029823 (cit. on pp. 20, 68,

69, 128).

http://michid.wordpress.com/2010/01/29/scala-type-level-encoding-of-the-ski-calculus/
http://michid.wordpress.com/2010/01/29/scala-type-level-encoding-of-the-ski-calculus/
http://www.ecma-international.org/ecma-262/
https://doi.org/10.1007/3-540-45337-7_17
http://flow.org/
http://flow.org/
https://github.com/hhvm/hack-langspec
https://github.com/hhvm/hack-langspec
https://doi.org/10.1145/3276503
https://doi.org/10.1145/581478.581484
https://doi.org/10.1109/LICS.2002.1029823

420 bibliography

Frisch, Alain, Giuseppe Castagna, and Véronique Benzaken (2008). “Se-

mantic Subtyping: Dealing Set-Theoretically with Function, Union, In-

tersection, and Negation Types.” In: Journal of the ACM 55.4, 19:1–19:64.

issn: 0004-5411. doi: 10.1145/1391289.1391293 (cit. on pp. 20, 69, 92,

128).

Garcia, Ronald, Alison M. Clark, and Éric Tanter (2016). “Abstracting

Gradual Typing.” In: POPL 2016. St. Petersburg, FL, USA: ACM, pp. 429–

442. isbn: 978-1-4503-3549-2. doi: 10.1145/2837614.2837670 (cit. on

pp. 148, 153, 176, 178, 179, 193, 332, 344).

Gesbert, Nils, Pierre Genevès, and Nabil Layaïda (2015). “A Logical Ap-

proach to Deciding Semantic Subtyping.” In: TOPLAS 38.1. doi: 10.

1145/2812805 (cit. on p. 127).

Ghelli, Giorgio and Benjamin C. Pierce (1998). “Bounded Existentials and

Minimal Typing.” In: Theoretical Computer Science 193.1, pp. 75–96. issn:

0304-3975. doi: 10.1016/S0304-3975(96)00300-3 (cit. on p. 273).

Gochet, Paul, Pascal Gribomont, and Didier Rossetto (2005). “Algorithms

for Relevant Logic.” In: Logic, Thought and Action. Dordrecht, Nether-

lands: Springer Netherlands, pp. 479–496. isbn: 978-1-4020-3167-0. doi:

10.1007/1-4020-3167-X_21 (cit. on pp. 20, 68, 119).

Gosling, James, Bill Joy, Guy Steele, and Gilad Bracha (2005). The Java™

Language Specification, 3rd Edition. Boston, MA, USA: Addison-Wesley

Professional. isbn: 978-0-321-24678-3. url: https://docs.oracle.com/

javase/specs/jls/se6/html/j3TOC.html (cit. on pp. 30, 38, 67).

Gosling, James, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley

(2015). The Java® Language Specification, Java SE 8th Edition. Boston, MA,

USA: Addison-Wesley Professional. isbn: 978-0-13-390069-9. url: https:

https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1145/2812805
https://doi.org/10.1145/2812805
https://doi.org/10.1016/S0304-3975(96)00300-3
https://doi.org/10.1007/1-4020-3167-X_21
https://docs.oracle.com/javase/specs/jls/se6/html/j3TOC.html
https://docs.oracle.com/javase/specs/jls/se6/html/j3TOC.html
https://docs.oracle.com/javase/specs/jls/se8/html/index.html
https://docs.oracle.com/javase/specs/jls/se8/html/index.html

bibliography 421

//docs.oracle.com/javase/specs/jls/se8/html/index.html (cit. on

pp. 308, 377).

Greenman, Ben and Matthias Felleisen (2018). “A Spectrum of Type Sound-

ness and Performance.” In: PACMPL 2.ICFP, 71:1–71:32. issn: 2475-1421.

doi: 10.1145/3236766 (cit. on pp. 6, 13, 143, 208).

Greenman, Ben and Zeina Migeed (2018). “On the Cost of Type-tag Sound-

ness.” In: PEPM 2018. Los Angeles, CA, USA: ACM, pp. 30–39. isbn:

978-1-4503-5587-2. doi: 10.1145/3162066 (cit. on pp. 6, 13).

Greenman, Ben, Fabian Muehlboeck, and Ross Tate (2014). “Getting F-

Bounded Polymorphism into Shape.” In: PLDI 2014. Edinburgh, United

Kingdom: ACM, pp. 89–99. isbn: 978-1-4503-2784-8. doi: 10 . 1145 /

2594291.2594308 (cit. on pp. 15, 23).

Grigore, Radu (2017). “Java Generics are Turing Complete.” In: POPL 2017.

Paris, France: ACM, pp. 73–85. isbn: 978-1-4503-4660-3. doi: 10.1145/

3009837.3009871 (cit. on pp. 12, 19, 271).

Gronski, Jessica, Kenneth Knowles, Aaron Tomb, Stephen N. Freund,

and Cormac Flanagan (2006). “SAGE: Hybrid Checking for Flexible

Specifications.” In: Scheme and Functional Programming Workshop 2016.

url: http://schemeworkshop.org/2006/06-freund.pdf (cit. on pp. 1,

139).

Guha, Arjun, Claudiu Saftoiu, and Shriram Krishnamurthi (2010). “The

Essence of JavaScript.” In: ECOOP 2010. Berlin, Heidelberg: Springer

Berlin Heidelberg, pp. 126–150. isbn: 978-3-642-14107-2. doi: 10.1007/

978-3-642-14107-2_7 (cit. on p. 3).

Hejlsberg, Anders, Mads Torgersen, Scott Wiltamuth, and Peter Golde

(2010). The C# Programming Language, 4th Edition. Addison-Wesley Pro-

fessional. isbn: 978-0-321-74176-9 (cit. on pp. 25, 27, 30).

https://docs.oracle.com/javase/specs/jls/se8/html/index.html
https://docs.oracle.com/javase/specs/jls/se8/html/index.html
https://doi.org/10.1145/3236766
https://doi.org/10.1145/3162066
https://doi.org/10.1145/2594291.2594308
https://doi.org/10.1145/2594291.2594308
https://doi.org/10.1145/3009837.3009871
https://doi.org/10.1145/3009837.3009871
http://schemeworkshop.org/2006/06-freund.pdf
https://doi.org/10.1007/978-3-642-14107-2_7
https://doi.org/10.1007/978-3-642-14107-2_7

422 bibliography

Hejlsberg, Anders, Scott Wiltamuth, and Peter Golde (2005). C# Language

Specification 2.0. Boston, MA, USA: Addison-Wesley Longman Publishing

Co., Inc. (cit. on p. 127).

Henglein, Fritz (1994). “Dynamic Typing: Syntax and Proof Theory.” In:

Science of Computer Programming 22.3, pp. 197–230. issn: 0167-6423. doi:

10.1016/0167-6423(94)00004-2 (cit. on p. 161).

Henglein, Fritz and Lasse Nielsen (2011). “Regular Expression Contain-

ment: Coinductive Axiomatization and Computational Interpretation.”

In: POPL 2011. Austin, Texas, USA: ACM, pp. 385–398. isbn: 978-1-4503-

0490-0. doi: 10.1145/1926385.1926429 (cit. on p. 127).

Hindley, J. R. (1969). “The principal type scheme of an object in combi-

natory logic.” In: Transactions of the American Mathematical Society 1.146,

pp. 29–60. issn: 00029947. doi: 10.2307/1995158 (cit. on pp. 273, 307).

Hosoya, Haruo and Benjamin C. Pierce (2003). “XDuce: A Statically Typed

XML Processing Language.” In: ACM Transactions on Internet Technology

3.2, pp. 117–148. doi: 10.1145/767193.767195 (cit. on pp. 20, 69, 128).

Hosoya, Haruo, Jérôme Vouillon, and Benjamin C. Pierce (2000). “Regular

Expression Types for XML.” In: ICFP 2000. New York, NY, USA: ACM,

pp. 11–22. isbn: 1-58113-202-6. doi: 10.1145/351240.351242 (cit. on

p. 127).

Huang, Shan Shan, David Zook, and Yannis Smaragdakis (2007). “cJ:

Enhancing Java with Safe Type Conditions.” In: AOSD 2007. Vancouver,

British Columbia, Canada: ACM, pp. 185–198. isbn: 1-59593-615-7. doi:

10.1145/1218563.1218584 (cit. on pp. 61, 65).

Igarashi, Atsushi and Benjamin C. Pierce (1999). “Foundations for Virtual

Types.” In: ECOOP 1999. Berlin, Heidelberg: Springer Berlin Heidelberg,

https://doi.org/10.1016/0167-6423(94)00004-2
https://doi.org/10.1145/1926385.1926429
https://doi.org/10.2307/1995158
https://doi.org/10.1145/767193.767195
https://doi.org/10.1145/351240.351242
https://doi.org/10.1145/1218563.1218584

bibliography 423

pp. 161–185. isbn: 978-3-540-48743-2. doi: 10.1007/3-540-48743-3_8

(cit. on p. 64).

Igarashi, Atsushi, Benjamin C. Pierce, and Philip Wadler (May 2001).

“Featherweight Java: A Minimal Core Calculus for Java and GJ.” In:

TOPLAS 23.3, pp. 396–450. issn: 0164-0925. doi: 10.1145/503502.503505

(cit. on pp. 151, 271).

Ihaka, Ross and Robert Gentleman (1996). “R: A Language for Data Anal-

ysis and Graphics.” In: Journal of Computational and Graphical Statistics

5.3, pp. 299–314. doi: 10.1080/10618600.1996.10474713 (cit. on p. 3).

Ina, Lintaro and Atsushi Igarashi (2011). “Gradual Typing for Generics.”

In: OOPSLA 2011. Portland, Oregon, USA: ACM, pp. 609–624. isbn:

978-1-4503-0940-0. doi: 10.1145/2048066.2048114 (cit. on pp. 148, 193,

199, 261, 271).

Jeannin, Jean-Baptiste, Dexter Kozen, and Alexandra Silva (2017). “CoCaml:

Functional Programming with Regular Coinductive Types.” In: Funda-

menta Informaticae 150.3–4, pp. 347–377. doi: 10.3233/FI-2017-1473

(cit. on p. 127).

JetBrains (2019). Kotlin Language Documentation, Version 1.3. url: https:

//kotlinlang.org/docs/reference/ (cit. on pp. 19, 308, 377).

Kennedy, Andrew J. and Benjamin C. Pierce (2007). “On Decidability of

Nominal Subtyping with Variance.” In: FOOL 2007. New York, NY, USA:

ACM (cit. on pp. 19, 25, 26, 28, 41, 46, 64, 127, 271).

King, Gavin (Nov. 2013). The Ceylon Language Specification, Version 1.0 (cit.

on pp. 19, 39, 70, 107, 111, 308, 377).

Komondoor, Raghavan, G. Ramalingam, Satish Chandra, and John Field

(2005). “Dependent Types for Program Understanding.” In: TACAS

https://doi.org/10.1007/3-540-48743-3_8
https://doi.org/10.1145/503502.503505
https://doi.org/10.1080/10618600.1996.10474713
https://doi.org/10.1145/2048066.2048114
https://doi.org/10.3233/FI-2017-1473
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/

424 bibliography

2005. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 157–173. isbn:

978-3-540-31980-1. doi: 10.1007/978-3-540-31980-1_11 (cit. on p. 318).

Kozen, Dexter, Jens Palsberg, and Michael I. Schwartzbach (1995). “Effi-

cient Recursive Subtyping.” In: Mathematical Structures in Computer Sci-

ence 5.1, pp. 113–125. doi: 10.1017/S0960129500000657 (cit. on p. 127).

Kristensen, Bent Bruun, Ole Lehrmann Madsen, Birger Møller-Pedersen,

and Kristen Nygaard (1983). “Abstraction Mechanisms in the BETA

Programming Language.” In: POPL 1983. Austin, Texas: ACM, pp. 285–

298. isbn: 0-89791-090-7. doi: 10.1145/567067.567094 (cit. on p. 63).

Kuhlenschmidt, Andre, Deyaaeldeen Almahallawi, and Jeremy G. Siek

(2019). “Toward Efficient Gradual Typing for Structural Types via Co-

ercions.” In: PLDI. Phoenix, AZ, USA: ACM, pp. 517–532. isbn: 978-

1-4503-6712-7. doi: 10.1145/3314221.3314627 (cit. on pp. 6, 143, 241,

250).

Lattner, Chris and Vikram Adve (2004). “LLVM: A Compilation Framework

for Lifelong Program Analysis & Transformation.” In: CGO 2004. Palo

Alto, California, pp. 75–86. doi: 10.1109/CGO.2004.1281665 (cit. on

p. 240).

Liquori, Luigi and Claude Stolze (2017). “A Decidable Subtyping Logic

for Intersection and Union Types.” In: TTCS 2017. Cham, CHE: Springer

International Publishing, pp. 74–90. isbn: 978-3-319-68953-1. doi: 10.

1007/978-3-319-68953-1_7 (cit. on p. 120).

Madsen, Ole Lehrmann and Birger Møller-Pedersen (1989). “Virtual

Classes - A Powerful Mechanism in Object-Oriented Programming.” In:

OOPSLA 1989. New Orleans, Louisiana, USA: ACM, pp. 397–406. isbn:

0-89791-333-7. doi: 10.1145/74877.74919 (cit. on p. 63).

https://doi.org/10.1007/978-3-540-31980-1_11
https://doi.org/10.1017/S0960129500000657
https://doi.org/10.1145/567067.567094
https://doi.org/10.1145/3314221.3314627
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/978-3-319-68953-1_7
https://doi.org/10.1007/978-3-319-68953-1_7
https://doi.org/10.1145/74877.74919

bibliography 425

Matthews, Jacob and Robert Bruce Findler (2007). “Operational Semantics

for Multi-Language Programs.” In: POPL 2007. Nice, France: ACM,

pp. 3–10. isbn: 1-59593-575-4. doi: 10.1145/1190216.1190220 (cit. on

pp. 1, 138).

McBride, Conor (2002). “Faking it Simulating dependent types in Haskell.”

In: Journal of Functional Programming 12.4–5, pp. 375–392. doi: 10.1017/

S0956796802004355 (cit. on p. 19).

Microsoft (Oct. 2012). TypeScript. url: http://www.typescriptlang.org/

(cit. on pp. 5, 8, 69, 148).

Microsoft (July 2018). The Typescript Handbook. url: https : / / www .

typescriptlang.org/docs/handbook/basic-types.html (cit. on p. 69).

Milner, Robin (1978). “A theory of type polymorphism in programming.”

In: Journal of Computer and System Sciences 17.3, pp. 348–375. issn: 0022-

0000 (cit. on pp. 23, 307).

Mitchell, John C. (1988). “Polymorphic Type Inference and Containment.”

In: Information and Computation 76.2/3, pp. 211–249. doi: 10.1016/0890-

5401(88)90009-0 (cit. on p. 122).

Muehlboeck, Fabian and Ross Tate (2017a). “Sound Gradual Typing

is Nominally Alive and Well.” In: OOPSLA 2017. Vancouver, British

Columbia, Canada: ACM, Article 56, Auxiliary Archive. doi: 10.1145/

3133880 (cit. on p. 145).

Muehlboeck, Fabian and Ross Tate (2017b). “Sound Gradual Typing is

Nominally Alive and Well.” In: PACMPL 1.OOPSLA, 56:1–56:30. issn:

2475-1421. doi: 10.1145/3133880 (cit. on pp. 15, 145, 193).

Muehlboeck, Fabian and Ross Tate (2018a). “Empowering Union and

Intersection Types with Integrated Subtyping.” In: OOPSLA 2018. New

https://doi.org/10.1145/1190216.1190220
https://doi.org/10.1017/S0956796802004355
https://doi.org/10.1017/S0956796802004355
http://www.typescriptlang.org/
https://www.typescriptlang.org/docs/handbook/basic-types.html
https://www.typescriptlang.org/docs/handbook/basic-types.html
https://doi.org/10.1016/0890-5401(88)90009-0
https://doi.org/10.1016/0890-5401(88)90009-0
https://doi.org/10.1145/3133880
https://doi.org/10.1145/3133880
https://doi.org/10.1145/3133880

426 bibliography

York, NY, USA: ACM, Article 112, Supplementary Material. doi: 10.

1145/3276482 (cit. on pp. 67, 90, 105, 107).

Muehlboeck, Fabian and Ross Tate (2018b). “Empowering Union and

Intersection Types with Integrated Subtyping.” In: PACMPL 2.OOPSLA,

112:1–112:29. issn: 2475-1421. doi: 10.1145/3276482 (cit. on pp. 15, 67).

New, Max S. and Amal Ahmed (2018). “Graduality from Embedding-

projection Pairs.” In: PACMPL 2.ICFP, 73:1–73:30. issn: 2475-1421. doi:

10.1145/3236768 (cit. on p. 332).

New, Max S., Daniel R. Licata, and Amal Ahmed (2019). “Gradual Type

Theory.” In: PACMPL 3.POPL, 15:1–15:31. issn: 2475-1421. doi: 10.1145/

3290328 (cit. on p. 332).

Odersky, Martin, Philippe Altherr, et al. (2014). Scala Language Specification,

Version 2.11. url: https://scala-lang.org/files/archive/spec/2.11/

(cit. on pp. 25, 30, 277, 301).

Odersky, Martin and Konstantin Läufer (1996). In: POPL 1996. St. Peters-

burg Beach, Florida, USA: ACM, pp. 54–67. isbn: 0-89791-769-3. doi:

10.1145/237721.237729 (cit. on p. 122).

Odersky, Martin and Matthias Zenger (2005). “Scalable Component Ab-

stractions.” In: OOPSLA 2005. San Diego, CA, USA: ACM, pp. 41–57.

isbn: 1-59593-031-0. doi: 10.1145/1094811.1094815 (cit. on p. 64).

Oracle Corporation (2014). Compatibility Guide for JDK 8. url: https://

www.oracle.com/technetwork/java/javase/8-compatibility-guide-

2156366.html (cit. on p. 268).

Palsberg, Jens and Christina Pavlopoulou (1998). “From Polyvariant Flow

Information to Intersection and Union Types.” In: POPL 1998. San

Diego, California, USA: ACM, pp. 197–208. isbn: 0-89791-979-3. doi:

10.1145/268946.268963 (cit. on p. 67).

https://doi.org/10.1145/3276482
https://doi.org/10.1145/3276482
https://doi.org/10.1145/3276482
https://doi.org/10.1145/3236768
https://doi.org/10.1145/3290328
https://doi.org/10.1145/3290328
https://scala-lang.org/files/archive/spec/2.11/
https://doi.org/10.1145/237721.237729
https://doi.org/10.1145/1094811.1094815
https://www.oracle.com/technetwork/java/javase/8-compatibility-guide-2156366.html
https://www.oracle.com/technetwork/java/javase/8-compatibility-guide-2156366.html
https://www.oracle.com/technetwork/java/javase/8-compatibility-guide-2156366.html
https://doi.org/10.1145/268946.268963

bibliography 427

Peyton Jones, Simon L., Dimitrios Vytiniotis, Stephanie Weirich, and Mark

Shields (2007). “Practical Type Inference for Arbitrary-Rank Types.”

In: Journal of Functional Programming 17.1, pp. 1–82. doi: 10 . 1017 /

S0956796806006034 (cit. on pp. 92, 121).

Pierce, Benjamin C. (1989). A Decision Procedure for the Subtype Relation on

Intersection Types with Bounded Variables. Technical Report CMU-CS-89-

169. Carnegie Mellon University (cit. on pp. 90, 91, 106).

Pierce, Benjamin C. (Feb. 1991). Programming with Intersection Types, Union

Types, and Polymorphism. Technical Report CMU-CS-91-106. Carnegie

Mellon University (cit. on pp. 68, 92, 119).

Pierce, Benjamin C. (1992). “Bounded Quantification is Undecidable.” In:

POPL 1992. Albuquerque, New Mexico, USA: ACM, pp. 305–315. isbn:

0-89791-453-8. doi: 10.1145/143165.143228 (cit. on pp. 19, 307).

Pierce, Benjamin C. (2002). Types and Programming Languages. Boston, MA,

USA: MIT Press (cit. on p. 81).

Pierce, Benjamin C. and Martin Steffen (1997). “Higher-Order Subtyping.”

In: Theoretical Computer Science 176.1-2, pp. 235–282. issn: 0304-3975. doi:

10.1016/S0304-3975(96)00096-5 (cit. on pp. 29, 56).

Politz, Joe Gibbs, Alejandro Martinez, Matthew Milano, Sumner Warren,

Daniel Patterson, Junsong Li, Anand Chitipothu, and Shriram Krish-

namurthi (2013). “Python: The Full Monty.” In: OOPSLA 2013. Indi-

anapolis, Indiana, USA: ACM, pp. 217–232. isbn: 978-1-4503-2374-1. doi:

10.1145/2509136.2509536 (cit. on p. 3).

Pottinger, Garrell (1980). “A Type Assignment for the Strongly Normal-

izable λ-Terms.” In: To H.B. Curry: Essays on Combinatory Logic, Lambda

Calculus, and Formalism. London, GBR, New York, NY, USA: Academic

Press (cit. on p. 119).

https://doi.org/10.1017/S0956796806006034
https://doi.org/10.1017/S0956796806006034
https://doi.org/10.1145/143165.143228
https://doi.org/10.1016/S0304-3975(96)00096-5
https://doi.org/10.1145/2509136.2509536

428 bibliography

Rastogi, Aseem, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Pana-

giotis Vekris (2015). “Safe & Efficient Gradual Typing for TypeScript.” In:

POPL 2015. Mumbai, India: ACM, pp. 167–180. isbn: 978-1-4503-3300-9.

doi: 10.1145/2676726.2676971 (cit. on pp. 136, 140, 144, 148).

Reynolds, John C. (Jan. 1988). Preliminary Design of the Programming Lan-

guage Forsythe. Technical Report CMU-CS-88-159. Carnegie Mellon Uni-

versity (cit. on pp. 68, 90, 92, 122, 284).

Reynolds, John C. (1997). “Design of the Programming Language

Forsythe.” In: ALGOL-like Languages. Boston, MA, USA: Birkhäuser

Boston, pp. 173–233. doi: 10.1007/978-1-4612-4118-8_9 (cit. on pp. 68,

90, 122, 284).

Richards, Gregor, Ellen Arteca, and Alexi Turcotte (2017). “The VM Al-

ready Knew That: Leveraging Compile-time Knowledge to Optimize

Gradual Typing.” In: PACMPL 1.OOPSLA, 55:1–55:27. issn: 2475-1421.

doi: 10.1145/3133879 (cit. on pp. 6, 143).

Richards, Gregor, Francesco Zappa Nardelli, and Jan Vitek (2015). “Con-

crete Types for TypeScript.” In: ECOOP 2015. Vol. 37. Dagstuhl, Germany:

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 76–100. isbn:

978-3-939897-86-6. doi: 10.4230/LIPIcs.ECOOP.2015.76 (cit. on pp. 144,

148, 150, 193).

Rompf, Tiark and Nada Amin (2016). “Type Soundness for Dependent

Object Types (DOT).” In: OOPSLA 2016. Amsterdam, Netherlands: ACM,

pp. 624–641. isbn: 978-1-4503-4444-9. doi: 10.1145/2983990.2984008

(cit. on p. 68).

Rossum, Guido van (May 1995). Python Tutorial. Tech. rep. CS-R9526.

Centrum for Wiskunde en Informatica (cit. on p. 3).

https://doi.org/10.1145/2676726.2676971
https://doi.org/10.1007/978-1-4612-4118-8_9
https://doi.org/10.1145/3133879
https://doi.org/10.4230/LIPIcs.ECOOP.2015.76
https://doi.org/10.1145/2983990.2984008

bibliography 429

Routley, Richard and Robert K. Meyer (1972). “The Semantics of En-

tailment: III.” In: Journal of Philosophical Logic 1.2, pp. 192–208. doi:

10.2307/30226036 (cit. on pp. 68, 119).

Schinz, Michel (2005). “Compiling Scala for the Java Virtual Machine.”

PhD thesis. EPFL (cit. on p. 261).

Siek, Jeremy G., Ronald Garcia, and Walid Taha (2009). “Exploring the

Design Space of Higher-Order Casts.” In: ESOP 2009. York, UK: Springer

Berlin Heidelberg, pp. 17–31. isbn: 978-3-642-00589-3. doi: 10.1007/978-

3-642-00590-9_2 (cit. on p. 176).

Siek, Jeremy G. and Walid Taha (2006). “Gradual Typing for Functional

Languages.” In: Scheme and Functional Programming Workshop 6, pp. 81–

92 (cit. on pp. 1, 137, 138, 161, 169, 193).

Siek, Jeremy G. and Walid Taha (2007). “Gradual Typing for Objects.” In:

ECOOP 2007. Berlin, Germany: Springer Berlin Heidelberg, pp. 2–27.

isbn: 978-3-540-73589-2. doi: 10.1007/978-3-540-73589-2_2 (cit. on

pp. 143, 155, 161, 193).

Siek, Jeremy G., Michael M. Vitousek, Matteo Cimini, and John Tang

Boyland (2015). “Refined Criteria for Gradual Typing.” In: SNAPL 2015.

Vol. 32. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik, pp. 274–293. isbn: 978-3-939897-80-4. doi: 10.4230/LIPIcs.

SNAPL.2015.274 (cit. on pp. 6, 12, 141, 142, 178, 179, 181, 200, 219, 332).

Siek, Jeremy G., Michael M. Vitousek, Matteo Cimini, Sam Tobin-

Hochstadt, and Ronald Garcia (2015). “Monotonic References for Ef-

ficient Gradual Typing.” In: ESOP 2015. London, UK: Springer Berlin

Heidelberg, pp. 432–456. isbn: 978-3-662-46669-8. doi: 10.1007/978-3-

662-46669-8_18 (cit. on pp. 13, 136, 140, 233).

https://doi.org/10.2307/30226036
https://doi.org/10.1007/978-3-642-00590-9_2
https://doi.org/10.1007/978-3-642-00590-9_2
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.1007/978-3-662-46669-8_18
https://doi.org/10.1007/978-3-662-46669-8_18

430 bibliography

Siek, Jeremy G. and Philip Wadler (2010). “Threesomes, with and without

Blame.” In: POPL 2010. Madrid, Spain: ACM, pp. 365–376. isbn: 978-

1-60558-479-9. doi: 10.1145/1706299.1706342 (cit. on pp. 175, 177,

256).

Smith, Daniel and Robert Cartwright (2008). “Java Type Inference is Broken:

Can We Fix It?” In: OOPSLA 2008. Nashville, TN, USA: ACM, pp. 505–

524. isbn: 978-1-60558-215-3. doi: 10.1145/1449764.1449804 (cit. on

pp. 14, 29, 51, 65, 152).

Swamy, Nikhil, Cedric Fournet, Aseem Rastogi, Karthikeyan Bhargavan,

Juan Chen, Pierre-Yves Strub, and Gavin Bierman (2014). “Gradual

Typing Embedded Securely in JavaScript.” In: POPL 2014. San Diego,

California, USA: ACM, pp. 425–437. isbn: 978-1-4503-2544-8. doi: 10.

1145/2535838.2535889 (cit. on pp. 5, 8, 136, 140, 142, 144, 147, 148, 193).

Takikawa, Asumu, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek,

and Matthias Felleisen (2016). “Is Sound Gradual Typing Dead?” In:

POPL 2016. St. Petersburg, FL, USA: ACM, pp. 456–468. isbn: 978-1-

4503-3549-2. doi: 10.1145/2837614.2837630 (cit. on pp. 6, 136, 140, 142,

146, 148, 150, 181, 182, 184, 185, 239, 247, 248).

Tate, Ross (2013). “Mixed-Site Variance.” In: FOOL (cit. on pp. 30, 43, 283).

Tate, Ross, Alan Leung, and Sorin Lerner (2011). “Taming Wildcards in

Java’s Type System.” In: PLDI 2011. San Jose, California, USA: ACM,

pp. 614–627. isbn: 978-1-4503-0663-8. doi: 10.1145/1993498.1993570

(cit. on pp. 27–30, 41, 46, 47, 51, 64, 65, 116).

Tempero, Ewan, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus

Lumpe, Hayden Melton, and James Noble (2010). “Qualitas Corpus: A

Curated Collection of Java Code for Empirical Studies.” In: APSEC 2010,

pp. 336–345. doi: 10.1109/APSEC.2010.46 (cit. on p. 36).

https://doi.org/10.1145/1706299.1706342
https://doi.org/10.1145/1449764.1449804
https://doi.org/10.1145/2535838.2535889
https://doi.org/10.1145/2535838.2535889
https://doi.org/10.1145/2837614.2837630
https://doi.org/10.1145/1993498.1993570
https://doi.org/10.1109/APSEC.2010.46

bibliography 431

The Coq Development Team (1984). The Coq Proof Assistant. url: https:

//coq.inria.fr/ (cit. on p. 70).

The Dotty Development Team (2015). Dotty. url: http://dotty.epfl.ch/

(cit. on p. 68).

The LLVM Project (Aug. 2019). LLVM. url: https://www.llvm.org (cit. on

p. 240).

The MathWorks, Inc. (Aug. 2019). MATLAB. url: https://www.mathworks.

com/products/matlab.html (cit. on p. 3).

The PHP Group (2019). PHP Language Reference.

https://www.php.net/manual/en/langref.php. Version 7.4.0 (cit. on

p. 3).

The Python Development Team (Dec. 2008). Python Benchmarks.

https://hg.python.org/benchmarks/ (cit. on p. 182).

Thorup, Kresten Krab (1997). “Genericity in Java with Virtual Types.” In:

ECOOP. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 444–471.

isbn: 978-3-540-69127-3. doi: 10.1007/BFb0053390 (cit. on p. 64).

Thorup, Kresten Krab and Mads Torgersen (1999). “Unifying Genericity -

Combining the Benefits of Virtual Types and Parameterized Classes.”

In: ECOOP. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 186–204.

isbn: 978-3-540-48743-2. doi: 10.1007/3-540-48743-3_9 (cit. on p. 64).

Tobin-Hochstadt, Sam and Matthias Felleisen (2006). “Interlanguage Mi-

gration: From Scripts to Programs.” In: OOPSLA 2006. Portland, Oregon,

USA: ACM, pp. 964–974. isbn: 1-59593-491-X. doi: 10.1145/1176617.

1176755 (cit. on pp. 136, 138, 141, 169, 176).

Tobin-Hochstadt, Sam and Matthias Felleisen (2008). “The Design and

Implementation of Typed Scheme.” In: POPL 2008. San Francisco, Cali-

https://coq.inria.fr/
https://coq.inria.fr/
http://dotty.epfl.ch/
https://www.llvm.org
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.php.net/manual/en/langref.php
https://hg.python.org/benchmarks/
https://hg.python.org/benchmarks/
https://doi.org/10.1007/BFb0053390
https://doi.org/10.1007/3-540-48743-3_9
https://doi.org/10.1145/1176617.1176755
https://doi.org/10.1145/1176617.1176755

432 bibliography

fornia, USA: ACM, pp. 395–406. isbn: 978-1-59593-689-9. doi: 10.1145/

1328438.1328486 (cit. on pp. 1, 5, 8, 13, 68, 193, 207, 250, 318).

Torgersen, Mads (1998). “Virtual Types are Statically Safe.” In: FOOL 1998

(cit. on p. 64).

Torgersen, Mads, Christian Plesner Hansen, Erik Ernst, Peter von der

Ahé, Gilad Bracha, and Neal Gafter (2004). “Adding Wildcards to the

Java Programming Language.” In: SAC 2004. Nicosia, Cyprus: ACM,

pp. 1289–1296. isbn: 1-58113-812-1. doi: 10.1145/967900.968162 (cit. on

pp. 27, 51, 64).

Toro, Matías, Elizabeth Labrada, and Éric Tanter (2019). “Gradual Para-

metricity, Revisited.” In: PACMPL 3.POPL, 17:1–17:30. issn: 2475-1421.

doi: 10.1145/3290330 (cit. on p. 332).

Toro, Matías and Éric Tanter (2017). “A Gradual Interpretation of Union

Types.” In: SAS 2017. Cham: Springer International Publishing, pp. 382–

404. isbn: 978-3-319-66706-5. doi: 10.1007/978-3-319-66706-5_19

(cit. on pp. 176, 177).

Verlaguet, Julien and Alok Menghrajani (Mar. 2014). Hack: a new program-

ming language for HHVM.

https : / / engineering . fb . com / developer - tools / hack - a - new -

programming-language-for-hhvm/ (cit. on p. 4).

Viganò, Luca (2000). “An O(n log n)-Space Decision Procedure for the

Relevance Logic B+.” In: Studia Logica 66.3, pp. 385–407. issn: 1572-8730.

doi: 10.1023/A:1005212701420 (cit. on pp. 21, 68, 119).

Viroli, Mirko (Sept. 2000). On the Recursive Generation of Parametric Types.

Tech. rep. DEIS-LIA-00-002. University of Bologna (cit. on pp. 46, 127).

Vitousek, Michael M., Andrew M. Kent, Jeremy G. Siek, and Jim Baker

(2014). “Design and Evaluation of Gradual Typing for Python.” In: DLS

https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/967900.968162
https://doi.org/10.1145/3290330
https://doi.org/10.1007/978-3-319-66706-5_19
https://engineering.fb.com/developer-tools/hack-a-new-programming-language-for-hhvm/
https://engineering.fb.com/developer-tools/hack-a-new-programming-language-for-hhvm/
https://doi.org/10.1023/A:1005212701420

bibliography 433

2014. Portland, Oregon, USA: ACM, pp. 45–56. isbn: 978-1-4503-3211-8.

doi: 10.1145/2661088.2661101 (cit. on pp. 5, 8, 13, 136, 139, 140, 144,

146, 148, 193, 208, 233).

Vitousek, Michael M., Cameron Swords, and Jeremy G. Siek (2017). “Big

Types in Little Runtime: Open-World Soundness and Collaborative

Blame for Gradual Type Systems.” In: POPL 2017. Paris, France: ACM,

pp. 762–774. isbn: 978-1-4503-4660-3. doi: 10.1145/3009837.3009849

(cit. on pp. 6, 140, 143, 182, 187, 188, 193, 208, 233, 255).

Wadler, Philip and Stephen Blott (1989). “How to Make Ad-hoc Poly-

morphism Less Ad Hoc.” In: POPL 1989. Austin, Texas, USA: ACM,

pp. 60–76. isbn: 0-89791-294-2. doi: 10.1145/75277.75283 (cit. on pp. 61,

277).

Wadler, Philip and Robert Bruce Findler (2009). “Well-Typed Programs

Can’t Be Blamed.” In: ESOP 2009. York, UK: Springer Berlin Heidelberg,

pp. 1–16. isbn: 978-3-642-00590-9. doi: 10.1007/978-3-642-00590-9_1

(cit. on pp. 139, 141, 176, 178, 207).

Wehr, Stefan, Ralf Lämmel, and Peter Thiemann (2007). “JavaGI: General-

ized Interfaces for Java.” In: ECOOP 2007. Berlin, Heidelberg: Springer

Berlin Heidelberg, pp. 347–372. isbn: 978-3-540-73589-2. doi: 10.1007/

978-3-540-73589-2_17 (cit. on pp. 61, 65).

Wells, Joe B., Allyn Dimock, Robert Muller, and Franklyn Turbak (2002).

“A Calculus with Polymorphic and Polyvariant Flow Types.” In:

Journal of Functional Programming 12.3, pp. 183–227. doi: 10 . 1017 /

S0956796801004245 (cit. on p. 67).

“Revised Report on the Algorithmic Language ALGOL 68” (1975). In: Acta

Informatica 5.1. Ed. by Adriaan van Wijngaarden, Barry J. Mailloux, John

E. L. Peck, Cornelis H. A. Koster, Michel Sintzoff, Charles H. Lindsey,

https://doi.org/10.1145/2661088.2661101
https://doi.org/10.1145/3009837.3009849
https://doi.org/10.1145/75277.75283
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1007/978-3-540-73589-2_17
https://doi.org/10.1007/978-3-540-73589-2_17
https://doi.org/10.1017/S0956796801004245
https://doi.org/10.1017/S0956796801004245

434 bibliography

Lambert G. L. T. Meertens, and Richard G. Fisker, pp. 1–236. issn:

1432-0525. doi: 10.1007/BF00265077 (cit. on p. 119).

Wrigstad, Tobias, Francesco Zappa Nardelli, Sylvain Lebresne, Johan

Östlund, and Jan Vitek (2010). “Integrating Typed and Untyped Code in

a Scripting Language.” In: POPL 2010. Madrid, Spain: ACM, pp. 377–388.

isbn: 978-1-60558-479-9. doi: 10.1145/1706299.1706343 (cit. on pp. 150,

194, 239).

Zappa Nardelli, Francesco, Julia Belyakova, Artem Pelenitsyn, Benjamin

Chung, Jeff Bezanson, and Jan Vitek (2018). “Julia Subtyping: A Rational

Reconstruction.” In: PACMPL 2.OOPSLA, 113:1–113:27. issn: 2475-1421.

doi: 10.1145/3276483 (cit. on pp. 19, 69, 126).

Zhang, Yizhou, Matthew C. Loring, Guido Salvaneschi, Barbara Liskov,

and Andrew C. Myers (2015). “Lightweight, Flexible Object-oriented

Generics.” In: PLDI 2015. Portland, OR, USA: ACM, pp. 436–445. isbn:

978-1-4503-3468-6. doi: 10.1145/2737924.2738008 (cit. on pp. 64, 277,

301).

Zhang, Yizhou and Andrew C. Myers (2017). “Familia: Unifying Interfaces,

Type Classes, and Family Polymorphism.” In: PACMPL 1.OOPSLA, 70:1–

70:31. issn: 2475-1421. doi: 10.1145/3133894 (cit. on p. 64).

https://doi.org/10.1007/BF00265077
https://doi.org/10.1145/1706299.1706343
https://doi.org/10.1145/3276483
https://doi.org/10.1145/2737924.2738008
https://doi.org/10.1145/3133894

	Efficient Runtimes for Gradual Typing
	Abstract
	Biographical Sketch
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	0 Introduction
	0.1 Gradual Typing
	0.2 Gradual Typing in Industry
	0.3 Sound Gradual Typing
	0.4 Use Cases for Gradual Typing
	0.5 A Roadmap for Practical, Sound, and Efficient Gradual Typing
	0.5.1 Nominality and Typed Libraries
	0.5.2 Milestones

	0.6 Contributions in this Dissertation

	 Decidable Subtyping
	1 Overview
	2 Decidable Subtyping with Variant Generics
	2.1 Introduction
	2.2 Background
	2.3 Materials and Shapes
	2.3.1 Materials
	2.3.2 Shapes
	2.3.3 Separating Materials and Shapes

	2.4 Industry Compatibility
	2.4.1 Methodology
	2.4.2 Findings
	2.4.3 Ceylon

	2.5 Applications
	2.5.1 Decidability of Subtyping
	2.5.2 Equivalences
	2.5.3 Joins
	2.5.4 Type Variables and Constraints
	2.5.5 Higher Kinds

	2.6 Future Work
	2.6.1 Conditional Inheritance
	2.6.2 Decidable Intraprocedural Type Inference
	2.6.3 Virtual Types

	2.7 Related Work
	2.8 Summary

	3 Integrated Subtyping
	3.1 Introduction
	3.2 Motivation
	3.3 Formalizing Traditional Union and Intersection Subtyping
	3.3.1 Declarative Subtyping
	3.3.2 Reductive Subtyping
	3.3.3 Proof Search as an Algorithm
	3.3.4 Equivalence of Declarative and Reductive Subtyping

	3.4 Empowering Unions and Intersections
	3.4.1 Distributivity
	3.4.2 Intersectors
	3.4.3 Integrated Subtyping
	3.4.4 Decidability
	3.4.5 Integrating
	3.4.6 Equivalence of Extended and Integrated Subtyping

	3.5 Composability
	3.6 Application to Ceylon
	3.6.1 Unempowered Ceylon
	3.6.2 Disjointness
	3.6.3 Principal Instantiation
	3.6.4 Classes with Enumerated Cases
	3.6.5 Object and Null
	3.6.6 Composing Features

	3.7 Variations, Generalizations, Related Work, and Future Work
	3.7.1 Miminal Relevant Logic and Relaxing Requirements
	3.7.2 Integrators: Beyond Union and Intersection Types
	3.7.3 Predicative Higher-Rank Polymorphism and Duality
	3.7.4 Bounded Type Variables and Well-Formed Kind Contexts
	3.7.5 Julia and Changing Kind Contexts
	3.7.6 Regular-Coinductive Subtyping
	3.7.7 Semantic Subtyping

	3.8 Summary

	 Implementing Gradual Typing Efficiently
	4 Overview
	4.1 Background on Gradual Typing
	4.1.1 Casting Strategies
	4.1.2 Properties of Gradual Type Systems
	4.1.3 Overhead of Gradual Typing
	4.1.4 Gradual Typing for Object-Oriented Languages

	5 Exploiting Nominality for Efficiency
	5.1 Introduction
	5.2 Towards Well-Behaved and Efficient Gradual Typing
	5.2.1 Transparency
	5.2.2 Immediate Accountability
	5.2.3 Run-Time Type Information
	5.2.4 Discussion

	5.3 The Optimistic Perspective
	5.4 The Type System
	5.4.1 Dispatch Modes
	5.4.2 Subtyping
	5.4.3 Expression Typing
	5.4.4 Class and Interface Validation

	5.5 The Direct Semantics
	5.6 The Cast Semantics
	5.7 The Guarantees
	5.7.1 Immediacy
	5.7.2 Immediate Accountability
	5.7.3 The Gradual Guarantee
	5.7.4 Transparency

	5.8 Experimental Evaluation
	5.8.1 The Experimental Compiler
	5.8.2 Design of Benchmark Programs
	5.8.3 Benchmark Results
	5.8.4 Validity

	5.9 Summary

	6 Transitioning from Structural to Nominal Code
	6.1 Introduction
	6.2 Motivation
	6.3 The Calculus
	6.3.1 Hierarchy
	6.3.2 Fields and Methods
	6.3.3 Types
	6.3.4 Expressions

	6.4 The Type System
	6.4.1 Precision, Inheritance, and Subtyping
	6.4.2 Expressions
	6.4.3 Classes and Interfaces

	6.5 The Transition
	6.5.1 Changing the Nominal Hierarchy
	6.5.2 Changing Method Signatures
	6.5.3 Changing Expressions
	6.5.4 The Static Gradual Guarantee

	6.6 Semantics
	6.6.1 Semantic Expressions, Values, and Heaps
	6.6.2 Implicit Casts
	6.6.3 Allocation
	6.6.4 Invocation
	6.6.5 The Dynamic Gradual Guarantee

	6.7 Implementation
	6.7.1 Primitives
	6.7.2 Interlude: Monotonic Casting to Generic Interfaces
	6.7.3 Heap Values
	6.7.4 V-Tables
	6.7.5 The Single-Target-Type Hypothesis

	6.8 Evaluation
	6.8.1 Sieve
	6.8.2 Intersort

	6.9 Summary

	7 Discussion
	7.1 Designing for Performance
	7.2 Scaling to Industry
	7.3 Increasing Expressiveness
	7.3.1 Types Affect Execution
	7.3.2 Generics

	 Generics
	8 Towards Inferable and Gradualizable Generics
	8.1 Introduction
	8.2 Overview
	8.2.1 The Binary-Method Problem, Declaration-Site Variance, and Decidability
	8.2.2 Type-Argument Inference
	8.2.3 Principal Types
	8.2.4 Semantic Coherence
	8.2.5 Joins and Meets
	8.2.6 Ambiguity

	8.3 Interfaces and Subtyping
	8.3.1 Interfaces
	8.3.2 Enforcing Constraints
	8.3.3 Intersection Types
	8.3.4 Joins and Meets
	8.3.5 Type-Argument Inference

	8.4 Shapes and Satisfaction
	8.4.1 Shapes
	8.4.2 Shape Satisfaction
	8.4.3 Shape Simplification

	8.5 Method Signatures and Type-Argument Inferability
	8.5.1 Method Signatures
	8.5.2 Higher-Order Parameters
	8.5.3 Inferability
	8.5.4 Inheritance
	8.5.5 Practicality

	8.6 Expressions and Type-Checking
	8.6.1 Method Invocation
	8.6.2 Decidable Type-Checking

	8.7 Semantics and Coherence
	8.7.1 Method Invocation
	8.7.2 Progress, Preservation, and Semantic Coherence

	8.8 Gradualizability
	8.9 Summary

	9 Epilogue
	9.1 Future Work
	9.1.1 Generics
	9.1.2 Branching based on run-time types
	9.1.3 Optimizations
	9.1.4 Gradualizability

	9.2 Conclusion

	 Appendices
	A Shape Analysis
	B More on Nom
	B.1 Inferring Dispatch Modes
	B.1.1 Restricting Dispatch Modes
	B.1.2 Resolving Ambiguities
	B.1.3 Aggregating Return Types

	B.2 Proof of Soundness
	B.2.1 Progress
	B.2.2 Pessimistic-Type Preservation
	B.2.3 Pessimistic Identification

	B.3 Proof of Semantic Preservation
	B.3.1 Translation Irrelevance
	B.3.2 Translation Existence
	B.3.3 Pessimistic-Valuation Preservation
	B.3.4 Optimistic-Valuation Reflection

	B.4 Proof of Guarantees
	B.4.1 Immediacy
	B.4.2 Gradual Optimism
	B.4.3 Gradual Preservation
	B.4.4 Gradual Reflection

	C More on MonNom
	C.1 Benchmark Result Charts

	D More on Generics
	D.1 Corpus Study
	D.1.1 C#
	D.1.2 Ceylon
	D.1.3 Java
	D.1.4 Kotlin

	D.2 Case Study
	D.2.1 Extensions
	D.2.2 Library

	D.3 Formalization Index
	D.4 Term Typing and Equivalence

	 Bibliography

