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Traditional optimizers have viewed imperative functions as a sequence or graph

of commands. Some of these commands interact with the heap, throw exceptions, or

interact with the outside world. Other commands simply read and modify local variables.

In this dissertation, I take a different perspective on imperative functions. I view them

as mathematical expressions, albeit with some quirks. These mathematical expressions

have no need for local variables, making the flow of computation direct and so easier

to reason about and manipulate. I will show how this enables equational techniques for

program optimization, translation validation, and optimizer extensibility.
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Chapter 1

Introduction

Compilers are one of the core tools that developers rely upon, and as a result they

are expected to be reliable and provide good performance. Developing good compilers

however is difficult, and the optimization phase of the compiler is one of the trickiest to

develop. Compiler writers must develop complex transformations that are correct, do

not have unexpected interactions, and provide good performance, a task that is made

all the more difficult given the number of possible transformations and their possible

interactions. This task is error prone and tedious, often requiring multiple iterations to

get the rules correct.

In this thesis I provide a variety of technologies for improving compilers:

• a technique for inferring optimizations from basic properties of the language

• a technique for verifying the correctness of a given run of the optimizer

• a technique for learning an optimization from a before-and-after program pair

These technologies are centered around an intermediate representation we developed

for algebraically representing imperative functions, which we call Program Expression

Graphs (PEGs). This algebraic representation enables additive equational reasoning,

specifically a process we call equality saturation, at a higher level of control flow, which

1
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automatically extends the above techniques to optimize loops and branches as well as

straight-line code.

1.1 Inferring Optimizations

In a traditional compilation system, optimizations are applied sequentially, with

each optimization taking as input the program produced by the previous one. This

traditional approach to compilation has several well known drawbacks. One of these

drawbacks is that the order in which optimizations are run affects the quality of the

generated code, a problem commonly known as the phase-ordering problem. Another

drawback is that profitability heuristics, which decide whether or not to apply a given

optimization, tend to make their decisions one optimization at a time, and so it is difficult

for these heuristics to account for the impact of future transformations.

In this thesis I present an approach for structuring optimizers that addresses the

above limitations of the traditional approach, and also has a variety of other benefits. Our

approach consists of computing a set of optimized versions of the input program and

then selecting the best candidate from this set. The set of candidate optimized programs

is computed by repeatedly inferring equivalences between program fragments, thus

allowing us to represent the impact of many possible optimizations at once. This in turn

enables the compiler to delay the decision of whether or not an optimization is profitable

until it observes the full ramifications of that decision. Although related ideas have been

explored in the context of superoptimizers, as Chapter 19 on related work will point out,

superoptimizers typically operate on straight-line code, whereas our approach is meant

as a general-purpose compilation paradigm that can optimize complicated control-flow

structures.

At its core, our approach is based on a simple change to the traditional com-

pilation model: whereas traditional optimizations operate by destructively performing
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transformations, in our approach optimizations take the form of equality analyses that

simply add equality information to a common intermediate representation (IR), without

losing the original program. Thus, after each equality analysis runs, both the old program

and the new program are represented.

The simplest form of equality analysis looks for ways to instantiate equality

axioms like a∗0 = 0, or a∗4 = a << 2. However, our approach also supports arbitrarily

complicated forms of equality analyses, such as inlining, tail-recursion elimination, and

various forms of user-defined axioms. The flexibility with which equality analyses are

defined makes it easy for compiler writers to port their traditional optimizations to our

equality-based model: optimizations can work as before except that, when the optimiza-

tion would have performed a transformation, it now simply records the transformation as

an equality.

The main technical challenge that we face in our approach is that the compiler’s

IR must now use equality information to represent not just one optimized version of the

input program, but multiple versions at once. We address this challenge through an IR

that compactly represents equality information and as a result can simultaneously store

multiple optimized versions of the input program. After a program is converted into our

IR, we repeatedly apply equality analyses to infer new equalities until no more equalities

can be inferred, a process we call equality saturation. Once saturated with equalities,

our IR compactly represents the various possible ways of computing the values from the

original program modulo the given set of equality analyses (and modulo some bound in

the case where applying equality analyses leads to unbounded expansion).

Our approach of having optimizations add equality information to a common IR

until it is saturated with equalities has a variety of benefits over previous optimization

models.
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Optimization Order is Irrelevant Our approach removes the need to think about

optimization ordering. When applying optimizations sequentially, ordering is a problem

because one optimization, say A, may perform some transformation that will irrevocably

prevent another optimization, say B, from triggering, when in fact running B first would

have produced the better outcome. This so-called phase-ordering problem is ubiquitous

in compiler design. In our approach, however, the compiler writer does not need to

worry about ordering because optimizations do not destructively update the program

– they simply add equality information. Therefore, after an optimization A is applied,

the original program is still represented (along with the transformed program), and so

any optimization B that could have been applied before A is still applicable after A.

Thus, there is no way that applying an optimization A can irrevocably prevent another

optimization B from applying, and so there is no way that applying optimizations will lead

the search astray. As a result, compiler writers who use our approach do not need to worry

about the order in which optimizations run. Better yet, because optimizations are allowed

to freely interact during equality saturation without any consideration for ordering, our

approach can discover intricate optimization opportunities that compiler writers may not

have anticipated and hence would not have implemented in a general-purpose compiler.

Global Profitability Heuristics Our approach enables global profitability heuristics.

Even if there existed a perfect order to run optimizations in, compiler writers would

still have to design profitability heuristics for determining whether or not to perform

certain optimizations such as inlining. Unfortunately, in a traditional compilation system

where optimizations are applied sequentially, each heuristic decides in isolation whether

or not to apply an optimization at a particular point in the compilation process. The

local nature of these heuristics makes it difficult to take into account the impact of future

optimizations.
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Our approach, on the other hand, allows the compiler writer to design profitability

heuristics that are global in nature. In particular, rather than choosing whether or not to

apply an optimization locally, these heuristics choose between fully optimized versions

of the input program. Our approach makes this possible by separating the decision of

whether or not a transformation is applicable from the decision of whether or not it is

profitable. Indeed, using an optimization to add an equality in our approach does not

indicate a decision to perform the transformation – the added equality just represents the

option of picking that transformation later. The actual decision of which transformations

to apply is performed by a global heuristic after our IR has been saturated with equalities.

This global heuristic simply chooses among the various optimized versions of the input

program that are represented in the saturated IR, so it has a global view of all the

transformations that were tried and what programs they generated.

There are many ways to implement this global profitability heuristic, and in our

prototype compiler we have chosen to implement it using a pseudo-boolean solver (a

form of integer-linear-program solver). In particular, after our IR has been saturated with

equalities, we use a pseudo-boolean solver and a static cost model for every node to pick

the lowest-cost program that computes the same result as the original program.

1.2 Translation Validation

While compiler optimizers may be difficult to make, they have long played a

crucial role in the software ecosystem. They allow programmers to express their programs

at higher levels of abstraction without paying the performance cost, they allow just-in-

time compilers to provide good performance for languages like Java and Javascript,

and they allow programmers to benefit from architecture-specific optimizations without

knowing the details of the architecture. At the same time, however, programmers also

expect compiler optimizations to be correct, meaning they preserve the behavior of the
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programs they transform. Unfortunately, this seemingly simple requirement is hard

to ensure in practice. Each optimization contains complex rules as to when it should

apply, and these rules often have many subtle corner cases that need to handled correctly.

Furthermore, a typical compiler contains not one, but many optimizations, and these

optimizations can interact in unexpected ways. This results in a blowup in the number

of individual corner cases and in the interaction of corner cases. This blowup not only

makes it hard for optimization writers to reason about all the possible cases, it also makes

it hard to write comprehensive test suites with good coverage.

One approach to improving the reliability of compiler optimizations is a technique

called translation validation [64]. After each run of the optimizer, a separate tool called

a translation validator tries to show that the optimized program is equivalent to the

corresponding original program. Therefore, a translation validator is just a tool that

tries to show two programs are equivalent [69]. Interestingly, equality saturation can

be easily adapted to translation validation. We simply provide two programs, saturate

with equalities, and then see if the two programs are found to be equivalent. Because our

intermediate representation can represent branches and loops, our translation validator

can handle a wide variety of intraprocedural optimizations. Our translation validator can

also output a proof that the two programs are equivalent, which turns out to be useful for

learning optimizations from examples.

1.3 Learning Optimizations

Implementing optimizations often involve languages and interfaces that are not

familiar to the typical programmer: either a language for rewrite rules that the programmer

needs to become familiar with, or an interface in the compiler that the programmer needs

to learn. These difficulties raise the barrier to entry for non-compiler-experts who wish

to customize their compiler.
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In this thesis I present a paradigm for expressing compiler optimizations that

drastically reduces the burden on the programmer. To implement an optimization in our

approach, all the programmer needs to do is provide a simple concrete example of what

the optimization looks like. Such an optimization instance consists of some original

program and the corresponding transformed program. From this concrete optimization

instance, our system abstracts away inessential details and learns a general optimization

rule that can be applied more broadly than on the given concrete examples and yet is still

guaranteed to be correct. In other words, our system generalizes optimization instances

into correct optimization rules.

Our approach reduces the burden on the programmer who wishes to implement

optimizations because optimization instances are much easier to develop than optimiza-

tion rules. There is no more need for the programmer to learn a new language or interface

for expressing transformations. Instead, the programmer can simply write down exam-

ples of the optimizations that they want to see happen, and our system can generate

optimization rules from these examples. The simplicity of this paradigm would even

enable end-user programmers, who are not compiler experts, to extend the compiler using

what is most familiar to them, namely the source language they program in. In particular,

if an end-user programmer sees that a program is not compiled as they wish, they can

simply write down the desired transformed program, and from this concrete instance

our approach can learn a general optimization rule to incorporate into the compiler.

Furthermore, optimization instances can also be found by simply running a set of existing

benchmarks through some existing compiler, thus allowing a programmer to harvest

optimization capabilities from several existing compilers.

The key technical challenge in generalizing an optimization instance into an

optimization rule is that we need to determine which parts of the programs in the

optimization instance mattered and how they mattered. Consider for example the very
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simple concrete optimization instance x+(x-x) Z⇒ x, in which the variable x is used

three times in the original program. This optimization does not depend on all three uses

referring to the same variable x. All that is required is that the uses in (x-x) refer to the

same variable, whereas the first use of x can refer to another variable or, more broadly, to

an entire expression.

Our insight is that a proof of correctness for the optimization instance can tell us

precisely what conditions are necessary for the optimization to apply correctly. This proof

could either be generated by a compiler (if the optimization instance was generated from

a proof-generating compiler), or more realistically, it can be generated by performing

translation validation on the optimization instance. Since the proof of correctness of

the optimization instance captures precisely what parts of the programs mattered for

correctness, it can be used as a guide for generalizing the instance. In particular, while

keeping the structure of the proof unchanged, we simultaneously generalize the concrete

optimization instance and its proof of correctness to get a generalized transformation and

a proof that the generalized transformation is correct. In the example above, the proof

of correctness for x+(x-x) Z⇒ x does not rely on the first use of x referring to the same

variable as the other uses in (x-x), and so the optimization rule we would generate from

the proof would not require them to be the same. In this way we can generalize concrete

instances into optimization rules that apply in similar, but not identical, situations while

still being correct.

Before generalizing proofs, though, we need a good language for expressing

proofs of optimization correctness. This brings us back to our algebraic intermediate

representation and equational reasoning, which we describe as we introduce our technique

for inferring optimizations.
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Chapter 2

Optimizing with Equalities

Our approach for inferring optimizations is based on the idea of having optimiza-

tions propagate equality information to a common IR that simultaneously represents

multiple optimized versions of the input program. The main challenge in designing this

IR is that it must make equality reasoning effective and efficient.

To make equality reasoning effective, our IR needs to support the same kind of

basic reasoning that one would expect from simple equality axioms like distributivity,

i.e. a∗ (b+ c) = a∗b+a∗ c, but with more complicated computations such as branches

and loops. We have designed a representation for computations, which we call Program

Expression Graphs (PEGs), that meets these requirements. Similar to the gated SSA

representation [41, 85], PEGs are referentially transparent, which intuitively means

that the value of an expression depends only on the value of its constituent expressions,

without any side effects. As has been observed previously in many contexts, referential

transparency makes equality reasoning simple and effective. However, unlike previous

SSA-based representations, PEGs are also complete, which means that there is no need to

maintain any additional representation such as a control flow graph (CFG). Completeness

makes it easy to use equality for performing transformations: if two PEG nodes are equal,

then we can pick either one to create a program that computes the same result, without

worrying about the implications on any underlying representation.
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i := 0;

while (...) {

use(i * 5);

i := i + 1;

if (...) {

i := i + 3;

}

}

(a)

i := 0;

while (...) {

use(i);

i := i + 5;

if (...) {

i := i + 15;

}

}

(b)

Figure 2.1. Loop-induction-variable strength reduction: (a) shows the original code, and
(b) shows the optimized code

In addition to being effective, equality reasoning in our IR must be efficient.

The main challenge is that each added equality can potentially double the number of

represented programs, thus making the number of represented programs exponential

in the worst case. To address this challenge, we record equality information of PEG

nodes by simply merging PEG nodes into equivalence classes. We call the resulting

equivalence graph an E-PEG, and it is this E-PEG representation that we use in our

approach. Using equivalence classes allows E-PEGs to efficiently represent exponentially

many ways of expressing the input program, and it also allows the equality saturation

engine to efficiently take into account previously discovered equalities. Among existing

IRs, E-PEGs are unique in their ability to represent multiple optimized versions of the

input program. A more detailed discussion of how PEGs and E-PEGs relate to previous

IRs can be found in Chapter 19.

We illustrate the main features of our approach by showing how it can be used to

implement loop-induction-variable strength reduction. The idea behind this optimization

is that if all assignments to a variable i in a loop are increments, then an expression

i * c in the loop (with c being loop invariant) can be replaced with i, provided all the

increments of i in the loop are appropriately scaled by c.
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Figure 2.2. Loop-induction-variable Strength Reduction using PEGs: (a) shows the
original PEG, (b) shows the E-PEG that our engine produces from the original PEG, and
(c) shows the optimized PEG, which results by choosing nodes 6, 8, 10, and 12 from (b)

As an example, consider the code snippet from Figure 2.1(a). The use of i*5

inside the loop can be replaced with i as long as the two increments in the loop are scaled

by 5. The resulting code is shown in Figure 2.1(b).

2.1 Program Expression Graphs

A Program Expression Graph (PEG) is a graph containing: (1) operator nodes, for

example “plus”, “minus”, or any of our built-in nodes for representing conditionals and

loops, and (2) “dataflow” edges that specify where operator nodes get their arguments

from. As an example, consider the “use” statement in Figure 2.1(a). This is meant

as a placeholder for any kind of use of the value i*5; it is used to mark the specific

location inside the loop where we examine this value. The PEG for the value i*5 is

shown in Figure 2.2(a). At the very top of the PEG we see node 1, which represents the

i*5 multiply operation from inside the loop. Each PEG node represents an operation,

with the children nodes being the arguments to the operation. The links from parents to

children are shown using solid (non-dashed) lines. For example, node 1 represents the

multiplication of node 2 by the constant 5. PEGs follow the notational convention used in
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E-graphs [21, 23, 60, 61] and abstract syntax trees (ASTs) of displaying operators above

the arguments that flow into them, which is the opposite convention typically used in

dataflow graphs [3, 20]. We use the E-graph/AST orientation because we think of PEGs

as recursive expressions.

Node 2 in our PEG represents the value of variable i inside the loop, right before

the first instruction in the loop is executed. We use θ nodes to represent values that

vary inside of a loop. A PEG contains one θ node per variable that is live in the loop,

and a variable’s θ node represents the entire sequence of values that the variable takes

throughout the loop. Intuitively, the left child of a θ node computes the initial value,

whereas the right child computes the value at the current iteration in terms of the value

at the previous iteration. In our example, the left child of the θ node is the constant 0,

representing the initial value of i. The right child of the θ node uses nodes 3, 4, and 5

to compute the value of i at the current iteration in terms of the value of i from the

previous iteration. The two plus nodes (nodes 4 and 5) represent the two increments

of i in the loop, whereas the φ node (node 3) represents the merging of the two values

of i produced by the two plus nodes. In traditional SSA, a φ node has only two inputs

(the true value and the false value), and as a result the node itself does not know which

of the two inputs to select, relying instead on an explicit control-flow join to know at

run time which case of the branch was taken. In contrast, our φ nodes are like those in

gated SSA [41, 85]: they take an additional parameter (the first left-most one) which is

used to select between the second and the third parameter. As a result, our φ nodes are

executable by themselves, and so there is no need to explicitly encode a control-flow join.

Our example does not use the branch condition in an interesting way, so we just let δ

represent the PEG sub-graph that computes the branch condition. Furthermore, since

this PEG represents the value of i inside the loop, it does not contain any operators to

describe the while condition, since this information is only relevant for computing the
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value of i after the loop has terminated. We show how to express the value of variables

after a loop in Chapter 3.

From a more formal point of view, each θ node produces a sequence of values,

one value for each iteration of the loop. The first argument of a θ node is the value for

the first iteration, whereas the second argument is a sequence that represents the values

for the remaining iterations. For example, in Figure 2.2, the nodes labeled 3 through 5

compute this sequence of remaining values in terms of the sequence produced by the

θ node. In particular, nodes 3, 4, and 5 have been implicitly lifted to operate on this

sequence. The fact that a single θ node represents the entire sequence of values that a

loop produces allows us to represent that two loops compute the same sequence of values

using a single equality between two θ nodes.

PEGs are well suited for equality reasoning because all PEG operators, even

those for branches and loops, are mathematical functions with no side effects. As a

result, PEGs are referentially transparent, which allows us to perform the same kind of

equality reasoning that one is familiar with from mathematics. Though PEGs are related

to functional programs, in our work we have used PEGs to represent intraprocedural

imperative code with branching and looping constructs. Furthermore, even though all

PEG operators are pure, PEGs can still represent programs with state by using heap-

summary nodes: stateful operations, such as heap reads and writes, can take a heap as

an argument and return a new heap (or more generally we can use effect witnesses as

described in Chapter 9). This functional representation of effectful programs allows

our Peggy compiler to use PEGs to reason about Java and LLVM programs. The heap-

summary node can also be used to encode method/function calls in an intraprocedural

setting by simply threading the heap-summary node through special nodes representing

method/function calls. Chapter 10 explains in more detail how we represent several

features of Java programs in PEGs (including the heap and method calls).
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2.2 Encoding Equalities using E-PEGs

A PEG by itself can only represent a single way of expressing the input program.

To represent multiple optimized versions of the input program, we need to encode

equalities in our representation. To this end, an E-PEG is a graph that groups together

PEG nodes that are equal into equivalence classes. As an example, Figure 2.2(b) shows

the E-PEG that our engine produces from the PEG of Figure 2.2(a). We display equalities

graphically by adding a dashed edge between two nodes that have become equal. These

dashed edges are only a visualization mechanism. In reality, PEG nodes that are equal

are grouped together into an equivalence class.

Reasoning in an E-PEG is done through the application of optimizations, which

in our approach take the form of equality analyses that add equality information to

the E-PEG. An equality analysis consists of two components: a trigger, which is an

expression pattern stating the kinds of expressions that the analysis is interested in, and

a callback function, which should be invoked when the trigger pattern is found in the

E-PEG. The saturation engine continuously monitors all the triggers simultaneously and

invokes the necessary callbacks when triggers match. When invoked, a callback function

adds the appropriate equalities to the E-PEG.

The simplest form of equality analysis consists of instantiating axioms such as

a∗0 = 0. In this case, the trigger would be a∗0, and the callback function would add

the equality a∗0 = 0. Even though the vast majority of our reasoning is done through

such declarative axiom applications, our trigger-and-callback mechanism is much more

general and has allowed us to implement equality analyses such as inlining, tail-recursion

elimination, and constant folding.

The following three axioms are the equality analyses required to perform loop-

induction-variable strength reduction. They state that multiplication distributes through
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addition, θ , and φ :

(a+b)∗m = a∗m+b∗m (2.1)

θ(a,b)∗m = θ(a∗m,b∗m) (2.2)

φ(a,b,c)∗m = φ(a,b∗m,c∗m) (2.3)

After a program is converted to a PEG, a saturation engine repeatedly applies

equality analyses until either no more equalities can be added, or a bound is reached on

the number of expressions that have been processed by the engine. As Chapter 11 will

describe in more detail, our experiments show that 84% of methods can be completely

saturated, without any bounds being imposed.

Figure 2.2(b) shows the saturated E-PEG that results from applying the above

distributivity axioms, along with a simple constant-folding equality analysis. In particular,

distributivity is applied four times: axiom (2.2) adds equality edge A, axiom (2.3) edge B,

axiom (2.1) edge C, and axiom (2.1) edge D. Our engine also applies the constant-folding

equality analysis to show that 0 ∗ 5 = 0, 3 ∗ 5 = 15 and 1 ∗ 5 = 5. Note that when

axiom (2.2) adds edge A, it also adds node 7, which then enables axiom (2.3). Thus,

equality analyses essentially communicate with each other by propagating equalities

through the E-PEG. Furthermore, note that the instantiation of axiom (2.1) adds node 12

to the E-PEG, but it does not add the right child of node 12, namely θ(. . .)∗5, because it

is already represented in the E-PEG.

Once saturated with equalities, an E-PEG compactly represents multiple opti-

mized versions of the input program – in fact, it compactly represents all the programs

that could result from applying the optimizations in any order to the input program.

For example, the E-PEG in Figure 2.2(b) encodes 128 ways of expressing the original

program (because it encodes 7 independent equalities, namely the 7 dashed edges). In
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general, a single E-PEG can efficiently represent exponentially many ways of expressing

the input program.

After saturation, a global profitability heuristic can pick which optimized version

of the input program is best. Because this profitability heuristic can inspect the entire

E-PEG at once, it has a global view of the programs produced by various optimizations

after all other optimizations were also run. In our example, starting at node 1, by choosing

nodes 6, 8, 10, and 12 we can construct the graph in Figure 2.2(c), which corresponds

exactly to performing loop-induction-variable strength reduction in Figure 2.1(b).

More generally, when optimizing an entire function, one has to pick a node for the

equivalence class of the return value and nodes for all equivalence classes that the return

value depends on. There are many plausible heuristics for choosing nodes in an E-PEG.

In our Peggy implementation, we have chosen to select nodes using a pseudo-boolean

solver, which is an integer-linear-program solver where variables are constrained to 0 or

1. In particular, we use a pseudo-boolean solver and a static cost model for every node

to compute the lowest-cost program that is encoded in the E-PEG. In the example from

Figure 2.2, the pseudo-boolean solver picks the nodes described above. Section 10.3

describes our technique for selecting nodes in more detail.

2.3 Benefits of our Approach

Optimization Order is Irrelevant To understand how our approach addresses the

phase-ordering problem, consider a simple peephole optimization that transforms i * 5

into i << 2 + i. On the surface, one may think that this transformation should always

be performed if it is applicable – after all, it replaces a multiplication with the much

cheaper shift and add. In reality, however, this peephole optimization may disable

other more profitable transformations. The code from Figure 2.1(a) is such an example:

transforming i * 5 to i << 2 + i disables loop-induction-variable strength reduction,
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and therefore generates code that is worse than the one from Figure 2.1(b).

The above example illustrates the ubiquitous phase-ordering problem. In systems

that apply optimizations sequentially, the quality of the generated code depends on

the order in which optimizations are applied. Whitfield and Soffa [94] have shown

experimentally that enabling and disabling interactions between optimizations occur

frequently in practice, and furthermore that the patterns of interaction vary not only from

program to program, but also within a single program. Thus, no one order is best across

all compilation.

A common partial solution consists of carefully considering all the possible

interactions between optimizations, possibly with the help of automated tools, and then

coming up with a carefully tuned sequence for running optimizations that strives to

enable most of the beneficial interactions. This technique, however, puts a heavy burden

on the compiler writer, and it also does not account for the fact that the best order may

vary between programs.

At high levels of optimization, some compilers may even run optimizations in

a loop until no more changes can be made. Even so, if the compiler picks the wrong

optimization to start with, then no matter what optimizations are applied later, in any order,

any number of times, the compiler will not be able to reverse the disabling consequences

of the first optimization.

In our approach, the compiler writer does not need to worry about the order in

which optimizations are applied. The previous peephole optimization would be expressed

as the axiom i * 5 = i << 2 + i. However, unlike in a traditional compilation system,

applying this axiom in our approach does not remove the original program from the

representation — it only adds information — and so it cannot disable other optimizations.

Therefore, the code from Figure 2.1(b) would still be discovered, even if the peephole

optimization were run first. In essence, our approach is able to simultaneously explore
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all possible sequences of optimizations while sharing work that is common across the

various sequences.

In addition to reducing the burden on compiler writers, removing the need to think

about optimization ordering has two additional benefits. First, because optimizations

interact freely with no regard to order, our approach often ends up combining optimiza-

tions in unanticipated ways, leading to surprisingly complicated optimizations given how

simple our equality analyses are — Chapter 3 gives such an example. Second, it makes it

easier for end-user programmers to add domain-specific axioms to the compiler, because

they don’t have to think about where exactly in the compiler the axiom should be run or

in what order relative to other optimizations.

Global Profitability Heuristics Profitability heuristics in traditional compilers tend to

be local in nature, making it difficult to take into account the impact of future optimiza-

tions. For example, consider inlining. Although it is straightforward to estimate the direct

cost of inlining (the code-size increase) and the direct benefit of inlining (the savings

from removing the call overhead), it is far more difficult to estimate the potentially larger

indirect benefit, namely the additional optimization opportunities that inlining exposes.

To see how inlining would affect our running example, consider again the code

from Figure 2.1(a), but assume that instead of use(i * 5) there was a call to a function

f, and the use of i*5 occurred inside f. If f is sufficiently large, a traditional inliner

would not inline f because the code bloat would outweigh the call-overhead savings.

However, a traditional inliner would miss the fact that it may still be worth inlining

f, despite its size, because inlining would expose the opportunity for loop-induction-

variable strength reduction. One solution to this problem consists of performing an

inlining trial [22], where the compiler simulates the inlining transformation, along with

the impact of subsequent optimizations, in order to decide whether or not to actually
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inline. However, in the face of multiple inlining decisions (or more generally multiple

optimization decisions), there can be exponentially many possible outcomes, each one of

which has to be compiled separately.

In our approach, on the other hand, inlining simply adds an equality to the E-PEG

stating that the call to a given function is equal to its body instantiated with the actual

arguments. The resulting E-PEG simultaneously represents the program where inlining

is performed and where it is not. Subsequent optimizations then operate on both of these

programs at the same time. More generally, our approach can simultaneously explore

exponentially many possibilities in parallel while sharing the work that is redundant

across these various possibilities. In the above example with inlining, once the E-PEG

is saturated, a global profitability heuristic can make a more informed decision as to

whether or not to pick the inlined version, since it will be able to take into account the

fact that inlining enabled loop-induction-variable strength reduction.
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Chapter 3

Reasoning about Loops

This chapter shows how our approach can be used to reason across nested loops.

The example highlights the fact that a simple axiom set can produce unanticipated

optimizations which traditional compilers would have to explicitly search for.

We start in Sections 3.1 and 3.2 by describing all PEG constructs used to represent

loops. We then show in Section 3.3 how our approach can perform an inter-loop strength-

reduction optimization.

3.1 Single Loop

Consider the simple loop from Figure 3.1(a). This loop iterates 15 times, incre-

menting the value of i each time by 2. The final value of i is then returned at the end

of the function. The PEG for this code is shown in Figure 3.1(c). The value of i inside

the loop is represented by a θ node. Intuitively, this θ node produces the sequence of

values that i takes throughout the loop, in this case [0,2,4, . . .]. The value of i after the

loop is represented by the eval node at the top of the PEG. Given a sequence s and an

index n, eval(s,n) produces the nth element of sequence s. To determine which element

to select from a sequence, our PEG representation uses pass nodes. Given a sequence s

of booleans, pass(s) returns the index of the first element in the sequence that is true. In

our example, the ≥ node uses the result of the θ node to produce the sequence of values

23
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for (i := 0; i < 29; i++) {
i++;

}
return i;

sum := 0;
for (i := 0; i < 10; i++) {

for (j := 0; j < 10; j++) {
sum++;

}
}
return sum;

(a) (b)

(c)
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+
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1
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2θ

Figure 3.1. Two loops and their PEG representations

taken on by the boolean expression i≥ 29 throughout the loop. This sequence is then

sent to pass, which in this case produces the value 15, since the 15th value (counting

from 0) of i in the loop (which is 30) is the first one to make i≥ 29 true. The eval node

then selects the 15th element of the sequence produced by the θ node, which is 30. In

our previous example from Chapter 2, we omitted eval/pass from the PEG for clarity –

because we were not interested in any of the values after the loop, the eval/pass nodes

would not have been used in any reasoning.

Note that every loop-varying value will be represented by its own θ node, and so

there will be one θ node in the PEG per live variable in the loop. Also, every variable

that is live after the loop has its own eval node, which represents the value after the loop.

However, there is only one pass node per loop, which represents the iteration at which

the loop terminates. Thus, there can be many θ and eval nodes per loop, but only one

pass node.

Since the eval and pass operators are often paired together, it is natural to consider



25

merging them into a single operator. However, we have found that the separation is useful.

For one, although there will be many eval nodes corresponding to a single loop, each loop

has only one corresponding pass node. Having this single node to represent each loop is

useful in many of the compilation stages for PEGs. Also, pass nodes are not the only

nodes we will use as the second argument to an eval node. For example, to accomplish

loop peeling (as shown in Section 4.3) we use φ nodes and other special-purpose nodes

as the second argument. Furthermore, Section 10.4 will present a more detailed reflection

on our design choice after we have shown how the eval and pass operators are used in

our various compilation stages.

3.2 Nested Loops

We now illustrate, through an example, how nested loops can be encoded in our

PEG representation. Consider the code snippet from Figure 3.1(b), which has two nested

loops. The PEG for this code snippet is shown in Figure 3.1(d). Each θ , eval, and pass

node is labeled with a subscript indicating what loop depth it operates on (we previously

omitted these subscripts for clarity). The topmost eval1 node represents the final value of

sum. The node labeled suminner represents the value of sum at the beginning of the inner

loop body. Similarly, sumouter is the value of sum at the beginning of the outer loop body.

Looking at suminner, we can see that: (1) on the first iteration (the left child of suminner),

suminner gets the value of sum from the outer loop; (2) on other iterations, it gets one plus

the value of sum from the previous iteration of the inner loop. Looking at sumouter, we

can see that: (1) on the first iteration, sumouter gets 0; (2) on other iterations, it gets the

value of sum right after the inner loop terminates. The value of sum after the inner loop

terminates is computed using a similar eval/pass pattern as in Figure 3.1(c), as is the

value of sum after the outer loop terminates.
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sum := 0;
for (i := 0; i < 10; i++) {

for (j := 0; j < 10; j++) {
use(sum++);

}
}

for (i := 0; i < 10; i++) {
for (j := 0; j < 10; j++) {

use(i*10 + j);
}

}

(b)(a)

(d)(c)

1
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110
*

1
+0

2

+

1
+

2
10

0

pass2

eval2

1
+

2

1

0
θ

θ

θ

θ
θ

suminner

sumouter

Figure 3.2. Two equivalent loops and their PEG representations. The PEGs for the
expressions inside the use statements in (a) and (b) are shown in (c) and (d), respectively.

3.3 Inter-Loop Strength Reduction

Our approach allows an optimizing compiler to perform intricate optimizations

of looping structures. We present such an example here with a kind of inter-loop

strength reduction. Consider the code snippets from Figure 3.2(a) and (b). The code in

Figure 3.2(b) is equivalent to the code in Figure 3.2(a), but it is faster because sum++

is cheaper than i ∗ 10 + j. We show how our approach can transform the code in

Figure 3.2(a) to the code in Figure 3.2(b).

The PEGs for the code from parts (a) and (b) are shown in parts (c) and (d),

respectively. We do not show the entire PEGs, but only the parts that are relevant to the

optimization – namely the PEGs for the expressions inside the use statements. More

specifically, Figure 3.2(c) shows the PEG for i*10 + j, which is the PEG that our

optimization will apply to. The top-level + node occurs in some larger PEG context

which includes eval and pass nodes, but we do not show the larger context (i.e. the

parents of +) because they are not used in this example, except in one step that we will

make explicit. The result of the optimization, in PEG form, is shown in Figure 3.2(d).
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Figure 3.3. E-PEG that results from running the saturation engine on the PEG from
Figure 3.2(c). By picking the nodes that are checkmarked, we get the PEG from Fig-
ure 3.2(d). To make the graph more readable, we sometimes label nodes and then connect
an edge directly to a label name, rather than connecting it to the node with that label.
For example, consider node j in the E-PEG, which reads as θ2(0,1+ j). Rather than
explicitly drawing an edge from + to j, we connect + to a new copy of label j.

This is the PEG for the sum++ expression from Figure 3.2(b). Note that the code snippet

in Figure 3.2(b) is the same as Figure 3.1(b), and as a result Figure 3.2(d) is just the

suminner node from Figure 3.1(d) along with its children. To summarize, in terms of

PEGs, our optimization will replace the + node from Figure 3.2(c), which occurs in some

larger PEG context, with the suminner node from Figure 3.2(d). The surrounding PEG

context, which we do not show, remains unchanged.

Figure 3.3 shows the saturated E-PEG that results from running the saturation

engine on the PEG from Figure 3.2(c). The checkmarks indicate which nodes will

eventually be selected – they can be ignored for now. In drawing Figure 3.3, we have

already performed loop-induction-variable strength reduction on the left child of the

topmost + from Figure 3.2(c). In particular, this left child has been replaced with a new

node i, where i = θ1(0,10+ i). We skip the steps in doing this because they are similar

to the ones described in Section 2.2.

Figure 3.3 shows the relevant equalities that our saturation engine would add. We

describe each in turn.



28

• Edge A is added by distributing + over θ2:

i+θ2(0,1+ j) = θ2(i+0, i+(1+ j))

• Edge B is added because 0 is the identity of +:

i+0 = i

• Edge C is added because addition is associative and commutative:

i+(1+ j) = 1+(i+ j)

• Edge D is added because 0, incremented n times, produces n:

eval`(id`,pass`(id` ≥ n)) = n where id` = θ`(0,1+ id`)

This is an example of a loop optimization expressible as a simple PEG axiom.

• Edge E is added by distributing + over the first child of eval2:

eval2( j,k)+ i = eval2( j+ i,k)

• Edge F is added because addition is commutative:

j+ i = i+ j

We use checkmarks in Figure 3.3 to highlight the nodes that Peggy would select

using its pseudo-boolean profitability heuristic. These nodes constitute exactly the PEG
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from Figure 3.2(d), meaning that Peggy optimizes the code in Figure 3.2(a) to the one in

Figure 3.2(b).

Summary This example illustrates several points. First, it shows how a transformation

that locally seems undesirable, namely transforming the constant 10 into an expensive

loop (edge D), in the end leads to much better code. Our global profitability heuristic is

perfectly suited for taking advantage of these situations. Second, it shows an example of

an unanticipated optimization, namely an optimization that we did not realize would fall

out from the simple equality analyses we already had in place. In a traditional compilation

system, a specialized analysis would be required to perform this optimization, whereas

in our approach the optimization simply happens without any special casing. In this

way, our approach essentially allows a few general equality analyses to do the work

of many specialized transformations. Finally, it shows how our approach is able to

reason about complex loop interactions, something that is beyond the reach of current

superoptimizer-based techniques.
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Chapter 4

Local Changes with Global Impacts

The axioms we apply during equality saturation tend to be simple and local

in nature. It is therefore natural to ask how such axioms can perform anything more

than peephole optimizations. The examples shown so far have already given a flavor

of how local reasoning on a PEG can lead to complex optimizations. In this chapter,

we show additional examples of how Peggy is capable of making significant changes

in the program using its purely local reasoning. We particularly emphasize how local

changes in the PEG representation can lead to large changes in the CFG of the program.

We conclude the chapter by describing some loop optimizations that we have not fully

explored using PEGs and which could pose additional challenges.

4.1 Loop-Based Code Motion

We start with an example showing how Peggy can use simple local axioms to

achieve code motion through a loop. Consider the program in Figure 4.1. Part (a) shows

the source code for a loop where the counter variable is multiplied by 5 at the end, and

part (e) shows equivalent code where the multiplication is removed and the increment

has been changed to 5. Essentially, this optimization moves the (∗5) from the end of the

loop and applies it to the increment and the initial value instead. This constitutes code

motion into a loop and is a non-local transformation in the CFG.

31
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x = 0;
while (...)

x += 1;
return 5*x;

x = 0;
while (...)

x += 5;
return x;

eval1

0 +

1
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P

eval1

0 +

1
5 θ
*

1

P

eval1

0 +

1

5

θ P

(b) (c)(a) (d) (e)

Figure 4.1. An example of loop-based code motion from simple axiom applications; (a)
the original source code, (b) the original PEG, (c) the PEG after distributing ∗ through
eval1, (d) the PEG after performing loop-induction-variable strength reduction, (e) the
resulting source code

Peggy can perform this optimization using local axiom applications without

requiring any additional non-local reasoning. Figure 4.1(b) shows the PEG for the

expression 5*x in the code from part (a). Parts (c) and (d) show the relevant pieces of the

E-PEG used to optimize this program. The PEG in part (c) is the result of distributing

multiplication through the eval node. The PEG in part (d) is the result of applying

loop-induction-variable strength reduction to part (c) (the intermediate steps are omitted

for brevity since they are similar to the earlier example from Chapter 2). Finally, the code

in part (e) is equivalent to the PEG in part (d).

Our mathematical representation of loops is what makes this optimization so

simple. Essentially, when an operator distributes through eval (a local transformation in

the PEG), it enters the loop (leading to code motion). Once inside the loop, distributing it

through θ makes it apply separately to the initial value and the inductive value. Then, if

there are axioms to simplify those two expressions, an optimization may result. This is

exactly what happened to the multiply node in the example. In this case, only a simple

operation (∗5) was moved into the loop, but the same set of axioms would allow more

complex operations to do the same using the same local reasoning.
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Figure 4.2. An example of how local changes in the PEG can cause large changes in the
CFG: (a) the original CFG, (b) the original PEG, (c) the PEG after distributing ∗ through
the left-hand φ , (d) the PEG after distributing ∗ through the bottom φ , (e) the PEG after
constant folding, (f) the resulting CFG

4.2 Restructuring the CFG

In addition to allowing non-local optimizations, small changes in the PEG can

cause large changes in the program’s CFG. Consider the program in Figure 4.2. Parts (a)

and (f) show two CFGs that are equivalent but have very different structure. Peggy can

use several local axiom applications to achieve this same restructuring. Figure 4.2(b)

shows the PEG version of the original CFG, and parts (c)-(e) show the relevant portions

of the E-PEG used to optimize it. Part (c) results from distributing the multiply operator

through the left-hand φ node. Similarly, part (d) results from distributing each of the two

multiply operators through the bottom φ node. Part (e) is simply the result of constant

folding, and is equivalent to the CFG in part (f).

By simply using the local reasoning of distributing multiplications through

φ nodes, we have radically altered the branching structure of the corresponding CFG.

This illustrates how small, local changes to the PEG representation can have large,

far-reaching impacts on the program.
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i=0;
while(i<N){

x+=5;
i++;

}
return x;

if(0>=N){
x=0;

}else{
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while(i<N){

x+=5;
i++;

}
}
return x;
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Figure 4.3. An example of axiom-based loop peeling: (a) the original loop, (b) the PEG
for part (a), (c)-(h) intermediate steps of the optimization, (i) the final peeled loop, which
is equivalent to (h)

4.3 Loop Peeling

Here we present an in-depth example to show how loop peeling is achieved using

equality saturation. Loop peeling essentially takes the first iteration from a loop and

places it before the loop. Using very simple, general-purpose axioms, we can peel a loop

of any type and produce code that only executes the peeled loop when the original would

have iterated at least once. Furthermore, the peeled loop will also be a candidate for

additional peeling.

Consider the source code in Figure 4.3(a). We want to perform loop peeling



35

on this code, which will result in the code shown in Figure 4.3(i). This can be done

through axiom application through the following steps, depicted in Figure 4.3 parts (c)

through (h).

Starting from the PEG for the original code, shown in part (b), the first step trans-

forms the pass1 node using the axiom pass1(C) = φ(eval1(C,Z),Z,S(pass1(peel1(C)))),

yielding the PEG in part (c). In this axiom, Z is the zero iteration count value, S is a

function that takes an iteration count and returns its successor (i.e. S = λx.x+1), and

peel takes a sequence and strips off the first element (i.e. peel(C)[i] = C[i+ 1]). This

axiom is essentially saying that the iteration where a loop stops is equal to one plus where

it would stop if you peeled off the first iteration, but only if the loop was going to run at

least one iteration.

The second step, depicted in part (d), involves distributing the topmost eval1

through the φ node using the axiom op(φ(A,B,C),D) = φ(A,op(B,D),op(C,D)). Note

that op only distributes on the second and third children of the φ node, because the first

child is the condition.

The third step, shown in part (e), propagates the two eval1(·,Z) expressions

downward, using the axiom eval1(op(a1, . . . ,ak),Z) = op(eval1(a1,Z), . . . ,eval1(ak,Z))

when op is a domain operator, such as +,∗, or S. When the eval meets a θ , it simplifies

using the following axiom: eval1(θ1(A,B),Z) = A. Furthermore, we also use the axiom

eval1(C,Z) =C for any constant or parameter C, which is why eval1(N,Z) = N.

The fourth step, shown in part (f), propagates the peel1 operator downward, using

the axiom peel1(op(a1, . . . ,ak)) = op(peel1(a1), . . . ,peel1(ak)) when op is a domain

operator. When the peel meets a θ , it simplifies using the axiom peel1(θ1(A,B)) = B.

Furthermore, we also use the axiom peel1(C) =C for any constant or parameter C, which

is why peel1(N) = N.

The fifth step, shown in part (g), involves removing the S node using the axiom
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eval1(θ1(A,B),S(C)) = eval1(B,C).

The final step (which is not strictly necessary, as the peeling is complete at this

point) involves distributing the two plus operators through their θs and doing constant

folding afterward, to yield the PEG in part (h). This PEG is equivalent to the final peeled

source code in part (i).

It is interesting to see that this version of loop peeling includes the conditional test

before executing the peeled loop to make sure that the original loop would have iterated

at least once. Another way to implement loop peeling is to exclude this test, opting only

to peel when the analysis can determine statically that the loop will always have at least

one iteration. This limits peeling to loops with guards that fit a certain pattern. This can

both increase the analysis complexity and reduce the applicability of the optimization. In

the PEG-based loop peeling, not only do we use the more applicable version of peeling,

but the loop guard expression is immaterial to the optimization.

The resulting PEG shown in Figure 4.3(h) is automatically a candidate for another

peeling, since the original axiom on pass can apply again. Since we separate our

profitability heuristic from the saturation engine, Peggy may attempt any number of

peelings. After saturation has completed, the global profitability heuristic will determine

which version of the PEG is best, and hence what degree of peeling yields the best result.

4.4 Branch Hoisting

We now examine an example of branch hoisting, where a conditional branch is

moved from inside the loop to after the loop. This is possible when the condition of the

branch is loop invariant and hence is not affected by the loop it is in. This is another

example of code motion, and is an optimization because the evaluation of the branch no

longer happens multiple times inside the loop, but only once at the end.

Consider the code in Figure 4.4(a). We assume that N is a parameter or a variable
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Figure 4.4. An example of branch hoisting: (a) the original program, (b) the PEG for
part (a), (c) the PEG after distributing eval through φ , (d) the PEG after distributing eval
through ∗, (e) the code resulting from (d)

initialized elsewhere, and N is clearly not altered inside the loop. Hence the condition for

the if-statement is loop invariant. Also we see that x is never read inside the loop, so the

value it holds at the end of the loop can be expressed entirely in terms of the final values

of the other variables (i.e. y). Hence, this code is equivalent to the code seen in part (e),

where the branch is moved outside the loop and x is assigned once, using only the final

value of y.

Our saturation engine can perform this optimization using simple axioms, starting

with the PEG shown in part (b) corresponding to the code in part (a). In part (b), we dis-

play the pass condition as P since we never need to reason about it. Parts (c) and (d) depict

the relevant intermediate steps in the optimization. Part (c) distributes the eval opera-

tor through the φ operator using the axiom op(φ(A,B,C),D) = φ(A,op(B,D),op(C,D))

with op as eval1. Part (d) comes from distributing the two eval nodes through the multipli-

cation operator, using the axiom eval1(op(A,B),P) = op(eval1(A,P),eval1(B,P)) where

op is any domain operator. Part (e) is the final code, which is equivalent to the PEG in

part (d).

Our semantics for φ nodes allows the eval to distribute through them, and hence
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the loop moves inside the conditional in one axiom. Since we can further factor the ∗s

out of the evals, all of the loop-based operations are joined at the “bottom” of the PEG,

which essentially means that they are at the beginning of the program. Here we again see

how a few simple axioms can work together to perform a quite complex optimization

that involves radical restructuring of the program.

4.5 Limitations of PEGs

The above examples show how local changes to a PEG lead to non-local changes

to the CFG. There are however certain kinds of more advanced loop optimizations that

we have not yet fully explored. Although we believe that these optimizations could

be handled with equality saturation, we have not worked out the full details, and there

could be additional challenges in making these optimizations work in practice. One

such optimization would be to fuse loops from different nesting levels into a single loop.

For example, in the inter-loop strength reduction example from Chapter 3, the ideal

output would be a single loop that increments the sum variable. One option for doing this

kind of optimization is to add built-in axioms for fusing these kinds of loops together

into one. Another optimization that we have not fully explored is loop unrolling. By

adding a few additional higher-level operators to our PEGs, we were able to perform loop

unrolling on paper using just equational reasoning. Furthermore, using similar higher-

level operators, we believe that we could also perform loop interchange (which changes

a loop for i in R1, for j in R2 into for j in R2, for i in R1). However,

both of these optimizations require adding new operators to the PEG, which would

require carefully formalizing their semantics and the axioms that govern them. Finally,

these more sophisticated loop optimizations would also require a more sophisticated cost

model. In particular, because our current cost model does not take into account loop

bounds (only loop depth), it has only a coarse approximation of the number of times a
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loop executes. As a result, it would assign the same cost to the loop before and after

interchange, and it would assign a higher cost to an unrolled loop than the original. For

our cost model to see these optimizations as profitable, we would have to update it with

more precise information about loop bounds and a more precise modeling of various

architectural effects like caching and scheduling. We leave all of these explorations to

future work.
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Chapter 5

Formalization of Equality Saturation

Having given an intuition for how our approach works through examples, we now

move to a formal description. Figure 5.1 shows the Optimize function that embodies

our approach. Optimize takes four steps: first, it converts the input CFG into an internal

representation of the program; second, it saturates this internal representation with

equalities; third, it uses a global profitability heuristic to select the best program from the

saturated representation; finally, it converts the selected program back to a CFG.

An implementation of our approach therefore consists of three components:

(1) an IR where equality reasoning is effective, along with the translation functions

ConvertToIR and ConvertToCFG, (2) a saturation engine Saturate, and (3) a global

profitability heuristic SelectBest. Future chapters will show how we implement these

three components in our Peggy compiler.

1: function Optimize(cfg : CFG) : CFG
2: let ir = ConvertToIR(cfg)
3: let saturated ir = Saturate(ir,A)
4: let best = SelectBest(saturated ir)
5: return ConvertToCFG(best)

Figure 5.1. Optimization phase in our approach. We assume a global set A of equality
analyses to be run.

40
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Saturation Engine The saturation engine Saturate infers equalities by repeatedly run-

ning a set A of equality analyses. Given an equality analysis a ∈ A, we define ir1
a→ ir2

to mean that ir1 produces ir2 when the equality analysis a runs and adds some equalities

to ir1. If a chooses not to add any equalities, then ir2 is simply the same as ir1. Note that

a is not required to be deterministic: given a single ir1, there may be many ir2 such that

ir1
a→ ir2. This non-determinism gives equality analyses that are applicable in multiple

locations in the IR (e.g. an E-PEG) the choice of where to apply. For example, the dis-

tributivity of an operator could apply in many locations, and the non-determinism allows

the distributivity analysis the flexibility of choosing which instances of distributivity to

apply.

We assume a partial order v on IRs indicating amount of information (e.g.

for E-PEGs ir1 v ir2 holds iff the nodes in ir1 are a subset of the nodes in ir2, and

the equalities in ir1 are a subset of the equalities in ir2). The addivite aspect of our

approach is formalized by the following property indicating that equality analyses only

add information:

(ir1
a→ ir2)⇒ ir1 v ir2 (5.1)

We define an equality analysis a to be monotonic iff:

(ir1 v ir2)∧ (ir1
a→ ir′1)⇒∃ir′2.[(ir2

a→ ir′2)∧ (ir′1 v ir′2)] (5.2)

This basically states that if a is able to apply to ir1 to produce ir′1 and ir1 v ir2, then there

is a way to apply a on ir2 to get some ir′2 such that ir′1 v ir′2

If a is monotonic, properties (5.1) and (5.2) immediately imply the following

property:

(ir1
a→ ir′1)∧ (ir1

b→ ir2)⇒∃ir′2.[(ir2
a→ ir′2)∧ (ir′1 v ir′2)] (5.3)
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Intuitively, this simply states that applying an equality analysis b before a cannot make a

less effective.

We now define ir1→ ir2 as:

ir1→ ir2 ⇐⇒ ∃a ∈ A . (ir1
a→ ir2∧ ir1 6= ir2)

The→ relation formalizes one step taken by the saturation engine. We also define→∗

to be the reflexive transitive closure of→. The→∗ relation formalizes an entire run of

the saturation engine. We call a sequence ir1
a→ ir2

b→ . . . a trace through the saturation

engine. We define ir2 to be a normal form of ir1 if ir1→∗ ir2 and there is no ir3 such

that ir2→ ir3. It is straightforward to show the following property:

Given a set A of monotonic equality analyses, if ir2 is a normal formal of ir1,

then any other normal form of ir1 is equal to ir2.
(5.4)

In essence, property (5.4) states that if one trace through the saturation engine leads to a

normal form (and thus a saturated IR), then any other trace that also leads to a normal

form results in the same saturated IR. In other words, if a given ir has a normal form, it

is unique.

If the set A of analyses makes the saturation engine terminate on all inputs, then

property (5.4) implies that the engine is convergent, meaning that every ir has a unique

normal form. In general, however, equality saturation may not terminate. For a given

ir there may not be a normal form, and even if there is a normal form, some traces may

not lead to it because they run forever. Non-termination occurs when the saturation

engine never runs out of equality analyses that can match in the IR and produce more

information. For example, the axiom A = (A+ 1)− 1 used in the direction from left

to right can be applied an unbounded number of times, producing successively larger
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and larger expressions (x, (x+1)-1, (((x+1)-1)+1)-1, and so on). An inlining axiom

applied to a recursive function can also be applied an unbounded number of times.

Because unrestricted saturation may not terminate, we bound the number of times

that individual analyses can run, thus ensuring that the Saturate function will always

halt. In the case when the saturation engine is stopped early, we cannot provide the same

convergence property, but property (5.3) still implies that no area of the search space

can be made unreachable by applying an equality analysis (a property that traditional

compilation systems lack).
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Chapter 6

PEGs and E-PEGs

The first step in implementing our approach from the Chapter 5 is to pick an

appropriate IR. To this end, we have designed a new IR called the E-PEG which can

simultaneously represent multiple optimized versions of the input program. We first give

a formal description of our IR (Section 6.1), then we present its benefits (Section 6.4),

and finally we give a detailed description of how to translate from CFGs to our IR and

back (Chapters 7 and 8).

6.1 Formalization of PEGs

A PEG is a triple 〈N,L,C〉, where N is a set of nodes, L : N → F is a labeling

that maps each node to a semantic function from a set of semantic functions F, and

C : N→ N∗ is a function that maps each node to its children (i.e. arguments). For a given

node n, if L(n) = f , we say that n is labeled with f . We say that a node n′ is a child of

node n if n′ is an element of C(n). Finally, we say that nk is a descendant of n0 if there is

a sequence of nodes n0,n1, . . . ,nk such that ni+1 is a child of ni for 0≤ i < k.

Types Before giving the definition of semantic functions, we first define the types of

values that these functions operate over. Values that flow through a PEG are lifted in

two ways. First, they are ⊥-lifted, meaning that we add the special value ⊥ to each type

45
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domain. The ⊥ value indicates that the computation does not terminate. Formally, for

each type τ , we define τ⊥ = τ ∪{⊥}.

Second, values are loop lifted, meaning that, instead of representing the value

at a particular iteration, PEG nodes represent values for all iterations at the same time.

Formally, we let L be a set of loop identifiers, with each ` ∈L representing a loop

from the original code (in our previous examples we used integers). We assume a partial

order ≤ that represents the loop nesting structure: ` < `′ means that `′ is nested within `.

An iteration index i captures the iteration state of all loops in the PEG. In particular, i is

a function that maps each loop identifier ` ∈L to the iteration that loop ` is currently

on. Suppose for example that there are two nested loops in the program, identified as

`1 and `2. Then the iteration index i = [`1 7→ 5, `2 7→ 3] represents the state where loop

`1 is on the 5th iteration and loop `2 is on the 3rd iteration. We let I = L → N be the

set of all loop iteration indices (where N denotes the set of non-negative integers). For

i ∈ I, we use the notation i[` 7→ n] to denote a function that returns the same value as i on

all inputs, except that it returns n on input `. The output of a PEG node is a map from

loop iteration indices in I to values. In particular, for each type τ , we define a loop-lifted

version τ̃ = I→ τ⊥. PEG nodes operate on these loop-lifted types.

Semantic Functions The semantic functions in F actually implement the operations

represented by the PEG nodes. Each function f ∈ F has type τ̃1× . . .× τ̃k→ τ̃ for some

k. Such an f can be used as the label for a node that has k children. That is to say, if

L(n) = f , where f : τ̃1× . . .× τ̃k→ τ̃ , then C(n) must be a list of k nodes.

The set of semantic functions F is divided into two: F = Prims∪Domain. Prims

contains the primitive functions like φ and θ , which are built into the PEG representation,

whereas Domain contains semantic functions for particular domains like arithmetic.

Figure 6.1 defines the primitive functions Prims = {φ ,θ`,eval`,pass`}. These
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φ : B̃× τ̃× τ̃ → τ̃

φ(cond, t, f )(i) =


if cond(i) =⊥ then ⊥
if cond(i) = true then t(i)
if cond(i) = false then f (i)

θ` : τ̃× τ̃ → τ̃

θ`(base, loop)(i) =

{
if i(`) = 0 then base(i)
if i(`)> 0 then loop(i[` 7→ i(`)−1])

eval` : τ̃× Ñ→ τ̃

eval`(loop, idx)(i) =

{
if idx(i) =⊥ then ⊥
else monotonize`(loop)(i[` 7→ idx(i)])

pass` : B̃→ Ñ

pass`(cond)(i) =

{
if I = /0 then ⊥
if I 6= /0 then minI

where I = {i ∈ N | monotonize`(cond)(i[` 7→ i]) = true}

where monotonize` : τ̃ → τ̃ is defined as:

monotonize`(value)(i) =

{
if ∃ 0≤ i < i(`). value(i[` 7→ i]) =⊥ then ⊥
if ∀ 0≤ i < i(`). value(i[` 7→ i]) 6=⊥ then value(i)

Figure 6.1. Definition of primitive PEG functions. The important notation: L is the
set of loop identifiers, N is the set of non-negative integers, B is the set of booleans,
I= L → N, τ⊥ = τ ∪{⊥}, and τ̃ = I→ τ⊥.

functions are polymorphic in τ , in that they can be instantiated for various τs, ranging

from basic types like integers and strings to complicated types like the heap summary

nodes that Peggy uses to represent Java’s heap. The definitions of eval` and pass` make

use of the function monotonize`, whose definition is given in Figure 6.1. The monotonize`

function transforms a sequence so that, once an indexed value is undefined, all following

indexed values are undefined. The monotonize` function formalizes the fact that once a

value is undefined at a given loop iteration, the value remains undefined at subsequent

iterations.
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The domain semantic functions are defined as Domain = {õp | op∈DomainOp},

where DomainOp is a set of domain operators (like +, ∗ and − in the case of arithmetic),

and õp is a ⊥-lifted and then loop-lifted version of op. Intuitively, the ⊥-lifted version

of an operator works like the original operator except that it returns ⊥ if any of its inputs

are ⊥, and the loop-lifted version of an operator applies the original operator for each

loop index.

As an example, the semantic function of + in a PEG is +̃, and the semantic

function of 1 is 1̃ (since constants like 1 are simply nullary operators). However, to make

the notation less crowded, we omit the tildes on all domain operators.

Node Semantics For a PEG node n ∈ N, we denote its semantic value by JnK. We

assume that J·K is lifted to sequences N∗ in the standard way. The semantic value of n is

defined as:

JnK = L(n)(JC(n)K) (6.1)

Equation 6.1 is essentially the evaluation semantics for expressions. The only compli-

cation here is that our expression graphs are recursive. In this setting, one can think of

Equation 6.1 as a set of recursive equations to be solved. To guarantee that a unique

solution exists, we impose some well-formedness constraints on PEGs.

Definition 6.1 (PEG Well-formedness). A PEG is well formed iff:

1. All cycles pass through the second child edge of a θ

2. A path from a θ`, eval`, or pass` to a θ`′ implies `′ ≤ ` or the path passes through

the first child edge of an eval`′ or pass`′

3. All cycles containing eval` or pass` contain some θ`′ with `′ < `
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Condition 1 states that all cyclic paths in the PEG are due to looping constructs.

Condition 2 states that a computation in an outer loop cannot reference a value from

inside an inner loop. Condition 3 states that the final value produced by an inner loop

cannot be expressed in terms of itself, except if it is referencing the value of the inner

loop from a previous outer loop iteration. From this point on, all of our discussion of

PEGs will assume they are well formed.

Theorem 6.1. If a PEG is well formed, then for each node n in the PEG there is a unique

semantic value JnK satisfying Equation 6.1.

The proof is by induction over the strongly-connected-component DAG of the

PEG and the loop-nesting structure ≤.

Evaluation Semantics The semantic function J·K can be evaluated on demand, which

provides an executable semantics for PEGs. For example, suppose we want to know the

result of eval`(x,pass`(y)) at some iteration state i. To determine which case of eval`’s

definition we are in, we must evaluate pass`(y) on i. From the definition of pass`, we

must compute the minimum i that makes y true. To do this, we iterate through values

of i until we find an appropriate one. The value of i we have found is the number of

times the loop iterates, and we can use this i back in the eval` function to extract the

appropriate value out of x. This example shows how an on-demand evaluation of an

eval/pass sequence essentially leads to an operational semantics for loops. Though it

may seem that this semantics requires each loop to be evaluated twice (once to determine

the pass value and once to determine the eval result), a practical implementation of PEGs

(such as our PEG-to-imperative-code conversion algorithm in Chapter 8) can use a single

loop to compute both the pass result and the eval result.
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X:=1;
Y:=1;
while(Y≤ N){
X:=X*Y;
Y:=1+Y;
};
return X; param(N)
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Figure 6.2. Example showing a PEG with parameter nodes: (a) shows code for comput-
ing the factorial of N, where N is a parameter; (b) shows the PEG with n being the value
returned; and (c) shows n[N 7→ 10], which is now a PEG whose semantics is well defined
in our formalism

Parameter Nodes Our PEG definition can easily be extended to have parameter nodes,

which are useful for encoding the input parameters of a function or method. In par-

ticular, we allow a PEG 〈N,L,C〉 to have a (possibly empty) set Np ⊆ N of parameter

nodes. A parameter node n does not have any children, and its label is of the form

param(x) where x is the variable name of the parameter. To accommodate for this in

the formalism, we extend the type of our labeling function L to L : N→ F∪P, where

P = {param(x) | x is a variable name}. There are several ways to give semantics to

PEGs with parameter nodes. One way is to update the semantic functions in Figure 6.1

to pass around a value context mapping variables to values. Another way, which we use

here, is to first apply a substitution to the PEG that replaces all parameter nodes with

constants, and then use the node semantics J·K defined earlier. The node semantics J·K

is well defined on a PEG where all parameters have been replaced, since L(n) in this

case would always return a semantic function from F, never a parameter label param(x)

from P.

We use the following notation for substitution: given a PEG node n, a variable

name x, and a constant c (which is just a nullary domain operator op ∈ Domain), we use
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n[x 7→ c] to denote n with every descendant of n that is labeled with param(x) replaced

with a node labeled with c̃. Figure 6.2 shows an example with parameter nodes and an

example of the substitution notation.

6.2 Formalization of E-PEGs

An E-PEG is a PEG with a set of equalities E between nodes. Thus, formally,

an E-PEG is a quadruple 〈N,L,C,E〉, where 〈N,L,C〉 is a PEG and E ⊆ N×N is a

set of pairs of nodes representing equalities. An equality between n and n′ denotes

value equality: JnK = Jn′K. The set E forms an equivalence relation ∼ (that is, ∼ is the

reflexive transitive symmetric closure of E), which in turn partitions the PEG nodes

into equivalence classes. We denote by [n] the equivalence class that n belongs, so

that [n] = {n′ ∈ N | n′ ∼ n}. We denote by N/E the set of all equivalence classes. For

n ∈ N, we denote by params(n) the list of equivalence classes that are parameters to n.

In particular, if C(n) = (n1, . . . ,nk) then params(n) = ([n1], . . . , [nk]). As mentioned in

more detail in Chapter 10, our implementation strategy keeps track of these equivalence

classes, rather than the set E.

6.3 Built-in Axioms

We have developed a set of PEG built-in axioms that state properties of the

primitive semantic functions. These axioms are used in our approach as a set of equality

analyses that enable reasoning about primitive PEG operators. Some important built-in
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axioms are given below, where • denotes “does not matter”:

θ`(A,B) = θ`(eval`(A,0),B)

eval`(θ`(A,•),0) = eval`(A,0)

eval`(eval`(A,B),C) = eval`(A,eval`(B,C))

pass`(true) = 0

pass`(θ`(true,•)) = 0

pass`(θ`(false,A)) = pass`(A)+1

Furthermore, some axioms make use of an invariance predicate: invariant`(n)

is true if the value of n does not vary on loop `. Although we define invariant` here

first, invariant` will be used more broadly than for defining axioms. It will also be used

in Section 8.9 to optimize the PEG-to-imperative-code translation, and in Section 10.3

to help us define the cost model for PEGs. Invariance can be computed using several

syntactic rules, as shown in the following definition, although there are PEG nodes which

are semantically invariant but do not satisfy the following syntactic predicate. Note that

we sometimes use “n is invariant`” instead of invariant`(n).

Definition 6.2 (Invariance Predicate). The invariant`(n) predicate is the largest predicate

that satisfies the following three rules:

1. if L(n) is θ`, then n is not invariant`

2. if L(n) is eval`, then if the second child of n is not invariant` then n is also not

invariant`

3. otherwise if L(n) is not pass`, then if any child of n is not invariant` then n is also

not invariant`
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Note that, due to the last rule, nodes without any children, such as constants and

parameter nodes, will always be invariant` for all `. Also, since no rule restricts pass`

nodes, such nodes will always be invariant`. This syntactic definition of invariant` is

best computed using an optimistic dataflow analysis.

Having defined invariant`, the following built-in axioms hold if invariant`(A)

holds:
eval`(A,•) = A

x = A where x = θ`(A,x)

peel`(A) = A

One of the benefits of having a well defined semantics for primitive PEG functions

is that we can reason formally about these functions. To demonstrate that this is feasible,

we used our semantics to prove a handful of axioms, in particular, the above axioms, and

all the axioms required to perform the optimizations presented in Chapters 2 through 4.

Appendix A contains the much longer list of all axioms that we have used in Peggy.

6.4 How PEGs Enable our Approach

The key feature of PEGs that makes our equality-saturation approach effective

is that they are referentially transparent, which intuitively means that the value of an

expression depends only on the values of its constituent expressions [49, 67, 76]. In our

PEG representation, referential transparency can be formalized as follows:

∀(n,n′) ∈ N2. L(n) = L(n′)∧ JC(n)K = JC(n′)K =⇒ JnK = Jn′K

This property follows from the definition in Equation (6.1), and the fact that for any n,

L(n) is a pure mathematical function.

Referential transparency makes equality reasoning effective because it allows us
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to show that two expressions are equal by only considering their constituent expressions,

without having to worry about side effects. Furthermore, referential transparency has

the benefit that a single node in the PEG entirely captures the value of a complex

program fragment (including loops) enabling us to record equivalences between program

fragments by using equivalence classes of nodes. Contrast this to CFGs, where to

record equality between complex program fragments one would have to record subgraph

equality.

Finally, PEGs allow us to record equalities at the granularity of individual values,

for example the iteration count in a loop, rather than at the level of the entire program

state. Again, contrast this to CFGs, where the simplest form of equality between program

fragments would record program-state equality.
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Chapter 7

Converting Imperative Code to PEGs

In this chapter we describe how programs written in an imperative style can

be transformed to work within our PEG-based optimization system. We first define a

minimal imperative language (Section 7.1) and then present ML-style pseudocode for

converting any program written in this language into a PEG (Section 7.2). Next, we

present a formal account of the conversion process using type-directed translation rules

in the style of [51] (Section 7.3). Finally, we present an algorithm for converting CFGs

to PEGs (Section 7.5).

7.1 The SIMPLE Programming Language

We present our algorithm for converting to the PEG representation using a sim-

plified source language. In particular, we use the SIMPLE programming language, the

grammar of which is shown in Figure 7.1. A SIMPLE program contains a single function

main, which declares parameters with their respective types, a body which uses these

variables, and a return type. There is a special variable retvar, the value of which is

returned by main at the end of execution. SIMPLE programs may have an arbitrary set of

primitive operations on an arbitrary set of types; we only require that there is a boolean

type for conditionals (which makes the translation simpler). Statements in SIMPLE

programs have four forms: statement sequencing (using semicolon), variable assignment

56
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p ::= main(x1 : τ1, . . . ,xn : τn) : τ {s}
s ::= s1;s2 | x := e | if (e) {s1} else {s2} | while (e) {s}
e ::= x | op(e1, . . . ,en)

Figure 7.1. Grammar for SIMPLE programs

` p (programs)

Type-Prog
x1 : τ1, . . . ,xn : τn ` s : Γ Γ(retvar) = τ

` main(x1 : τ1, . . . ,xn : τn) : τ {s}

Γ ` s : Γ′ (statements)

Type-Seq
Γ ` s1 : Γ′ Γ′ ` s2 : Γ′′

Γ ` s1;s2 : Γ′′
Type-Asgn Γ ` e : τ

Γ ` x := e : (Γ,x : τ)

Ty
pe

-I
f

Γ ` e : bool Γ ` s1 : Γ′ Γ ` s2 : Γ′

Γ ` if (e) {s1} else {s2} : Γ′
Type-While Γ ` e : bool Γ ` s : Γ

Γ ` while (e) {s} : Γ

Type-Sub
Γ ` s : Γ′ Γ′′ ⊆ Γ′

Γ ` s : Γ′′

Γ ` e : τ (expressions)

Type-Var
Γ(x) = τ

Γ ` x : τ
Type-Op

op : (τ1, . . . ,τn)→ τ Γ ` e1 : τ1 . . . Γ ` en : τn

Γ ` op(e1, . . . ,en) : τ

Figure 7.2. Typing rules for SIMPLE programs

(the variable implicitly inherits the type of the expression), if-then-else branches, and

while loops. Expressions in SIMPLE programs are either variables or primitive operations

(such as addition). Constants in SIMPLE are nullary primitive operations.

The typing rules for SIMPLE programs are shown in Figure 7.2. There are three

kinds of judgements: (1) judgement ` p (where p is a program) states that p is well

typed; (2) judgement Γ ` s : Γ′ (where s is a statement) states that starting with context Γ,

after s the context will be Γ′; and (3) judgement Γ ` e : τ (where e is an expression) states

that in type context Γ, expression e has type τ .
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For program judgements, there is only one rule, Type-Prog, which ensures that

the statement inside of main is well typed; Γ(retvar) = τ ensures that the return value

of main has type τ . For statement judgements, Type-Seq simply sequences the typing

context through two statements. Type-Asgn replaces the binding for x with the type of

the expression assigned into x (if Γ contains a binding for x, then (Γ,x : τ) is Γ with the

binding for x replaced with τ; if Γ does not contain a binding for x, then (Γ,x : τ) is Γ

extended with a binding for x). The rule Type-If requires the context after each branch to

be the same. The rule Type-While requires the context before and after the body to be the

same, specifying the loop-induction variables. The rule Type-Sub allows the definition

of variables to be “forgotten”, enabling the use of temporary variables in branches and

loops.

7.2 Translating SIMPLE Programs to PEGs

Here we use ML-style pseudocode to describe the translation from SIMPLE

programs to PEGs. Figure 7.3 shows the entirety of the algorithm, which uses a variety

of simple types and data structures, which we explain first. Note that if we use SIMPLE

programs to instantiate our equality saturation approach described in Figure 5.1, then the

ConvertToIR function from Figure 5.1 is implemented using a call to TranslateProg.

In the pseudocode (and in Chapters 7 and 8), we use the notation a(n1, . . . ,nk) to

represent a PEG node with label a and children n1 through nk. Whereas previously the

distinction between creating PEG nodes and applying functions was clear from context,

in a computational setting like pseudocode we want to avoid confusion between, for

example, applying negation in the pseudocode ¬(. . .) or creating a PEG node labeled

with negation ¬(. . .). For parameter nodes, there cannot be any confusion because when

we write param(x), param is actually not a function – instead param(x) as a whole is a

label. Still, to be consistent in the notation, we use param(x) for constructing parameter



59

1: function TranslateProg(p : Prog) : N =
2: let m = InitMap(p.params,λx.param(x))
3: in TS(p.body,m,0)(retvar)

4: function TS(s : Stmt,Ψ : map[V,N], ` : N) : map[V,N] =
5: match s with
6: “s1;s2”⇒ TS(s2,TS(s1,Ψ, `), `)
7: “x := e”⇒Ψ[x 7→ TE(e,Ψ)]
8: “if (e) {s1} else {s2}”⇒ PHI(TE(e,Ψ),TS(s1,Ψ, `),TS(s2,Ψ, `))
9: “while (e) {s}”⇒

10: let vars = Keys(Ψ)
11: let Ψt = InitMap(vars,λv.TemporaryNode(v))
12: let Ψ′ = TS(s,Ψt , `+1)
13: let Ψθ = THETA`+1(Ψ,Ψ′)
14: let Ψ′

θ
= InitMap(vars,λv.FixpointTemps(Ψθ ,Ψθ (v)))

15: in EVAL`+1(Ψ
′
θ
,pass`+1(¬(TE(e,Ψ′

θ
))))

16: function TE(e : Expr,Ψ : map[V,N]) : N =
17: match e with
18: “x”⇒Ψ(x)
19: “op(e1, . . . ,ek)”⇒ op(TE(e1,Ψ), . . . ,TE(ek,Ψ))

20: function PHI(n : N,Ψ1 : map[V,N],Ψ2 : map[V,N]) : map[V,N] =
21: Combine(Ψ1,Ψ2,λ t f . φ(n, t, f ))

22: function THETA`:N(Ψ1 : map[V,N],Ψ2 : map[V,N]) : map[V,N] =
23: Combine(Ψ1,Ψ2,λ b n . θ`(b,n))

24: function EVAL`:N(Ψ : map[V,N],n : N) : map[V,N] =
25: InitMap(Keys(Ψ),λv . eval`(Ψ(v),n)

26: function Combine(m1 : map[a,b],m2 : map[a,c], f : b∗ c→ d) : map[a,d] =
27: InitMap(Keys(m1)∩Keys(m2),λk. f (m1[k],m2[k]))

Figure 7.3. ML-style pseudocode for converting SIMPLE programs to PEGs
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nodes.

We introduce the concept of a node context Ψ, which is a set of bindings of the

form x : n, where x is a SIMPLE variable, and n is a PEG node. A node context states, for

each variable x, the PEG node n that represents the current value of x. We use Ψ(x) = n

as shorthand for (x : n) ∈ Ψ. Aside from using node contexts here, we will also use

them later in our type-directed translation rules (Section 7.3). For our pseudocode, we

implement node contexts as an immutable map data structure that has the following

operations defined on it

Map initialization The InitMap function is used to create maps. Given a set K of keys

and a function f from K to D, InitMap creates a map of type map[K,D] containing,

for every element k ∈ K, an entry mapping k to f (k).

Map keys Given a map m, Keys(m) returns the set of keys of m.

Map read Given a map m and a key k ∈ Keys(m), m(k) returns the value associated

with key k in m.

Map update Given a map m, m[k 7→ d] returns a new map in which key k has been

updated to map to d.

The pseudocode also uses the types Prog, Stmt, Expr, and V to represent SIMPLE

programs, statements, expressions, and variables. Given a program p, p.params is a list

of its parameter variables, and p.body is its body statement. We use syntax-based pattern

matching to extract information from Stmt and Expr types (as shown on lines 6 and 7 for

statements, and lines 18 and 19 for expressions).

Expressions We explain the pieces of this algorithm one by one, starting with the TE

function on line 16. This function takes a SIMPLE expression e and a node context Ψ
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and returns the PEG node corresponding to e. There are two cases, based on what type of

expression e is. Line 18 states that if e is a reference to variable x, then we simply ask Ψ

for its current binding for x. Line 19 states that if e is the evaluation of operator op on

arguments e1, . . . ,ek, then we recursively call TE on each ei to get ni, and then create a

new PEG node labeled op that has child nodes n1, . . . ,nk.

Statements Next we explore the TS function on line 4, which takes a SIMPLE state-

ment s, a node context Ψ, and a loop depth ` and returns a new node context that

represents the changes s made to Ψ. There are four cases, based on the four statement

types.

Line 6 states that a sequence s1;s2 is simply the result of translating s2 using the

node context that results from translating s1. Line 7 states that for an assignment x := e,

we simply update the current binding for x with the PEG node that corresponds to e,

which is computed with a call to TE.

Line 8 handles if-then-else statements by introducing φ nodes. We recursively

produce updated node contexts Ψ1 and Ψ2 for statements s1 and s2 respectively, and

compute the PEG node that represents the guard condition, call it nc. We then create PEG

φ nodes by calling the PHI function defined on line 20. This function takes the guard

node nc and the two node contexts Ψ1 and Ψ2 and creates a new φ node in the PEG for

each variable that is defined in both node contexts. The true child for each φ node is

taken from Ψ1, and the false child is taken from Ψ2, while all of them share the same

guard node nc. Note that this is slightly inefficient in that it will create φ nodes for all

variables defined before the if-then-else statement, whether they are modified by it or not.

These can be easily removed, however, by applying the rewrite φ(C,A,A) = A.

Finally we come to the most complicated case on line 9, which handles while

loops. In line 10 we extract the set of all variables defined up to this point, in the set vars.
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We allocate a temporary PEG node for each item in vars on line 11, and bind them

together in the node context Ψt . We use TemporaryNode(v) to refer to a temporary

PEG node named v, which is a new kind of node that we use only for the conversion

process. We then recursively translate the body of the while loop using the context

full of temporary nodes on line 12. In the resulting context Ψ′, the temporary nodes

act as placeholders for loop-varying values. Note that here is the first real use of the

loop-depth parameter `, which is incremented by 1 since the body of this loop will be

at a higher loop depth than the code before the loop. For every variable in vars, we

create θ`+1 nodes using the THETA function defined on line 22. This function takes

node contexts Ψ and Ψ′ which have bindings for the values of each variable before and

during the loop respectively. The binding for each variable in Ψ becomes the first child

of the θ (the base case), and the binding in Ψ′ becomes the second child (the inductive

case). Unfortunately, the θ expressions we just created are not yet accurate, because

the second child of each θ node is defined in terms of temporary nodes. The correct

expression should replace each temporary node with the new θ node that corresponds to

that temporary node’s variable to “close the loop” of each θ node. That is the purpose of

the FixpointTemps function called on line 14. For each variable v ∈ vars, FixpointTemps

will rewrite Ψθ (v) by replacing any edges to TemporaryNode(x) with edges to Ψθ (x),

yielding a new node context Ψ′
θ

. Now that we have created the correct θ nodes, we

merely need to create the eval and pass nodes to go with them. Line 15 does this, first

by creating the pass`+1 node which takes the break condition expression as its child.

The break condition is computed with a call to TE on e, using node context Ψ′
θ

since it

may reference some of the newly created θ nodes. The last step is to create eval nodes

to represent the values of each variable after the loop has terminated. This is done by

the EVAL function defined on line 24. This function takes the node context Ψ′
θ

and

the pass`+1 node and creates a new eval`+1 node for each variable in vars. This final
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Figure 7.4. Steps of the translation process: (a) shows a SIMPLE program computing the
factorial of 10; (b) through (f) show the contents of the variables in TS when processing
the while loop; and (g) shows the return value of TS when processing the while loop

node context mapping each variable to an eval is the return value of TS. Note that, as

in the case of if-then-else statements, we introduce an inefficiency here by replacing all

variables with evals, not just the ones that are modified in the loop. For any variable v

that was bound to node n in Ψ and not modified by the loop, its binding in the final

node context would be eval`+1(T,pass`+1(C)), where C is the guard condition node and

T = θ`+1(n,T ) (i.e. the θ node has a direct self loop). We can easily remove the spurious

nodes by applying a rewrite to replace the eval node with n.

Programs The TranslateProg function on line 1 is the top-level call to convert an entire

SIMPLE program to a PEG. It takes a SIMPLE program p and returns the root node of

the translated PEG. It begins on line 2 by creating the initial node context which contains

bindings for each parameter variable. The nodes that correspond to the parameters are
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opaque parameter nodes that simply name the parameter variable they represent. Using

this node context, we translate the body of the program starting at loop depth 0 on line 3.

This will yield a node context that has PEG expressions for the final values of all the

variables in the program. Hence, the root of our translated PEG will be the node that is

bound to the special return variable retvar in this final node context.

Example We illustrate how the translation process works on the SIMPLE program

from Figure 7.4(a), which computes the factorial of 10. After processing the first two

statements, both X and Y are bound to the PEG node 1. Then TS is called on the while

loop, at which point Ψ maps both X and Y to 1. Figures 7.4(b) through 7.4(g) show the

details of processing the while loop. In particular, (b) through (f) show the contents of the

variables in TS, and (g) shows the return value of TS. Note that in (g) the node labeled i

corresponds to the pass node created on line 15 in TS. After the loop is processed, the

assignment to retvar simply binds retvar to whatever X is bound to in Figure 7.4(g).
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` p B n (programs)

Tr
an

s-
Pr

og {x1 : τ1, . . . ,xk : τk} ` s : Γ B {x1 : param(x1), . . . ,xk : param(xk)};0 Ψ

n = Ψ(retvar) (well defined because Γ(retvar) = τ)
` main(x1 : τ1, . . . ,xk : τk) : τ {s} B n

Γ ` s : Γ′ B Ψ ;` Ψ′ (statements)

Trans-Seq
Γ ` s1 : Γ′ B Ψ ;` Ψ′ Γ′ ` s2 : Γ′′ B Ψ′;` Ψ′′

Γ ` s1;s2 : Γ′′ B Ψ ;` Ψ′′

Trans-Asgn
Γ ` e : τ B Ψ ; n

Γ ` x := e : (Γ,x : τ) B Ψ ;` (Ψ,x : n)

Trans-If

Γ ` e : bool B Ψ ; n
Γ ` s1 : Γ′ B Ψ ;` Ψ1 Γ ` s2 : Γ′ B Ψ ;` Ψ2
{x : n(x,1)}x∈Γ′ = Ψ1 {x : n(x,2)}x∈Γ′ = Ψ2

Ψ′ = {x : φ(n,n(x,1),n(x,2))}x∈Γ′

Γ ` if (e) {s1} else {s2} : Γ′ B Ψ ;` Ψ′

Tr
an

s-
W

hi
le

Γ ` e : bool B Ψ ; n
Ψ = {x : vx}x∈Γ each vx fresh `′ = `+1 Γ ` s : Γ B Ψ ;`′ Ψ′

{x : nx}x∈Γ = Ψ0 {x : n′x}x∈Γ = Ψ′

Ψ∞ = {x : eval`′(vx,pass`′(¬(n)))}x∈Γ with each vx unified with θ`′(nx,n′x)
Γ ` while (e) {s} : Γ B Ψ0 ;` Ψ∞

Tr
an

s-
Su

b

Γ ` s : Γ′ B Ψ ;` Ψ′

{x : nx}x∈Γ′ = Ψ′ Ψ′′ = {x : nx}x∈Γ′′ (well defined because Γ′′ ⊆ Γ′)
Γ ` s : Γ′′ B Ψ ;` Ψ′′

Γ ` e : τ B Ψ ; n (expressions)

Trans-Var
n = Ψ(x) (well defined because Γ(x) = τ)

Γ ` x : τ B Ψ ; n

Trans-Op
Γ ` e1 : τ1 B Ψ ; n1 . . . Γ ` ek : τk B Ψ ; nk

Γ ` op(e1, . . . ,ek) : τ B Ψ ; op(n1, . . . ,nk)

Figure 7.5. Type-directed translation from SIMPLE programs to PEGs
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7.3 Type-Directed Translation

In this section we formalize the translation process described by the pseudocode

implementation with a type-directed translation from SIMPLE programs to PEGs, in

the style of [51]. The type-directed translation in Figure 7.5 is more complicated than

the implementation in Figure 7.3, but it makes it easier to prove the correctness of the

translation. For example, the implementation uses maps from variables to PEG nodes,

and at various points queries these maps (for example, line 18 in Figure 7.3 queries the

Ψ map for variable x). The fact that these map operations never fail relies on implicit

properties which are tedious to establish in Figure 7.3, as they rely on the fact that the

program being translated is well typed. In the type-directed translation, these properties

are almost immediate since the translation operates on an actual proof that the program is

well typed.

In fact, the rules in Figure 7.5 are really representations of each case in a con-

structive total deterministic function defined inductively on the proof of well-typedness.

Thus when we use the judgement Γ ` e : τ B Ψ ; n as an assumption, we are simply

binding n to the result of this constructive function applied to the proof of Γ ` e : τ and

the PEG context Ψ. Likewise, we use the judgement Γ ` s : Γ′ B Ψ ;` Ψ′ to bind Ψ′

to the result of the constructive function applied to the proof of Γ ` s : Γ′ and the PEG

context Ψ. Here we explain how this type-directed translation works.

Expressions The translation process for an expression e takes two inputs: (1) a deriva-

tion showing the type correctness of e, and (2) a node context Ψ. The translation process

produces one output, which is the node n that e translates to. We formalize this with a

judgement Γ ` e : τ B Ψ ; n, which states that from a derivation of Γ ` e : τ , and a

node context Ψ (stating what node to use for each variable), the translation produces
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node n for expression e. For example, consider the Trans-Op rule, which is used for

a primitive operation expression. The output of the translation process is a new PEG

node with label op, where the argument nodes n1 . . .nk are determined by translating the

argument expressions e1 . . .ek.

The Trans-Var rule returns the PEG node associated with the variable x in Ψ. The

definition n = Ψ(x) is well defined because we maintain the invariant that the judgement

Γ ` e : τ B Ψ ; n is only used with contexts Γ and Ψ that are defined on precisely

the same set of variables. Thus, because the Type-Var rule requires Γ(x) = τ , Γ must be

defined on x and so we know Ψ is also defined on x.

Note that a concrete implementation of the translation, like the one in Figure 7.3,

would explore a derivation of Γ ` e : τ B Ψ ; n bottom-up: the translation starts at

the bottom of the derivation tree and makes recursive calls to itself, each recursive call

corresponding to a step up in the derivation tree. Also note that there is a close relation

between the rules in Figure 7.5 and those in Figure 7.2. In particular, the formulas on the

left of the B correspond directly to the typing rules from Figure 7.2.

Statements The translation for a statement s takes as input a derivation of the type

correctness of s and a node context capturing the translation that has been performed up

to s, and returns the node context to be used in the translation of statements following s.

We formalize this with a judgement Γ ` s : Γ′ B Ψ ;` Ψ′, which states that from a

derivation of Γ ` s : Γ′ and a node context Ψ (stating what node to use for each variable

in s), the translation produces an updated node context Ψ′ after statement s (ignore ` for

now). For example, the rule Trans-Asgn updates the node context to map variable x to

the node n resulting from translating e (which relies on the fact that e is well typed in

type context Γ).

Again, we maintain the invariant that in all the derivations we explore, the
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judgement Γ ` s : Γ′ B Ψ ; Ψ′ is only used with contexts Γ and Ψ that are defined

on precisely the same set of variables, and furthermore the resulting contexts Γ′ and Ψ′

will always be defined on the same set of variables (although potentially different from

Γ and Ψ). It is fairly obvious that the rules preserve this invariant, although Trans-Sub

relies on the fact that Γ′′ must be a subcontext of Γ′. The Trans-Seq and Trans-Asgn rules

are self explanatatory, so below we discuss the more complicated rules for control flow.

The rule Trans-If describes how to translate if-then-else statements in SIMPLE

programs to φ nodes in PEGs. First, it translates the boolean guard expression e to a

node n which will later be used as the condition argument for each φ node. Then it

translates the statement s1 for the “true” branch, producing a node context Ψ1 assigning

each live variable after s1 to a PEG node representing its value after s1. Similarly, it

translates s2 for the “false” branch, producing a node context Ψ2 representing the “false”

values of each variable. Due to the invariant we maintain, both Ψ1 and Ψ2 will be defined

on the same set of variables as Γ′. For each x defined in Γ′, we use the name n(x,1) to

represent the “true” value of x after the branch (taken from Ψ1) and n(x,2) to represent

the “false” value (taken from Ψ2). Finally, the rule constructs a node context Ψ′ which

assigns each variable x defined in Γ′ to the node φ(n,n(x,1),n(x,2)), indicating that after

the if-then-else statement the variable x has “value” n(x,1) if n evaluates to true and n(x,2)

otherwise. Furthermore, this process maintains the invariant that the type context Γ′ and

node context Ψ′ are defined on exactly the same set of variables.

The last rule, Trans-While, describes how to translate while loops in SIMPLE

programs to combinations of θ , eval, and pass nodes in PEGs. The rule starts by creating

a node context Ψ which assigns to each variable x defined in Γ a fresh temporary variable

node vx. The clause `′ = `+ 1 is used to indicate that the body of the loop is being

translated at a higher loop depth. In general, the ` subscript in the notation Ψ ;` Ψ′

indicates the loop depth of the translation. Thus, the judgement Γ ` s : Γ′ B Ψ ;`′ Ψ′
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translates the body s of the loop at a higher loop depth to produce the node context Ψ′.

The nodes in Ψ′ are in terms of the temporary nodes vx in Γ and essentially represent

how variables change in each iteration of the loop. Each variable x defined in Γ has a

corresponding node nx in the node context Ψ0 from before the loop, again due to the

invariant we maintain that Γ and Ψ are always defined on the same set of variables. This

invariant also guarantees that each variable x defined in Γ also has a corresponding node n′x

in the node context Ψ′. Thus, for each such variable, nx provides the base value and

n′x provides the iterative value, which can now be combined using a θ node. To this end,

we unify the temporary variable node vx with the node θ`′(nx,n′x) to produce a recursive

expression which represents the value of x at each iteration of the loop. Lastly, the rule

constructs the final node context Ψ∞ by assigning each variable x defined in Γ to the node

eval`′(vx,pass`′(¬(n))) (where vx has been unified to produce the recursive expression

for x). The node ¬(n) represents the break condition of the loop; thus pass`′(¬(n))

represents the number of times the loop iterates. Note that the same pass node is used

for each variable, whereas each variable gets its own θ node. In this manner, the rule

Trans-While translates while loops to PEGs, and furthermore preserves the invariant that

the type context Γ and node context Ψ∞ are defined on exactly the same set of variables.

Programs Finally, the rule Trans-Prog shows how to use the above translation tech-

nique in order to translate an entire SIMPLE program. It creates a node context with a

PEG parameter node for each parameter to main. It then translates the body of main at

loop depth 0 to produce a node context Ψ. Since the return retvar is guaranteed to be

in the final context Γ, the invariant that Γ and Ψ are always defined on the same variables

ensures that there is a node n corresponding to retvar in the final node context Ψ. This

PEG node n represents the entire SIMPLE program.
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Translation vs. Pseudocode The pseudocode in Figure 7.3 follows the rules from

Figure 7.5 very closely. Indeed, the code can be seen as using the rules from the type-

directed translation to find a derivation of ` p B n. The translation starts at the end

of the derivation tree and moves up from there. The entry point of the pseudocode

is TranslateProg, which corresponds to rule Trans-Prog, the last rule to be used in

a derivation of ` p B n. TranslateProg calls TS, which corresponds to finding a

derivation for Γ ` s : Γ′ B Ψ ;` Ψ′. Finally, TS calls TE, which corresponds to finding

a derivation for Γ ` e : τ B Ψ ; n. Each pattern-matching case in the pseudocode

corresponds to a rule from the type-directed translation.

The one difference between the pseudocode and the type-directed translation is

that in the judgements of the type-directed translation, one of the inputs to the transla-

tion is a derivation of the type correctness of the expression/statement/program being

translated, whereas the pseudocode does not manipulate any derivations. This can be

explained by a simple erasure optimization in the pseudocode: because of the structure

of the typing rules for SIMPLE (in particular there is only one rule per statement kind),

the implementation does not need to inspect the entire derivation – it only needs to look

at the final expression/statement/program in the type derivation (which is precisely the

expression/statement/program being translated). It is still useful to have the derivation

expressed formally in the type-directed translation, as it makes the proof of correctness

more direct. Furthermore, there are small changes that can be made to the SIMPLE

language that prevent the erasure optimization from being performed. For example, if we

add subtyping and implicit coercions, and we want the PEG translation process to make

coercions explicit, then the translation process would need to look at the type derivation

to see where the subtyping rules are applied.

Because the type-directed translation in Figure 7.5 is essentially structural in-

duction on the proof that the SIMPLE program is well typed, we can guarantee that its
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implementation in Figure 7.3 terminates. Additionally, because of the invariants we main-

tain in the type-directed translation, we can guarantee that the implementation always

successfully produces a translation. We discuss the correctness guarantees provided by

the translation below.

7.4 Preservation of Semantics

While SIMPLE is a standard representation of programs, PEGs are far from

standard. Furthermore, the semantics of PEGs are even less so, especially since the

node representing the returned value is the first to be “evaluated”. Thus, it is natural

to ask whether the translation above preserves the semantics of the specified programs.

We begin by defining the semantics of SIMPLE programs, and go on to examine their

relationship to the semantics of PEGs produced by our algorithm.

Here we define the evaluation functions J·K, which implement the operational

semantics of SIMPLE programs. We do not give full definitions, since these are standard.

These functions are defined in terms of an evaluation context Σ, which is a map assigning

values ν to program variables x.

Definition 7.1 (Semantics of expressions). For a SIMPLE expression e we define JeK to

be a partial function from evaluation contexts to values. This represents the standard

operational semantics for SIMPLE expressions. For a given Σ, JeK(Σ) returns the result

of evaluating e, using the values of variables given by Σ.

Definition 7.2 (Semantics of statements). For a SIMPLE statement s we define JsK to be

a partial function from evaluation contexts to evaluation contexts. This represents the

standard operational semantics for SIMPLE statements. For a given Σ, JsK(Σ) returns

the evaluation context that results from executing s in context Σ. If s does not terminate

when started in Σ, then JsK(Σ) is not defined.
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Definition 7.3 (Semantics of programs). For a SIMPLE program p, guaranteed to be of

the form main(x1 : τ1, . . . ,xk : τk){s}, and an evaluation context Σ mapping each xi to an

appropriately typed value, we define JpK(Σ) as JsK(Σ)(retvar).

We will use these functions in our discussion below. For the translation defined

in Section 7.3 we have proven the following theorem (recall the substitution notation

n[x 7→ ν ] from Section 6.1).

Theorem 7.1. If (1) ` main(x1 : τ1, . . . ,xk : τk) : τ {s} B n holds, (2) Σ maps each

xi to an appropriately typed value νi, and (3) n̂ equals n[x1 7→ ν1, . . . ,xk 7→ νk], then

JmainK(Σ) = ν =⇒ Jn̂K(λ`.0) = ν .

The above theorem only states that our conversion process is nearly seman-

tics-preserving, since it does not perfectly preserve non-termination. In particular, our

translation from SIMPLE to PEG discards any PEG nodes which are never used to

calculate the return value. Thus, an infinite SIMPLE loop whose value is never used will

be removed, changing the termination behavior of the program. In the broader setting

beyond SIMPLE, the only case where we would change the termination behavior of the

program is if there is an infinite loop has no side effects (aside from non-termination)

and does not contribute to the return value of the function. It is important to keep in mind

that, since these loops have no side effects (aside from non-termination), they cannot

modify the heap or perform I/O. This basically means that these loops are equivalent to a

while(true) { } loop. Other modern compilers perform similar transformations that

remove such IO-less infinite loops that do not contribute to the result [68]. In fact, the

newly planned C++ standard allows the implementation to remove such IO-less loops

even if termination cannot be proven [10]. Nonetheless, at the end of this section, we

give a brief overview of how to preserve non-termination in PEGs.

In this theorem, we use both the function J·K defined above for SIMPLE programs
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and the function J·K defined in Equation 6.1 for PEG nodes. Throughout the rest of this

section we will mix our uses of the various J·K functions, and the reader can disambiguate

them based on context. The common intuition is that these functions all implement

program semantics and so represent executing the program fragment they are called

upon.

We proved the above theorem in full formal detail using the Coq interactive theo-

rem prover [12]. To conduct the proof in Coq we only had to assume the standard axioms

for extensional equality of functions and of coinductive types. The machine-checkable

Coq proof is available at http://cseweb.ucsd.edu/groups/progsys/peg-coq-proof. Here

we present only the major invariants used in this proof without showing the details of

why these invariants are preserved.

Given a program main with parameters x1, . . . ,xk, suppose we are given a set

of actual values v1, . . . ,vk that correspond to the values passed in for those parameters.

Then given the PEG G created during the translation of main, we can construct a new

PEG Ĝ that is identical to G except that every parameter node for xi is replaced with a

constant node for vi. Thus, for every node n ∈ G, there is a corresponding node n̂ ∈ Ĝ.

Furthermore, this correspondence is natural: θ nodes correspond to θ nodes and so on

(except for the parameter nodes which have been explicitly replaced). Similarly, every

PEG context Ψ for G has a similarly corresponding PEG context Ψ̂ in terms of nodes

in Ĝ. We can now phrase our primary invariants in terms of this node correspondence.

In this proof we will rely on the concept of loop invariance of PEG nodes. Earlier

in Section 6.1, we defined some simple rules for determining when a node n is invariant

with respect to a given loop depth `, which we denote as invariant`(n). These rules

are based on the syntax of the PEG rather than the semantics, so we say that the rules

detect syntactic loop invariance, rather than semantic loop-invariance. Syntactic loop

invariance is a useful property since it implies semantic loop invariance, which is in

http://cseweb.ucsd.edu/groups/progsys/peg-coq-proof
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general undecidable. We can generalize the notion of invariant` to a PEG context as

follows.

Definition 7.4. Given a PEG context Ψ and a loop depth `, we say that Ψ is syntactically

loop invariant with respect to ` if for each binding (x : n) ∈Ψ, n is syntactically loop

invariant with respect to `. We denote this by invariant`(Ψ).

With this definition in mind, we can express the first two lemmas that will help in

our proof of semantics preservation.

Lemma 7.1. If Γ ` e : τ B Ψ ; n, then ∀`. invariant`(Ψ̂) =⇒ invariant`(n̂)

Proof. Proved by induction on the proof of Γ ` e : τ .

Lemma 7.2. For all loop depths `, if Γ ` s : Γ′ B Ψ ;` Ψ′, then

∀`′ > `. invariant`′(Ψ̂) =⇒ ∀`′ > `, invariant`′(Ψ̂
′)

Proof. Proved by induction on the proof of Γ ` s : Γ′ using Lemma 7.1.

Using the above lemmas and the fact that invariant(·) implies semantic loop-

invariance, we can proceed to the critical invariant. First we must introduce the notion of

the semantics of a PEG context. Given a PEG context Ψ, there is a unique evaluation

context that is induced by Ψ for a given loop vector i. Namely, it is the evaluation context

that maps every variable x to the value JΨ(x)K(i). This provides a useful relationship

between the semantics of PEGs and the semantics of SIMPLE programs.

Definition 7.5. Given PEG context Ψ, we define JΨK to be a partial function from loop

vectors to evaluation contexts defined by

∀i. JΨK(i) = {(x : v) | v = JΨ(x)K}
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Lemma 7.3. If Γ ` e : τ B Ψ ; n and JΨ̂K(i) = Σ, then

∀ν . JeK(Σ) = ν =⇒ n̂(i) = ν

Proof. Proved by induction on the proof of Γ ` e : τ using Lemma 7.1.

Lemma 7.4. For any loop depth `, if (1) Γ ` s : Γ′ B Ψ ;` Ψ′, (2) for each `′ > `,

invariant`′(Ψ̂) holds, and (3) JΨ̂K(i) = Σ holds, then

∀Σ′. JsK(Σ) = Σ
′ =⇒ JΨ̂

′K(i) = Σ
′

Proof. Proved by induction on the proof of Γ ` s : Γ′ using Lemmas 7.2 and 7.3. For

the while case, the proof relies on the fact that syntactic loop invariance of Ψ̂ implies

semantic loop invariance of Ψ̂, which implies that Ψ̂ corresponds to Σ at all loop vectors i′

that only differ from i at loop depth `+1.

Our semantics-preservation theorem is a direct corollary of the above lemma,

and so we have shown that the evaluation of a PEG is equivalent to the evaluation of its

corresponding SIMPLE program, modulo termination.

Preserving Non-Termination There is a simple change to PEGs that would allow

them to preserve non-termination even for loops that do not contribute to the result. In

particular, we can adapt the concept of an effect witness [82]. For our task of preserving

non-termination, the effect witness will encode the non-termination effect, although one

can use a similar strategy for other effects as we formalize in Chapter 9. Any effectful

operation must take an effect witness. If the operation might also change the state of the

effect, then it must produce an effect witness as output. In SIMPLE, the ÷ operation

could modify our non-termination effect witness, if we choose to encode division-by-zero
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x = a÷0;
retvar = 13

(a) (b) (c)

Figure 7.6. Representation of a division by zero: (a) the original source code, (b) the
PEG produced without effect witness, and (c) the PEG produced with effect witnesses.
The arrows indicate the return values.

as non-termination (since SIMPLE does not contain exceptions). If we added functions to

SIMPLE, then function calls would also consume and produce a non-termination effect

witness, since the function call could possibly not terminate.

For every loop, there is one pass node (although there may be many eval nodes),

and evaluation of a pass node fails to terminate if the condition is never true. As a

result, since a pass node may fail to terminate, it therefore must take and produce a

non-termination effect witness. In particular, we would modify the pass node to take two

inputs: a node representing the break condition of the loop and a node representing how

the state of the effect changes inside the loop. The pass node would also be modified

to have an additional output, which is the state of the effect at the point when the loop

terminates. Then, the translation process is modified to thread this effect witness through

all the effectful operations and pass nodes, and finally produce a node representing the

effect of the entire function. This final effect node is added as an output of the function,

along with the node representing the return value.

Whereas before an infinite loop would be elided if it does not contribute to the

final return value of the program, now the pass node of the loop contributes to the result

because the effect witness is threaded through it and returned. This causes the pass node

to be evaluated, which causes the loop’s break condition to be evaluated, which will lead

to non-termination since the condition is never true.
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We present an example in Figure 7.6 to demonstrate the use of effect witnesses.

The SIMPLE code in part (a) shows an attempt to divide by zero, followed by a return

value of 13. Let us define ÷ to not terminate when dividing by 0. Part (b) shows the

corresponding PEG without effect witnesses. The arrow indicates the return value, which

is 13. Even though this PEG has the nodes for the division by zero, they are not reachable

from the return value. Hence, the PEG would be optimized to 13, removing the divide by

zero and so changing the termination behavior of the code.

Using a non-termination effect witness can fix this problem by producing the

PEG in part (c). The division operator now returns a tuple of (effect,value) and the

components are fetched using ρe and ρv respectively. As previously, we have 13 as a

return value, but we now have an additional return value: the effect witness produced by

the PEG. Since the division is now reachable from the return values, it is not removed

anymore, even if the value of the division (the ρv node) is never used.

7.5 Converting a CFG to a PEG

We convert a CFG into a PEG in two steps. First, we convert the CFG into an

Abstract PEG (A-PEG). Conceptually, an A-PEG is a PEG that operates over program

stores rather than individual variables, with nodes representing the basic blocks of the

CFG. Figure 7.7(b) shows a sample A-PEG, derived from the CFG in Figure 7.7(a). An

A-PEG captures the structure of the original CFG using φ , θ , pass, and eval nodes, but

does not capture the flow of individual variables, nor the details of how each basic block

operates.

For each basic block n in the CFG, there is a node SEn in the corresponding A-

PEG that represents the execution of the basic block (SE stands for Symbolic Evaluator):

given a store at the input of the basic block, SEn returns the store at the output. For

basic blocks that have multiple CFG successors, meaning that the last instruction in the
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Figure 7.7. Sample CFG and corresponding A-PEG

block is a branch, we assume that the store returned by SE contains a specially named

boolean variable whose value indicates which way the branch will go. The function cond

takes a program store and selects this specially named variable from it. As a result, for a

basic block n that ends in a branch, cond(SEn) is a boolean stating which way the branch

should go.

Once we have an A-PEG, the translation from A-PEG to PEG is simple – all that

is left to do is expand the A-PEG to the level of individual variables by replacing each

SEn node with a dataflow representation of the instructions in block n. For example, in

Figure 7.7, if there were two variables being assigned in all the basic blocks, then the

PEG would essentially contain two structural copies of the A-PEG, one copy for each

variable.

Our algorithm for converting a CFG into an A-PEG starts with a reducible CFG

(all CFGs produced from valid Java code are reducible, and furthermore, if a CFG is not

reducible, it can be transformed to an equivalent reducible one at the cost of some node

duplication [58]). Using standard techniques, we identify loops, and for each loop we

identify (1) the loop-header node, which is the first node that executes when the loop

begins (this node is guaranteed to be unique because the graph is reducible), (2) back
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edges, which are edges that connect a node inside the loop to the loop-header node, and

(3) break edges, which are edges that connect a node inside the loop to a node that is not

in the loop.

From the CFG we build what is called a forward flow graph (FFG), which is an

acyclic version of the CFG. In particular, the FFG contains all the nodes from the CFG,

plus a node n′ for each loop-header node n; it also contains all the edges from the CFG,

except that any back edge connected to a loop header n is instead connected to n′.

We use N to denote the set of nodes in the FFG, and E the set of edges, with

root edge the edge from which the CFG is initially entered. For any n ∈ N, in(n) and

out(n) are the set of incoming and outgoing edges of n. If n is a basic block that ends in

a branch statement, we use outtrue(n) and outfalse(n) for the true and false outgoing edge

of n. We use a ∗−→ b to represent that there is a path in the FFG from the node (or edge) a

to the node (or edge) b. We identify a loop by its loop-header node `, and for any n ∈ N,

we use loops(n)⊆ N to denote the set of loops that n belongs to. Precisely, ` ∈ loops(n)

holds whenever there is a directed cycle in the CFG containing both ` and n that does not

pass through nodes that can reach ` in the FFG.

Our conversion algorithm from CFG to A-PEG is shown in Figure 7.8. We

describe each function in turn.

ComputeAPEG Once the FFG is constructed, our conversion algorithm calls the

ComputeAPEG function. Throughout the rest of the description we assume that the FFG

and CFG are globally accessible. ComputeAPEG starts by creating, for each node n

in the CFG (line 1), a globally accessible A-PEG node SEn (line 2), and a globally

accessible A-PEG node cn (line 3). The conversion algorithm then sets the input of each

SEn node to the A-PEG expression computed by ComputeInputs(n) (lines 4 and 5).
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1: function ComputeAPEG()
2: for each CFG node n do
3: let global SEn = create A-PEG node labeled “SEn”
4: let global cn = cond(SEn)
5: for each CFG node n do
6: set child of SEn to ComputeInputs(n)
7: return resulting A-PEG

8: function ComputeInputs(n : N)
9: let in edges = in(n)

10: let value fn = λe : in edges . SEsrc(e)
11: let result = Decide(root edge, in edges,value fn, loops(n))
12: if n is a loop-header node then
13: let i = |loops(n)|
14: let result = θi(result,ComputeInputs(n′))
15: return result

16: function Decide(source : E, E : 2E , value : E → NA-PEG, L : 2N)
17: let d = least dominator through(source,E )
18: if loops(d)⊆L then
19: if ∃v. ∀e ∈ E . value(e) = v then
20: return v
21: let t = Decide(outtrue(d),{e ∈ E | outtrue(d)

∗−→ e},value,L )

22: let f = Decide(outfalse(d),{e ∈ E | outfalse(d)
∗−→ e},value,L )

23: return φ(cd, t, f )
24: else
25: let ` be the outermost loop in loops(d) that is not in L
26: let i be the nesting depth of `
27: let break edges = ComputeBreakEdges(`)
28: let break = BreakCondition(`,break edges,L ∪{`})
29: let val = Decide(source,E ,value,L ∪{`})
30: return evali(val,passi(break))

31: function BreakCondition(` : N,break edges : 2E ,L : 2N)
32: let all edges = break edges∪ in(`′)
33: let value fn = λe : all edges .

(
if e ∈ break edges then true else false

)
34: return Simplify(Decide(root edge,all edges,value fn,L ))

Figure 7.8. CFG to A-PEG conversion algorithm
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ComputeInputs The ComputeInputs function starts out by calling Decide on the in-

coming edges of n (lines 7-9). Intuitively, Decide computes an A-PEG expression that,

when evaluated, will decide between different edges (we describe Decide and its ar-

guments in more detail shortly). After calling Decide, ComputeInputs checks if n is a

loop-header node (line 10). If it is not, then one can simply return the result from Decide

(line 13). On the other hand, if n is a loop-header node, then its FFG predecessors are

nodes from outside the loop (since back edges originating from within the loop now go

to n′). In this case, the result computed on line 9 only accounts for values coming from

outside of the loop, and so we need lines 11 and 12 to adjust the result so that it also

accounts for values coming from inside the loop. In particular, we use ComputeInputs(n′)

to compute the A-PEG expression for values coming from inside the loop, and then we

create the θi expression that combines the two (with i being the loop-nesting depth of n).

Decide The Decide function is used to create an expression that decides between a set

of edges. In particular, suppose we are given a set of FFG edges, and we already know

that the program will definitely reach one of these edges starting from the source edge –

then Decide returns an A-PEG expression that, when evaluated, computes which of these

edges will be reached from the source edge. The first parameter to Decide is the edge

assumed to already have been reached; the second parameter is the set of edges to decide

between; the third parameter is a function mapping edges to A-PEG nodes – this function

is used to created an A-PEG node from each edge; and the fourth parameter is a looping

context, which is the set of loops that Decide is currently analyzing.

Decide starts by calling least dominator through(source,E ) to compute d, the

least dominator (in the FFG reachable from source) of the given set of edges, where

least means furthest away from source (line 14). If d is in the current looping context

(line 15), then, after optimizing the case where value maps all edges to the same A-PEG
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node (lines 16 and 17), Decide calls itself to decide between the true and false cases

(lines 18 and 19). Decide then creates the appropriate φ node, using the cd node created

in ComputeAPEG (line 20).

For example, suppose ComputeInputs is called on node 5 from Figure 7.7. Since

there are no loops, ComputeInputs returns Decide(root edge,{e1,e2,e3},value fn,∅),

and Decide only executes lines 14-20. As a result, this leads to the following steps (where

we have omitted the first parameter and last two parameters to Decide because they are

always the same):

Decide({e1,e2,e3})

= φ(c1,Decide({e1}),Decide({e2,e3}))

= φ(c1,Decide({e1}),φ(c2,Decide({e2}),= Decide({e3})))

= φ(c1,value fn(e1),φ(c2,value fn(e2),value fn(e3)))

= φ(c1,SE1,φ(c2,SE3,SE4))

This is exactly the A-PEG expression used for the input to node 5 in Figure 7.7.

Going back to the code for Decide, if the dominator d is not in the same looping

context, then the edges that we are deciding between originate from a more deeply

nested loop. We therefore need to compute the appropriate break condition – the right

combination of eval/pass that will correctly convert values from the more deeply nested

loop into the current looping context. To do this, Decide picks the outermost loop ` of the

more deeply nested loops that are not in the context (line 22); it computes the set of edges

that break out of ` using ComputeBreakEdges, a straightforward function not shown here

(line 24); it computes the break condition for ` using BreakCondition (line 25); it then

computes an expression that decides between the edges E , but this time adding ` to the

loop context (line 26); and finally Decide puts it all together in an eval/pass expression

(line 27).
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BreakCondition The BreakCondition function creates a boolean A-PEG node that

evaluates to true when the given loop ` breaks. Deciding whether or not a loop breaks

amounts to deciding if the loop, when started at its header node, reaches the break edges

(break edges) or the back edges (in(`′)). We can reuse our Decide function described

earlier for this purpose (lines 29 and 30). Finally, we use the Simplify function, not

shown here, to perform basic boolean simplifications on the result of Decide (line 30).
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Chapter 8

Reverting PEGs to Imperative Code

In this chapter we present the complement to Chapter 7: a procedure for convert-

ing a PEG back to a SIMPLE program. Whereas the translation from SIMPLE programs

to PEGs was fairly simple, the translation back (which we call reversion) is much more

complicated. Since the order of SIMPLE execution is specified explicitly, SIMPLE

programs have more structure than PEGs, and so it is not surprising that the translation

from PEGs back to SIMPLE is more complex than the other direction. Because of

the complexity involved in reversion, we start by presenting a simplified version of the

process in Sections 8.1 through 8.5. This simple version is correct but produces SIMPLE

programs that are inefficient because they contain a lot of duplicated code. We then

present in Sections 8.6 through 8.9 several optimizations on top of the simple process

to improve the quality of the generated code by removing the code duplication. These

optimizations include branch fusion, loop fusion, hoisting code that is common to both

sides of a branch, and hoisting code out of loops. In the setting of SIMPLE, these

optimizations are optional – they improve the performance of the generated code but

are not required for correctness. However, if we add side-effecting operations like heap

reads/writes (as we do in Chapter 10 using the technique described in Chapter 9), these

optimizations are not optional anymore: they are needed to make sure that we do not

incorrectly duplicate side-effecting operations. Finally, we present more advanced tech-

84
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niques for reverting PEGs to CFGs rather than SIMPLE programs, taking advantage of

the flexibility of CFGs in order to produce even more efficient translations of PEGs. This

is particularly important when reverting PEGs translated from programs in a language

with more advanced control flow such as breaks and continues.

8.1 CFG-Like PEGs

Before we can proceed, we need to define the precondition of our reversion

process. In particular, our reversion process assumes that the PEGs we are processing are

CFG-like, as formalized by the following definition.

Definition 8.1 (CFG-like PEG context). We say that a PEG context Ψ is CFG-like if

Γ `Ψ : Γ′ holds using the rules in Figure 8.1.

The rules in Figure 8.1 impose various restrictions on the structure of the PEG

which makes our reversion process simpler. For example, these rules guarantee that the

second child of an eval node is a pass node, and that by removing the second outgoing

edge of each θ node, the PEG becomes acyclic. If a PEG context is CFG-like, then it

is well formed (Definition 6.1 from Section 6.1). Furthermore, all PEGs produced by

our SIMPLE-to-PEG translation process from Chapter 7 or CFG-to-PEG conversion

process from Section 7.5 are CFG-like. However, not all well formed PEGs are CFG-like,

and in fact it is useful for equality saturation to consider PEGs that are not CFG-like as

intermediate steps. To guarantee that the reversion process will work during optimization,

the pseudo-boolean formulation described in Section 10.3 ensures that the PEG selected

for reversion is CFG-like.

In Figure 8.1, Γ is a type context assigning parameter variables to types. ` is

the largest loop depth with respect to which the PEG node n is allowed to be loop

variant; initializing ` to 0 requires n to be loop invariant with respect to all loops. Θ is
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Γ `Ψ : Γ′

Type-PEG-Context
∀(x : τ) ∈ Γ′. Ψ(x) = n⇒ Γ ` n : τ

Γ `Ψ : Γ′

Γ ` n : τ

Type-PEG
Γ,0,∅ ` n : τ

Γ ` n : τ

Γ, `,Θ ` n : τ

Type-Param
Γ(x) = τ

Γ, `,Θ ` param(x) : τ
Type-Assume

(` ` n : τ) ∈Θ

Γ, `,Θ ` n : τ

Type-Op
op : (τ1, . . . ,τn)→ τ Γ, `,Θ ` n1 : τ1 . . . Γ, `,Θ ` nn : τn

Γ, `,Θ ` op(n1, . . . ,nn) : τ

Type-Phi
Γ, `,Θ ` c : bool Γ, `,Θ ` t : τ Γ, `,Θ ` f : τ

Γ, `,Θ ` φ(c, t, f ) : τ

Type-Theta

`′ = `−1
Γ, `′,Θ ` b : τ Γ, `,(Θ,(` ` θ`(b,n) : τ)) ` n : τ

Γ, `,Θ ` θ`(b,n) : τ

Type-Eval-Pass

`= `′+1 ∀`1,n,τ ′.[(`1 ` n : τ ′) ∈Θ⇒ `1 < `′]
Γ, `′,Θ ` v : τ Γ, `′,Θ ` c : bool

Γ, `,Θ ` eval`′(v,pass`′(c)) : τ

Type-Reduce
`≥ `′ Θ⊇Θ′ Γ, `′,Θ′ ` n : τ

Γ, `,Θ ` n : τ

Figure 8.1. Rules defining CFG-like PEGs

an assumption context used to type recursive expressions. Each assumption in Θ has

the form ` ` n : τ , where n is a θ` node; ` ` n : τ states that n has type τ at loop depth `.

Assumptions in Θ are introduced in the Type-Theta rule and used in the Type-Assume

rule. The assumptions in Θ prevent “unsolvable” recursive PEGs such as x = 1+ x

or “ambiguous” recursive PEGs such as x = 0∗ x. The requirement in Type-Eval-Pass

regarding Θ prevents situations such as x = θ2(eval1(eval2(x, . . .), . . .), . . .), in which

essentially the initializer for the nested loop is the final result of the outer loop.
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Figure 8.2. Visual representation of the judgement for CFG-like PEG contexts: (a) shows
the syntactic form of the judgement; (b) shows an example of the syntactic form; and
(c) shows the same example in visual form

Although Γ `Ψ : Γ′ is the syntactic form which we will use in the body of the text,

our diagrams will use the visual representation of Γ `Ψ : Γ′ shown in Figure 8.2. Part (a)

of the figure shows the syntactic form of the judgement (used in the text); (b) shows an

example of the syntactic form; and finally (c) shows the same example in the visual form

used in our diagrams with variable types implicit.

8.2 Overview

We can draw a parallel between CFG-like PEG contexts and well typed statements:

both can be seen as taking inputs Γ and producing outputs Γ′. With this parallel in mind,

our basic strategy for reverting PEGs to SIMPLE programs is to recursively translate

CFG-like PEG contexts Γ `Ψ : Γ′ to well typed SIMPLE statements Γ ` s : Γ′. Therefore,

the precondition for our reversion algorithm is that the PEG context we revert must be

CFG-like according to the rules in Figure 8.1.

For the reversion process, we make two small changes to the typing rules for

SIMPLE programs. First, we want to allow the reversion process to introduce tempo-

rary variables without having to add them to Γ′ (in Γ ` s : Γ′). To this end, we allow

intermediate variables to be dropped from Γ′, so that Γ ` s : Γ′ and Γ′′ ⊆ Γ′ implies
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Γ ` s : Γ′′.

Second, to more clearly highlight which parts of the generated SIMPLE code

modify which variables, we introduce a notion Γ0;Γ ` s : Γ′ of SIMPLE statements s

which use but do not modify variables in Γ0 (where Γ and Γ0 are disjoint). We call Γ0

the immutable context. The rules in Figure 7.2 can be updated appropriately to disallow

variables from Γ0 to be modified. Similarly, we add Γ0 to the notion of CFG-like PEG

contexts: Γ0;Γ ` Ψ : Γ′. Since PEG contexts cannot modify variables anyway, the

semantics of bindings in Γ0 is exactly the same as bindings in Γ (and so we do not need

to update the rules from Figure 8.1). Still, we keep an immutable context Γ0 around for

PEG contexts because Γ0 from the PEG context gets reflected into the generated SIMPLE

statements where it has a meaning. Thus, our reversion algorithm will recursively translate

CFG-like PEG contexts Γ0;Γ `Ψ : Γ′ to well typed SIMPLE statements Γ0;Γ ` s : Γ′.

Throughout the rest of this chapter, we assume that there is a PEG context

Γ̄0; Γ̄ ` Ψ̄ : Γ̄′ that we are currently reverting. Furthermore, we define Γ0 to be:

Γ0 = Γ̄0∪ Γ̄ (8.1)

As will become clear in Section 8.3, the Γ0 from Equation (8.1) will primarily be

used as the immutable context in recursive calls to the reversion algorithm. The above

definition of Γ0 states that when making a recursive invocation to the reversion process,

the immutable context for the recursive invocation is the entire context from the current

invocation.

Statement Nodes The major challenge in reverting a CFG-like PEG context lies in

handling the primitive operators for encoding control flow: φ for branches and eval, pass,

and θ for loops. To handle such primitive nodes, our general approach is to repeatedly
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г〈s〉 г’ if(c){b:=a}
else{b:=a÷2}〈 〉{ c : bool, a : int }

{ b : int }

(b) (c)(a)

b
if(c){b:=a}
else{b:=a÷2}

c a

Figure 8.3. Diagrammatic representation of a statement node

replace a subset of the PEG nodes with a new kind of PEG node called a statement

node. A statement node is a PEG node 〈s〉Γ′
Γ

where s is a SIMPLE statement satisfying

Γ0;Γ ` s : Γ′ (recall that Γ0 comes from Equation (8.1)). The node has many inputs, one

for each variable in the domain Γ, and unlike any other node we have seen so far, it also

has many outputs, one for each variable of Γ′. A statement node can be perceived as a

primitive operator which, given an appropriately typed list of input values, executes the

statement s with those values in order to produce an appropriately typed list of output

values. Although 〈s〉Γ′
Γ

is the syntactic form which we will use in the body of the text,

our diagrams will use the visual representation of 〈s〉Γ′
Γ

shown in Figure 8.3. Part (a) of

the figure shows the syntactic form of a statement node (used in the text); (b) shows an

example of the syntactic form; and finally (c) shows the same example in the visual form

used in our diagrams. Note that the visual representation in part (c) uses the same visual

convention that we have used throughout for all PEG nodes: the inputs flow into the

bottom side of the node, and the outputs flow out from the top side of the node.

The general approach we take is that eval nodes will be replaced with while-loop

statement nodes (which are statement nodes 〈s〉Γ′
Γ

where s is a while statement) and

φ nodes will be replaced with if-then-else statement nodes (which are statement nodes

〈s〉Γ′
Γ

where s is an if-then-else statement). To this end, our most simplistic reversion

algorithm, which we present first, converts PEG contexts to statements in three phases:

1. We replace all eval, pass, and θ nodes with while-loop statement nodes. This

results in an acyclic PEG.
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2. We replace all φ nodes with if-then-else statement nodes. This results in a PEG

with only statement nodes and domain operators such as + and ∗ (that is to say,

there are no more eval, pass, θ , or φ nodes).

3. We sequence the statement nodes and domain operators into successive assignment

statements. For a statement node 〈s〉Γ′
Γ

, we simply inline the statement s into the

generated code.

We present the above three steps in Sections 8.3, 8.4, and 8.5, respectively. Finally, since

the process described above is simplistic and results in large amounts of code duplication,

we present in Sections 8.6 through 8.9 several optimizations that improve the quality of

the generated SIMPLE code.

8.3 Translating Loops

In our first phase, we repeatedly convert each loop-invariant eval node, along

with the appropriate pass and θ nodes, into a while-loop statement node. The nested

loop-variant eval nodes will be taken care of when we recursively revert the “body” of

the loop-invariant eval nodes to statements. For each loop-invariant eval` node, we apply

the process described below.

First, we identify the set of θ` nodes reachable from the current eval` node or its

pass` node without passing through other loop-invariant nodes (in particular, without

passing through other eval` nodes). Let us call this set of nodes S. As an illustrative

example, consider the left-most PEG context in Figure 8.4, which computes the factorial

of 10. When processing the single eval1 node in this PEG, the set S will contain both

θ1 nodes. The intuition is that each θ node in S will be a loop variable in the SIMPLE

code we generate. Thus, our next step is to assign a fresh variable x for each θ` node in S;

let bx refer to the first child of the θ` node (i.e. the base case), and ix refer to the second
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Figure 8.4. Example of converting eval nodes to while-loop statement nodes

child (i.e. the iterative case); also, given a node n ∈ S, we use var(n) for the fresh variable

we just created for n. In the example from Figure 8.4, we created two fresh variables x

and y for the two θ1 nodes in S. After assigning fresh variables to all nodes in S, we then

create a type context Γ as follows: for each n ∈ S, Γ maps var(n) to the type of node n

in the PEG, as given by the typing rules in Figure 8.1. For example, in Figure 8.4 the

resulting type context Γ is {x : int,y : int}.

Second, we construct a new PEG context Ψi that represents the body of the loop.

This PEG context will state in PEG terms how the loop variables are changed in one

iteration of the loop. For each variable x in the domain of Γ, we add an entry to Ψi

mapping x to a copy of ix (recall that ix is the second child of the θ node which was

assigned variable x). The copy of ix is a fully recursive copy, in which descendants have

also been copied, but with one important modification: while performing the copy, when

we reach a node n ∈ S, we do not copy n; instead we use a parameter node referring to

var(n). This has the effect of creating a copy of ix with any occurrence of n ∈ S replaced

by a parameter node referring to var(n), which in turn has the effect of expressing the

next value of variable x in terms of the current values of all loop variables. From the way

it is constructed, Ψi will satisfy Γ0;Γ `Ψi : Γ, essentially specifying, in terms of PEGs,
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how the loop variables in Γ are changed as the loop iterates (recall that Γ0 comes from

Equation (8.1)). Next, we recursively revert Ψi satisfying Γ0;Γ `Ψi : Γ to a SIMPLE

statement si satisfying Γ0;Γ ` si : Γ. The top-center PEG context in Figure 8.4 shows Ψi

for our running example. In this case Ψi states that the body of the loop modifies the loop

variables as follows: the new value of x is x*y, and the new value of y is 1+y. Figure 8.4

also shows the SIMPLE statement resulting from the recursive invocation of the reversion

process.

Third, we take the second child of the eval node that we are processing. From

the way the PEG type rules are set up in Figure 8.1, this second child must be the pass

node of the eval. Next, we take the first child of this pass node and make a copy of this

first child with any occurrence of n ∈ S replaced by a parameter node referring to var(n).

Let c be the PEG node produced by this operation, and let Ψc be the singleton PEG

context {xc : c}, where xc is fresh. Ψc represents the computation of the break condition

of the loop in terms of the loop variables. From the way it is constructed, Ψc will satisfy

Γ0;Γ`Ψc : {xc : bool}. We then recursively revert Ψc satisfying Γ0;Γ`Ψc : {xc : bool}

to a SIMPLE statement sc satisfying Γ0;Γ ` sc : {xc : bool}. sc simply assigns the break

condition of the loop to the variable xc. The middle row of Figure 8.4 shows the PEG

context for the break condition and the corresponding SIMPLE statement evaluating the

break condition.

Fourth, we take the first child of the eval node and make a copy of this first child

with any occurrence of n ∈ S replaced with a parameter node referring to var(n). Let r

be the PEG node produced by this operation, and let Ψr be the singleton PEG context

{xr : r}, where xr is fresh. Ψr represents the value desired after the loop in terms of

the loop variables. From the way it is constructed, Ψr will satisfy Γ0;Γ `Ψr : {xr : τ},

where τ is the type of the first child of the eval node in the original PEG. We then

recursively revert Ψr satisfying Γ0;Γ `Ψr : {xr : τ} to a SIMPLE statement sr satisfying
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Γ0;Γ ` sr : {xr : τ}. sr simply assigns the value desired after the loop into variable xr.

The bottom row of Figure 8.4 shows the PEG context for the value desired after the loop

and the corresponding SIMPLE statement evaluating the desired value. Often, but not

always, the first child of the eval` node will be a θ` node, in which case the statement

will simply copy the variable as in this example.

Finally, we replace the eval` node being processed with the while-loop statement

node 〈sc;while (¬xc) {si;sc};sr〉{xr:τ}
Γ

. Figure 8.4 shows the while-loop statement node

resulting from translating the eval node in the original PEG context. Note that the while-

loop statement node has one input for each loop variable, namely one input for each

variable in the domain of Γ. For each such variable x, we connect bx to the corresponding

x input of the while-loop statement node (recall that bx is the first child of the θ node

which was assigned variable x). Figure 8.4 shows how in our running example, this

amounts to connecting a 1 node to both inputs of the while-loop statement node. In

general, our way of connecting the inputs of the while-loop statement node makes sure

that each loop variable x is initialized with the its corresponding base value bx. After

this input initialization, sc assigns the status of the break condition to xc. While the

break condition fails, the statement si updates the values of the loop variables, then sc

assigns the new status of the break condition to xc. Once the break condition passes,

sr computes the desired value in terms of the final values of the loop variables and assigns

it to xr. Note that it would be more “faithful” to place sr inside the loop, doing the final

calculations in each iteration, but we place it after the loop as an optimization since sr

does not affect the loop variables. The step labeled “Sequence” in Figure 8.4 shows the

result of sequencing the PEG context that contains the while-loop statement node. This

sequencing process will be covered in detail in Section 8.5.

Note that in the computation of the break condition in Figure 8.4, there is a double

negation, in that we have c := ¬ . . . ; and while(¬c). The more advanced reversion
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techniques described in Section 8.10 prevent such double negations.

8.4 Translating Branches

After our first phase, we have replaced eval, pass, and θ nodes with while-loop

statement nodes. Thus, we are left with an acyclic PEG context that contains φ nodes,

while-loop statement nodes, and domain operators like + and ∗. In our second phase, we

repeatedly translate each φ node into an if-then-else statement node. In order to convert a

φ node to an if-then-else statement node, we must first determine the set of nodes which

will always need to be evaluated regardless of whether the guard condition is true or false.

This set can be hard to determine when there is another φ node nested inside the φ node.

To see why this would be the case, consider the example in Figure 8.5, which we will use

as a running example to demonstrate branch translation. Looking at part (a), one might

think at first glance that the ÷ node in the first diagram is always evaluated by the φ node

labeled ¬ since it is used in the PEGs for both the second and third children. However,

upon further examination one realizes that actually the ÷ node is evaluated in the second

child only when x6=0 due to the φ node labeled ­. To avoid these complications, it is

simplest if we first convert φ nodes that do not have any other φ nodes as descendants.

After this replacement, there will be more φ nodes that do not have φ descendants, so we

can repeat this until no φ nodes are remaining. In the example from Figure 8.5, we would

convert node ­ first, resulting in (b). After this conversion, node ¬ no longer has any

φ descendants and so it can be converted next. Thus, we replace φ nodes in a bottom-up

order. For each φ node, we use the following process.

First, we determine the set S of nodes that are descendants of both the second and

third child of the current φ node (i.e. the true and false branches). These are the nodes

that will get evaluated regardless of which way the φ goes. We assign a fresh variable to

each node in this set, and as in the case of loops we use var(n) to denote the variable we
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Figure 8.5. Example of converting φ nodes to if-then-else statement nodes

have assigned to n. In Figure 8.5(a), the * node is a descendant of both the second and

third child of node ­, so we assign it the fresh variable a. Note that the 3 node should

also be assigned a variable, but we do not show this in the figure since the variable is

never used. Next, we take the second child of the φ node and make a copy of this second

child in which any occurrence of n ∈ S has been replaced with a parameter node referring

to var(n). Let t be the PEG node produced by this operation. Then we do the same for

the third child of the φ node to produce another PEG node f . The t and f nodes represent

the true and false computations in terms of the PEG nodes that get evaluated regardless

of the direction the φ goes. In the example from Figure 8.5(a), t is param(a), and f

is ÷(param(a), param(x)). Examining t and f , we produce a context Γ of the newly
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created fresh variables used by either t or f . In the example, Γ would be simply {a : int}.

The domain of Γ does not contain x since x is not a new variable (i.e. x is in the domain

of Γ0, where Γ0 comes from Equation (8.1)). Thus, t and f are PEGs representing the

true and false cases in terms of variables Γ representing values that would be calculated

regardless.

Second, we invoke the reversion process recursively to translate t and f to state-

ments. In particular, we create two singleton contexts Ψt = {xφ : t} and Ψ f = {xφ : f}

where xφ is a fresh variable, making sure to use the same fresh variable in the two

contexts. From the way it is constructed, Ψt satisfies Γ0;Γ `Ψt : {xφ : τ}, where τ is the

type of the φ node. Thus, we recursively revert Ψt satisfying Γ0;Γ `Ψt : {xφ : τ} to a

SIMPLE statement st satisfying Γ0;Γ ` st : {xφ : τ}. Similarly, we revert Ψ f satisfying

Γ0;Γ `Ψ f : {xφ : τ} to a statement s f satisfying Γ0;Γ ` s f : {xφ : τ}. The steps labeled

“Extract True” and “Extract False” in Figure 8.5 show the process of producing Ψt and Ψ f

in our running example, where the fresh variable xφ is b in part (a) and e in part (b). Note

that Ψt and Ψ f may themselves contain statement nodes, as in Figure 8.5(b), but this

poses no problems for our recursive algorithm. Finally, there is an important notational

convention to note in Figure 8.5(a). Recall that Ψ f satisfies Γ0;Γ `Ψ f : {xφ : τ}, and

that in Figure 8.5(a) Γ0 = {x : int} and Γ = {a : int}. In the graphical representation of

Γ0;Γ `Ψ f : {xφ : τ} in Figure 8.5(a), we display variable a as a real boxed input (since

it is part of Γ), whereas because x is in Γ0, we display x without a box and using the

shorthand of omitting the param (even though in reality it is there).

Finally, we replace the φ node we are processing with the if-then-else statement

node 〈if (xc) {st} else {s f }〉
{xφ :τ}
(Γ,xc:bool) (where xc is fresh). This statement node has one

input for each entry in Γ, and it has one additional input xc for the guard value. We

connect the xc input to the first child of the φ node we are currently processing. For

each variable x in the domain of Γ, we connect the x input of the statement node to the
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“always evaluated” node n for which var(n) = x. Figure 8.5 shows the newly created

if-then-else statement nodes and how they are connected when processing φ nodes ¬

and ­. In general, our way of connecting the inputs of the if-then-else statement node

makes sure that each always-evaluated node is assigned to the appropriate variable and

the guard condition is assigned to xc. After this initialization, the statement checks xc,

the guard condition, to determine whether to take the true or false branch. In either case,

the chosen statement computes the desired value of the branch and assigns it to xφ .

8.5 Sequencing Operations and Statements

When we reach our final phase, we have already eliminated all primitive operators

(eval, pass, θ , and φ ) and replaced them with statement nodes, resulting in an acyclic

PEG context containing only statement nodes and domain operators like + and ∗. At this

point we need to sequence these statement nodes and operator nodes. We start off by

initializing a statement variable S as the empty statement. We will process each PEG node

one by one, postpending lines to S and then replacing the PEG node with a parameter

node. It is simplest to process the PEG nodes from the bottom up, processing a node

once all of its inputs are parameter nodes. Figure 8.6 shows every stage of converting a

PEG context to a statement. At each step, the current statement S is shown below the

PEG context.

If the node being processed is a domain operator, we do the following. Because

we only process nodes where all of its inputs are parameter nodes, the domain operator

node we are processing must be of the following form: op(param(x1), . . . , param(xk)).

We first designate a fresh variable x. Then, we postpend the line x := op(x1, . . . ,xk) to

S. Finally, we replace the current node with the node param(x). This process is applied

in the first, second, fourth, and fifth steps of Figure 8.6. Note that in the first and fourth

steps, the constants 0 and 7 are a nullary domain operators.
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Figure 8.6. Example of sequencing a PEG context (with statement nodes) into a statement

If on the other hand the node being processed is a statement node, we do the

following. This node must be of the following form: 〈s〉Γ′
Γ

. For each input variable x in

the domain of Γ, we find the param(x0) that is connected to input x, and postpend the

line x := x0 to S. In this way, we are initializing all the variables in the domain of Γ. Next,

we postpend s to S. Finally, for each output variable x′ in the domain of Γ′, we replace

any links in the PEG to the x′ output of the statement node with a link to param(x′). This

process is applied in the third step of Figure 8.6.

Finally, after processing all domain operators and statement nodes, we will have

each variable x in the domain of the PEG context being mapped to a parameter node

param(x′). So, for each such variable, we postpend the line x′ := x to S. All these

assignments should intuitively run in parallel. This causes problems if there is a naming

conflict, for example x gets y and y gets x. In such cases, we simply introduce intermediate

fresh copies of all the variables being read, and then we perform all the assignments by

reading from the fresh copies. In the case of x and y, we would create copies x′ and y′ of

x and y, and then assign x′ to y, and y′ to x. This process is applied in the sixth and last

step of Figure 8.6 (without any naming conflicts). The value of S is the final result of

the reversion, although in practice we apply copy propagation to this statement since the

sequencing process produces a lot of intermediate variables.
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Figure 8.7. Reversion of a PEG without applying loop fusion

8.6 Loop Fusion

Although the process described above will successfully revert a PEG to a SIMPLE

program, it does so by duplicating a lot of code. Consider the reversion process in

Figure 8.7. The original SIMPLE program for this PEG was the following:

s:=0; f:=1; i:=1;

while(i<=x) { s:=s+i; f:=f*i; i:=1+i };

retvar:=s÷f

The conversion of the above code to PEG results in two eval nodes, one for each

variable that is used after the loop. The reversion process described so far converts each

eval node separately, resulting in two separate loops in the final SIMPLE program. Here

we present a simple optimization that prevents this code duplication by fusing loops

during reversion. In fact, this added loop-fusion phase can even fuse loops that were

distinct in the original program. Thus, loop fusion can be performed simply by converting

to a PEG and immediately reverting back to a SIMPLE program, without even having to

do any intermediate transformations on the PEG.

We update our reversion process to perform loop fusion by making several

changes. First, we modify the process for converting eval nodes to while-loop statement

nodes in three ways. The revised conversion process is shown in Figure 8.8 using the



100

÷
1

i

pass
>

θ
1 +

1

θ
1 *

eval
2

convert

lazily
1

convert

lazily
2

pass
>

θ
1 +

1

θ
1 *

θ
0 +

eval eval

÷
1 2

param(X) param(X)

retvar retvar

0 1

while(i≤x)
s

s i

s i

+ +
1
s i

s i3

÷
1 2

param(X)

retvar

0 1

while(i≤x)
s

s i

s i

+ +
1
s i

s i

1 1

while(i≤x)
f

f i

s i

* +
1
f i

f i3

Figure 8.8. Conversion of eval nodes to revised loop nodes

same PEG as before. The first modification is that we tag each converted θ node with the

fresh variable we designate for it. For example, the conversion process for the first eval

node in Figure 8.8 generates a fresh variable i for one of the θ nodes, and so we tag this

θ node with i. If we ever convert a θ node that has already been tagged from an earlier

eval conversion, we reuse that variable. For example, when converting the second eval

node in Figure 8.8, we reuse the variable i unlike in Figure 8.7 where we introduced

a fresh variable j. This way all the eval nodes are using the same naming convention.

The second modification is that when processing an eval node, we do not immediately

revert the PEG context for the loop body into a statement, but rather we remember it for

later. This is why the bodies of the while-loop statement nodes in Figure 8.8 are still PEG

contexts rather than statements. Thus, we have to introduce a new kind of node, which we

call a loop node, which is like a while-loop statement node, except that it stores the body

(and only the body) of the loop as a PEG context rather than a statement – the remaining

parts of the loop are still converted to statements (in particular, the condition and the

post-loop computation are still converted to statements, as was previously shown in

Figure 8.4). As an example, nodes ¬ and ­ in the right-most part of Figure 8.8 are loop

nodes. Furthermore, because we are leaving PEGs inside the loop nodes to be converted
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for later, we use the phrase “convert lazily” in Figure 8.8. The third modification is that

the newly introduced loop nodes store an additional piece of information when compared

to while-loop statement nodes. In particular, when we replace an eval node with a loop

node, the new loop node will store a link back to the pass node of the eval node being

replaced. We store these additional links so that we can later identify fusable loops: we

will consider two loop nodes fusable only if they share the same pass node. We do not

show these additional links explicitly in Figure 8.8, but all the loop nodes in that Figure

implicitly store a link back to the same pass node, namely node ®.

Second, after converting the φ nodes but before sequencing, we search for loop

nodes which can be fused. Two loop nodes can be fused if they share the same pass

node and neither one is a descendant of the other. For example, the two loop nodes in

Figure 8.8 can be fused. If one loop node is a descendant of the other, then the result of

finishing the descendant loop is required as input to the other loop, so they cannot be

executed simultaneously. To fuse the loops, we simply union their body PEG contexts,

as well as their inputs and their outputs. The step labeled “fuse ¬ & ­” in Figure 8.9

demonstrates this process on the result of Figure 8.8. This technique produces correct

results because we used the same naming convention across eval nodes and we used

fresh variables for all θ nodes, so no two distinct θ nodes are assigned the same variable.

We repeat this process until there are no fusable loop nodes.

Finally, the sequencing process is changed to first convert all loop nodes to while-

loop statement nodes, which involves recursively translating the body PEG context inside

the loop node to a statement. This additional step is labeled “convert loops to statements”

in Figure 8.9. The final SIMPLE program has only one while loop which simultaneously

calculates both of the desired results of the loop, as one would expect.

To summarize, the process described so far is to (1) translate eval nodes into loop

nodes, (2) translate φ nodes into if-then-else statements, (3) perform fusion of loop nodes,
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Figure 8.9. Fusion of loop nodes

and (4) sequence. It is important to perform the fusion of loop nodes after converting

φ nodes, rather than right after converting eval nodes. Consider for example two loops

with the same break condition, neither of which depend on the other, but where one is

always executed and the other is only executed when some branch guard is true (that is to

say, its result is used only on one side of a φ node). If we perform fusion of loop nodes

before converting φ nodes, then these two loop nodes appear to be fusable, but fusing

them would cause both loops to always be evaluated, which is not semantics preserving.

We avoid this problem by processing all φ nodes first, after which point we know that all

the remaining nodes in the PEG context must be executed (although some of these nodes

may be branch nodes). In the example just mentioned with two loops, the loop which is

under the guard (and thus under a φ node) will be extracted and recursively processed

when the φ node is transformed into a branch node. In this recursive reversion, only one

loop will be present, the one under the guard, and so no loop fusion is performed. After

the φ node is processed, there will be only one remaining loop node, the one which is

executed unconditionally. Again, since there is only one loop node, no loop fusion is

performed, so the semantics is preserved.
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Figure 8.10. Reversion of a PEG without applying branch fusion

8.7 Branch Fusion

In the same way that our previously described reversion process duplicated loops,

so does it duplicate branches, as demonstrated in Figure 8.10. Similarly to loop fusion,

our reversion process can be updated to perform branch fusion.

First, we modify the processing of φ nodes to make the reversion of recursive

PEG contexts lazy: rather than immediately processing the extracted true and false PEG

contexts, as was done in Figure 8.5, we instead create a new kind of node called a branch

node and store the true and false PEG contexts in that node. A branch node is like an

if-then-else statement node, except that instead of having SIMPLE code for the true and

false sides of the statement, the branch node contains PEG contexts to be processed later.

As with if-then-else statement nodes, a branch node has a guard input which is the first

child of the φ node being replaced (that is to say, the value of the branch condition). For

example, Figure 8.11 shows this lazy conversion of φ nodes on the same example as

Figure 8.10. The nodes labeled ¬ and ­ in the right-most part of Figure 8.11 are branch

nodes.

Second, after all φ nodes have been converted to branch nodes, we search for

branch nodes that can be fused. If two branch nodes share the same guard-condition

input, and neither one is a descendant of the other, then they can be fused. Their true PEG
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Figure 8.11. Conversion of φ nodes to revised branch nodes

contexts, false PEG contexts, inputs, and outputs are all unioned together respectively.

This process is much like the one for loop fusion and is demonstrated in Figure 8.12

in the step labeled “fuse ¬ & ­”. Notice that when we union two PEGs, if there is

a node in each of the two PEGs representing the exact same expression, the resulting

union will only contain one copy of this node. This leads to an occurrence of common

sub-expression elimination in Figure 8.12: when the false and true PEGs are combined

during fusion, the resulting PEG only has one x*x*x, which allows the computation for

q in the final generated code to be p*x, rather than x*x*x*x.

Finally, the sequencing process is changed to first convert all branch nodes into

statement nodes, which involves recursively translating the true and false PEG contexts

inside the branch node to convert them to statements. This additional step is labeled

“convert branches to statements” in Figure 8.12. The final SIMPLE program has only one

if-then-else which simultaneously calculates both of the desired results of the branches,

as one would expect.

To summarize, the process described so far is to (1) translate eval nodes into

loop nodes, (2) translate φ nodes into branch nodes, (3) perform fusion of loop nodes,
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(4) perform fusion of branch nodes, and (5) sequence. As with loop fusion, it is important

to perform fusion of branch nodes after each and every φ node has been converted to

branch nodes. Otherwise one may end up fusing two branch nodes where one branch

node is used under some φ and the other is used unconditionally.

If two branch nodes share the same guard-condition input but one is a descendant

of the other, we can even elect to fuse them vertically, as shown in Figure 8.13. In

particular, we sequence the true PEG context of one branch node with the true PEG

context of the other, and do the same with the false PEG contexts. Note how, because the

node labeled i© is used elsewhere than just as an input to branch node ¬, we added it as

an output of the fused branch node.
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8.8 Hoisting Redundancies from Branches

Looking back at the branch-fusion example from Figures 8.11 and 8.12, there is

still one inefficiency in the generated code. In particular, x*x is computed in the false

side of the branch even though x*x has already been computed before the branch.

In our original description for converting φ nodes in Section 8.4, we tried to avoid

this kind of redundant computation by looking at the set of nodes that are reachable

from both the true and false children (second and third children) of a φ node. This set

was meant to capture the nodes that, for a given φ , are need to be computed regardless

of which side the φ node goes – we say that such nodes execute unconditionally with

respect to the given φ node. These nodes were kept outside of the branch node (or the

if-then-else statement node if using such nodes). As an example, the node labeled a© in

Figure 8.5 was identified as belonging to this set when translating φ node ­, and this is

why the generated if-then-else statement node does not contain node a©, instead taking it

as an input (in addition to the c1 input which is the branch condition).

It is important to determine as completely as possible the set of nodes that execute
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unconditionally with respect to a φ . Otherwise, code that intuitively one would think

of executing unconditionally outside of the branch (either before the branch or after it)

would get duplicated in one or both sides of the branch. This is precisely what happened

in Figure 8.11: our approach of computing the nodes that execute unconditionally (by

looking at nodes reachable from the true and false children) returned the empty set, even

though x*x actually executes unconditionally. This is what lead to x*x being duplicated

rather than being kept outside of the branch (in the way that a© was in Figure 8.5). A

more precise analysis would be to say that a node executes unconditionally with respect

to a φ node if it is reachable from the true and false children of the φ (second and third

children) or from the branch condition (first child). This would identify x*x as being

executed unconditionally in Figure 8.5. However, even this more precise analysis has

limitations. Suppose for example that some node is used only on the true side of the

φ node, and never used by the condition, so that the more precise analysis would not

identify this node as always executing. However, this node could be used unconditionally

higher up in the PEG, or alternatively it could be the case that the condition of the φ node

is actually equivalent to true. In fact, this last possibility points to the fact that computing

exactly what nodes execute unconditionally with respect to a φ node is undecidable (since

it reduces to deciding if a branch is taken in a Turing-complete computation). However,

even though the problem is undecidable, more precision leads to less code duplication in

branches.

MustEval Analysis To modularize the part of the system that deals with identifying

nodes that must be evaluated unconditionally, we define a MustEval analysis. This

analysis returns a set of nodes that are known to evaluate unconditionally in the current

PEG context. An implementation has a lot of flexibility in how to define the MustEval

analysis. More precision in this analysis leads to less code duplication in branches.
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Figure 8.14 shows the example from Figure 8.11 again, but this time using a

refined process that uses the MustEval analysis. The nodes which our MustEval analysis

identifies as always evaluated have been marked, including x*x. After running the

MustEval analysis, we convert all φ nodes which are marked as always evaluated. All

remaining φ nodes will be pulled into the resulting branch nodes and so handled by

recursive calls. Note that this is a change from Section 8.4, where φ nodes were processed

starting from the lower ones (such as node ­ in Figure 8.5) to the higher ones (such

as node ¬ in Figure 8.5). Our updated process, when running on the example from

Figure 8.5, would process node ¬ first, and in doing so would place node ­ in the true

PEG context of a branch node. Thus, node ­ would get processed later in a recursive

reversion.

Going back to Figure 8.14, both φ nodes are marked as always evaluated, and so

we process both of them. To have names for any values that are always computed, we

assign a fresh variable to each node that is marked by the MustEval analysis, reusing the

same fresh variables for each φ node we convert. For example, in Figure 8.14 we use the

fresh variable s for the node x*x. We then produce a t and f node for each φ node as
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before, replacing nodes that will always be evaluated with parameter nodes of appropriate

variables. Figure 8.11 shows that t for the first φ node is simply 0 whereas f is s*x,

using s in place of x*x. After all the φ nodes have been converted, we perform branch

fusion and sequencing as before. Figure 8.11 shows this updated process. The resulting

code now performs the x*x computation before the branch.

One subtlety is that the MustEval analysis must satisfy some minimal precision

requirements. To see why this is needed, recall that after the MustEval analysis is run, we

now only process the φ nodes that are marked as always evaluated, leaving the remaining

φ nodes to recursive invocations. Thus, if MustEval does not mark any nodes as being

always evaluated, then we would not process any φ nodes, which is a problem since after

the φ -processing phase we require there to be no more φ nodes in the PEG. As a result,

we require the MustEval analysis to be minimally precise, as formalized in the following

definition.

Definition 8.2. We say that a MustEval analysis is minimally precise if for any PEG

context Ψ, S = MustEval(Ψ) implies the following properties:

(x,n) ∈Ψ ⇒ n ∈ S

op(n1 . . .nk) ∈ S ⇒ n1 ∈ S∧ . . .∧nk ∈ S

φ(c,a,b) ∈ S ⇒ c ∈ S

〈s〉(n1 . . .nk) ∈ S ⇒ n1 ∈ S∧ . . .∧nk ∈ S

In essence the above simply states that MustEval must at least return those nodes

which can trivially be identified as always evaluated. To see why this is sufficient to

guarantee that we make progress on φ nodes, consider the worst case, which is when

MustEval returns nothing more than the above trivially identified nodes. Suppose we

have a φ node that is not identified as always evaluated. This node will be left to recursive
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invocations of reversion, and at some point in the recursive invocation chain, as we

translate more and more φ nodes into branch nodes, our original φ node will become

a top-level node that is always evaluated (in the PEG context being processed in the

recursive invocation). At that point we will process it into a branch node.

8.9 Loop-Invariant Code Motion

The process described so far for converting eval nodes in Section 8.3 duplicates

code unnecessarily. In particular, every node used by the loop body is copied into the loop

body, including loop-invariant nodes. Figure 8.15 shows how placing the loop-invariant

operation 99÷x into the loop body results in the operation being evaluated in every

iteration of the loop. In the same way that in Section 8.7 we updated our processing of

φ nodes to hoist computations that are common to both the true and false sides, we can

also update our processing of eval nodes to hoist computations that are common across

all loop iterations, namely loop-invariant computations.

Recall that in Section 6.3 we defined a predicate invariant`(n) which is true if the

value of n does not vary in loop `, meaning that n is invariant with respect to loop `. The

general approach will therefore be as follows: when converting eval`, we simply keep any

node n that is invariant with respect to ` outside of the loop body. Unfortunately, there

are some subtleties with making this approach work correctly. For example, consider the

PEG from Figure 8.15. In this PEG the ÷ node is invariant with respect to loop 1 (99÷x

produces the same value no matter what iteration the execution is at). However, if we

were to evaluate the loop-invariant operation 99÷x before the loop, we would change the

semantics of the program. In particular, if x were 0, the ÷ operation would fail, whereas

the original program would simply terminate and return 1 (because the original program

only evaluates 99÷x if x is strictly greater than 0). Thus, by pulling the loop-invariant

operation out of the loop, we have changed the semantics of the program.
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f:=1;
i:=0;
while(x>i)
{f:=(99÷x)*f;
i:=1+i};

retvar:=f

convert sequence
pass
≤

θ
0 +

1

θ
1 *

eval

÷
99

while(x>i)
{f:=(99÷x)*f;
i:=1+i}

f

f i

1 0

retvar

param(X)

retvar

param(X)

1

11

1

Figure 8.15. Reversion of a PEG without applying loop-invariant code motion

Even traditional formulations of loop-invariant code motion must deal with this

problem. The standard solution is to make sure that pulling loop-invariant code outside of

a loop does not cause it to execute in cases where it would not have originally. In our PEG

setting, there is a simple but very conservative way to guarantee this: when processing an

eval` node, if we find a node n that is invariant with respect to `, we pull n outside of the

loop only if there are no θ or φ nodes between the eval` node and n. The intuition behind

disallowing φ and θ is that both of these nodes can bypass evaluation of some of their

children: the φ chooses between its second and third child, bypassing the other, and the

θ node can bypass its second child if the loop performs no iterations. This requirement is

more restrictive than it needs to be, since a φ node always evaluates its first child, and

so we could even allow φ nodes, as long as the loop-invariant node was used in the first

child, not the second or third. In general, it is possible to modularize the decision as to

whether some code executes more frequently than another in an evaluation-condition

analysis, or EvalCond for short. An EvalCond analysis would compute for every node

in the PEG context an abstract evaluation condition capturing under which cases the

PEG node is evaluated. EvalCond is a generalization of the MustEval analysis from

Section 8.8, and, as with MustEval, an implementation has a lot of flexibility in defining

EvalCond. In the more general setting of using an EvalCond analysis, we would only

pull out a loop-invariant node if its evaluation condition is implied by the evaluation

condition of the eval node being processed.
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Rewrite eval`(a,pass`(c)) to φ(eval`(c,Z),eval`(a,Z),eval`(peel`(a),pass`(peel`(c))))
to start loop peeling. Then apply the following rewrite rules until completion:

peel`(n) rewrites to


n = θ`(a,b) b
invariant`(n) n
otherwise n = op(a1, . . . ,ak) op(peel`(a1), . . . ,peel`(ak))

eval`(n,Z) rewrites to


n = θ`(a,b) a
invariant`(n) n
otherwise n = op(a1, . . . ,ak) op(eval`(a1,Z), . . . ,eval`(ak,Z))

Figure 8.16. Rewrite process for loop peeling

Since we now prevent loop-invariant code from being hoisted if it would execute

more often after being hoisted, we correctly avoid pulling 99÷x out of the loop. However,

as is well known in the compiler literature [6], even in such cases it is still possible to pull

the loop-invariant code out of the loop by performing loop peeling first. For this reason,

we perform loop peeling in the reversion process in cases where we find a loop-invariant

node that (1) cannot directly be pulled out because doing so would make the node evaluate

more often after hosting and (2) is always evaluated provided the loop iterates a few

times. Loop peeling in the reversion process works very similarly to loop peeling as

performed in the engine (see Section 4.3) except that, instead of using equality analyses,

it is performed destructively on the PEG representation. Figure 8.16 shows the rewrite

process for loop peeling on a CFG-like PEG. Using the same starting example as before,

if(x≤0)
then
{r:=1}

else
{d:=99÷x;
f:=1;
i:=0;
while(x>1+i)
{f:=d*f;
i:=1+i};

r:=d*f};
retvar:=r

pass

≤

θ
0 +

1

θ
1 *

ϕ

÷
99

eval1≤
0

ϕ

÷
99

1≤
0

while(x>1+i)
{f:=d*f;
i:=1+i};

r:=d*f;

r

f i

1 0

d

convert
eval

param(X)

retvar

peel

pass
≤

θ
0 +

1

θ
1 *

eval

÷
99

retvar

param(X) param(X)

retvar

1

1

1

1

1

1

1

1

sequence

Figure 8.17. Reversion of a PEG after peeling the loop once
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Figure 8.17 shows the result of this peeling process (step labeled “peel”). After peeling,

the φ node checks the entry condition of the original loop and evaluates the peeled loop

if this condition fails. Notice that the eval and ≤ nodes in the new PEG loop refer to the

second child of the θ nodes rather than θ nodes themselves, effectively using the value

of the loop variables after one iteration. An easy way to read such nodes is to simply

follow the edges of the PEG; for example, the + node can be read as “1+θ1(. . .)”.

In general, we repeat the peeling process until the desired loop-invariant nodes

used by the body of the loop are also used before the body of the loop. In our example

from Figure 8.17, only one run of peeling is needed. Notice that, after peeling, the÷ node

is still loop-invariant, but now there are no φ or θ nodes between the eval node and the

÷ node. Thus, although 99÷x is not always evaluated (such as when x≤0 is true), it is

always evaluated whenever the eval node is evaluated, so it is safe to keep it out of the

loop body. As a result, when we convert the eval nodes to loop nodes, we no longer need

to keep the ÷ node in the body of the loop, as shown in Figure 8.17. Figure 8.17 also

shows the final generated SIMPLE program for the peeled loop. Note that the final code

still has some code duplication: 1+i is evaluated multiple times in the same iteration,

and d*f is evaluated both when the while-loop guard succeeds and when it fails. These

redundancies are difficult to remove without using more advanced control structures that

are not present in SIMPLE. Our implementation can take advantage of more advanced

control structures to remove these remaining redundancies. We explain these techniques

in Section 8.10.

We should also note that, since the EvalCond analysis can handle loop operators

and subsumes the MustEval analysis, it is possible to convert φ nodes before convert-

ing eval nodes, although both still need to happen after the loop-peeling phase. This

rearrangement enables more advanced redundancy elimination optimizations.
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pass

≥

θ
*

eval

param(n)

retvar

-
8

ϕ

true≤

ϕ

0

2

x:=n;
while(n≥x)
{x:=x-8;
if(x≤0)
{break};

x:=x*2};
retvar:=x

convert
to

PEG

Figure 8.18. Conversion of a SIMPLE program with a break to a PEG

8.10 Advanced Control Flow

So far we have been reverting PEGs to SIMPLE programs. However, SIMPLE

has simplistic control flow, whereas more realistic languages such as Java have more

advanced and very useful control flow, specifically breaks and continues. Although

programs using these constructs can be translated to use only basic branch and loop

structures, this translation often results in less efficient and more complicated CFGs. In

order to revert PEGs resulting from realistic languages to efficient CFGs, the reversion

process needs to be able to handle advanced control structures. Here we explain how the

reversion process can be revised to accomplish this.

Figure 8.18 shows how a SIMPLE program with a break is represented as a PEG.

The PEG is significantly more complicated since break introduces a new exit point for

the loop. In particular, the loop has two break conditions: the negation of the loop guard,

and the guard of the break statement. The φ node used by the pass node indicates that
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if the loop guard fails then the loop ends, otherwise if the break guard passes then the

loop ends. The φ node used by the eval node indicates that if the loop guard holds in

the last iteration of the loop then the loop must have broken via the break statement

so it must return the state of x at that point (which is the state of x at the beginning of

the loop iteration minus 8), otherwise the loop must have ended due to the loop guard

failing so it can simply return the state of x at the beginning of the loop iteration. In

order to untangle this PEG and revert it to an efficient CFG, we must take advantage of

the fact that the result of the loop and the break condition of the loop are both φ nodes

with the same guard. This requires a more complex reversion process, but this process

rewards us by producing more efficient CFGs even for simple loops. For example, this

revised process would prevent the code duplication of 1+i in the result in Figure 8.17.

The revised process is accomplished by making two major changes: introducing guarded

PEG contexts which are eventually converted to branching CFGs, and changing loop

nodes to use these guarded PEG contexts.

Before when we replaced an eval node with a loop node, we would create three

new PEG contexts: one for the condition, one for the body, and one for the final result.

After loop fusion, we would convert each of these to statements and then use the results

to construct a while-loop statement node. Now, instead of creating three PEG contexts,

we will construct a single PEG context to describe the loop. This single PEG context

updates the values of the loop variables if the break condition fails, and it updates the

value of the result variable if the break condition passes. This PEG context also has

a distinguished node labeled as the guard, which in this case is the break condition of

the loop. We replace the eval node with a revised loop node which instead stores this

guarded PEG context (although it still also remembers the associated pass node). The

top-left diagram in Figure 8.19 is the PEG from Figure 8.18. Figure 8.19 shows how the

loop is extracted into a guarded PEG context (below) and the eval node is replaced with
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pass
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m:=x-8;
branch on m≤0

r:=x

r:=mx:=m*2

retvar:=r

x:=n

merge
true
exits

Figure 8.19. Reversion of a PEG to a CFG

the revised loop node containing that guarded PEG context (to the right). The process for

constructing the guarded PEG context is described later.

We can still apply loop fusion to these revised loop nodes as we did before by

taking the union of the guarded PEG contexts (the distinguished guard node will be the

same in the PEG contexts of both loop nodes since they pertain to the same pass node).

Afterwards, when it comes time to sequentialize the PEG, we need to first turn this loop

node into a CFG node (instead of a statement node). A CFG node contains a CFG with a

single entry and multiple exits. When sequencing the PEG, all of these exits are routed

to whatever CFG block sequencing determines is next after the CFG node; thus a CFG

node is simply a generalization of a statement node.

In order to convert a loop node to a CFG node, we first convert the contained
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guarded PEG context into a special single-entry CFG. This process is described later,

but Figure 8.19 shows the CFG resulting from our example guarded PEG context. Each

exit in this CFG is marked as either true or false, indicating whether that edge is taken

if the distinguished guard node is true or false. Since the distinguished guard node of

our guarded PEG context was the break condition of the loop, the exits marked as true

are taken when the loop should end, and the exits marked as false are taken when the

loop should continue. So, we can turn this CFG into the desired loop by routing all the

exits marked as false back to the head of the loop, as exemplified in Figure 8.19. We

then replace the loop node with the CFG node containing the resulting CFG, as shown in

Figure 8.19.

In the steps described above we left two processes unexplained. The first such

process is how to construct the guarded PEG context. We assign a fresh variable x to each

relevant θ node as before. Also like before, we construct nodes c, nx, and r representing

the loop’s break condition, loop-variable update, and desired result respectively in terms

of these fresh variables. Then, we construct a PEG context mapping each θ variable x

to φ(c, param(x),nx) and mapping xr (fresh) to φ(c,r, param(xr)). The assignment for

the θ variable x means that, if the loop’s break condition holds then the loop is ending

immediately so there is no need to update the loop variable, otherwise the loop is iterating

one more time so we should update the loop variable to its next value. The guarded PEG

context in Figure 8.19 says that loop variable x should not change if the loop’s break

condition holds, and should be updated to (x− 8) ∗ 2 otherwise. The assignment for

xr means that, if the loop’s break condition holds then the loop is ending so we should

finally calculate the desired value, and otherwise we should do nothing. The use of

param(xr) is a slight trick, relying on the fact that no one actually uses this variable until

after the loop terminates, by which point it would have been assigned the value of r.

The guarded PEG context in Figure 8.19 says that the “result” variable r should not be
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changed if the loop’s break condition is false, should be x− 8 if otherwise the loop’s

guard holds (indicating that the loop exited through the break statement), and should

be just x otherwise (because the loop exited from the beginning). c is the distinguished

guard node so that edges marked true or false after translating this guarded PEG context

to a CFG (described next) correspond to edges exiting the loop or continuing the loop

respectively. Figure 8.19 shows the loop’s break condition labeled as the guard.

Lastly, we describe how a guarded PEG context can be reverted to a single-

entry CFG with multiple exits marked as either true or false. We step through the

reversion of the guarded PEG context constructed in Figure 8.19. This reversion is

shown in Figure 8.20. To make the explanation simpler, let us assume that during the

entire reversion process the following simplifying replacements are applied automatically

should the opportunity arise: a φ node whose first child is true is replaced with its second

child; a φ node whose first child is f alse is replaced with its third child; and a node of

the form φ(¬(c), t, f ) is replaced with φ(c, f , t). How we revert a guarded PEG context

depends on the distinguished guard node, so we describe the various cases in turn as we

step through the reversion process.

If the distinguished guard node is neither true, false, nor a negation, then we

must determine what condition we want to branch on first. This condition may be the

distinguished guard node, but if the guard node is a φ then the guard node itself depends

on another condition, so it would be more efficient to branch on that condition first. To

determine the appropriate branch node C, first initialize C as the guard node. While the

current value of C is itself a φ node, update the value of C to the first child of that φ node.

Once this completes, C is the node for the first branch condition that must be evaluated.

In the top diagram of Figure 8.20, C will be n≥x. After determining the node C to branch

on, we construct a guarded PEG context Ψt like the current one except with all uses of

C replaced with true (and simplifying φs automatically). Similarly we construct Ψ f by
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Figure 8.20. Reversion of a guarded PEG context to a CFG with exits marked true/false
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replacing C with f alse (and simplifying). We recursively convert each of these guarded

PEG contexts to CFGs, then connect them with a CFG block which branches to the first

if C is true and to the second if C is false. In our example, the branch for the first stage

is n≥x and the resulting guarded PEG contexts Ψt and Ψ f are shown underneath in

Figure 8.20.

In the second stage (reading left to right) we can apply the same process as

above, branching on x-8≤0 this time. However, we have an opportunity here to prevent

some code duplication. In particular, the node x-8 will be evaluated regardless of the

branch condition, so we can improve by assigning its value to a variable before branching

and then having each branch use that variable instead of the original node. Thus after

determining the branch condition but before creating Ψt and Ψ f , we determine the set of

nodes which will always be evaluated regardless of the branch condition. Then, when

creating Ψt and Ψ f , each use of one of these nodes is replaced with a parameter node of

a fresh variable, making sure to reuse the same variables across Ψt and Ψ f . We construct

a context Ψ which maps each of these fresh variables to its appropriate node and also

calculates the branch condition, and then convert Ψ to a CFG. Finally, we route all the

exits of this CFG to the branch block, which branches to the CFGs for the revised Ψt and

Ψ f as before. In the example in Figure 8.20, Ψ simply assigns x-8 to the fresh variable m

and computes the branch condition as m≤0, so we combined the resulting simple CFG

together with the branch block.

The remaining stages in the example all have either a true or false as their

distinguished guard node. In these cases, we simply convert the PEG context (without

the distinguished guard node) to a CFG. Then we label all the exits of this CFG with

either true or false depending on the guard node, as shown in Figure 8.20. The final result

of the reversion of this example is the bottom-center diagram in Figure 8.19.

There is one remaining case we need to cover not illustrated in the example: when
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the distinguished guard node is of the form ¬(c). In this case, we make a recursive call

with c as the distinguished guard node, and then simply swap the true and false markings

on the exits in the resulting CFG.

We have shown how the improved reversion process can be applied to loops with

advanced control structure. The process for converting φ nodes can be modified in a

similar way. When the conditions of different φ nodes are related (say due to short-

circuiting), this can produce more efficient CFGs with more advanced control flow. There

are more optimizations besides the ones we have presented above, but we feel that these

are the most critical to producing efficient CFGs and the most challenging.
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Chapter 9

Representing Effects

So far we have dealt with mostly pure programs. In Section 7.4 there were some

complications due to non-termination, but we mostly bypassed those by allowing the

conversion from imperative code to PEGs to improve the termination behavior of a

program Yet, in order to handle realistic programs such as occur in Java or LLVM, we

needed a way to handle effects. At first we wanted to handle the heap, which had a

simple solution that we describe in Section 9.1. Eventually, though, we wanted to handle

arbitrary effects such as exceptions and non-determinism. So we informally extended

our technique for heap effects to arbitrary effects, as we explain in Section 9.2. Now we

finally formalize the semantics of this technique using category theory in Section 9.3.

9.1 Representing the Heap

There are two fundamental operations for working with a heap: load and store.

In imperative code, a load takes only one argument: the address in memory to load a

value from. However, the value load returns also depends on the state of the heap at

the time the operation executes. For imperative code, the syntax specifies the order in

which operations occur, so the time at which load executes is unambiguous. However,

PEGs have no order of evaluation, nor do we want them to because it would significantly

complicate the equational reasoning we do with PEGs.

122
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To address this problem, we decided to explicitly encode the state of the heap in

PEGs. That is, load in PEGs takes two arguments: the address in memory to load a value

from and the state of the heap to operate on. Similarly, store takes three arguments: the

address in memory, the value to store, and the state of the heap to operate on. Furthemore,

store outputs the state of the heap resulting from the operation. Then, if in the imperative

code a load occurs immediately after a store, in the corresponding PEG the output of

the translated store is routed to the input of the translated load, making the sequential

order of these operations explicit in the PEG. This technique is similar to the effect

witnesses used by Terauchi et al. to incorporate heap operations into pure functional

programming [82]. However, our load operation does not output a state of the heap,

which Terauchi et al. use primarily for execution purposes (and we run into a similar

need when revertings effectful PEGs to CFGs as explained in Stepp’s thesis [74]).

We can justify this technique semantically by having a heap-summary “value”

mapping addresses to values. load and store can then be defined as standard mathematical

functions operation on such a heap summary. So, although this heap summary is not

explicit in the imperative code, by making it explicit in the PEG we can do the same

equational reasoning we did with pure operations.

9.2 Extending to Arbitrary Effects

Eventually we decided to handle all effects that arise in Java and LLVM. The most

common such effect, besides the heap which we had already addressed, was exceptions.

For example, a division by zero in Java causes an ArithmeticException to be thrown.

As such, in order to handle division we needed some way to represent exceptions.

At first, we represented exceptions as explicit control flow. Unfortunately, this

became cumbersome both for equational reasoning and for reverting PEGs back to CFGs

with exceptions. So, we decided to simply adapt the technique we had used for heap
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operations to exceptional operations. After all, that technique worked by making the

sequencing of heap operations explicit in the PEG, so our intuition was that it should work

for arbitrary effects. As such, we made division take three inputs, the two explicitly input

integers and the effect witness, and produce two outputs, the explicitly output integer and

the new effect witness. Then effect witnesses were passed between effectful operations

to make their order of execution explicit in the PEG. We already briefly showed how to

apply this technique to preserving non-termination in Section 7.4.

This subtle adjustment marks a rather significant change. In particular, we moved

from the language of expressions, where nodes have multiple inputs and a single output,

to a language akin to string diagrams [8, 19], where nodes have multiple inputs and

multiple outputs. We dealt with this by having little projection nodes that would select

the desired output, making the structure look like an expression, but this was more an

implementation artifact rather than an essential technique.

Unfortunately, while effect witnesses make sense intuitively, the semantic justifi-

cation we used when dealing with heaps does not translate to other effects like exceptions.

In particular, division does not take an exception summary and integers and output a

new exception summary and integer. If there is an exception, then there is no integer to

output, so we cannot use the implicit state concept that worked for heaps. Fortunately, we

can still formalize effect witnesses; we just need a more advanced semantic justification

technique, namely category theory.

9.3 Categorical Semantics of Effect Witnesses

A category is a very natural way to formalize imperative programs. Morphisms

and programs both have an input and an output. Morphisms and programs both have a

way to be sequenced provided the inputs and outputs match appropriately. For any object

or context, there is an identity morphism or empty program that essentially does nothing
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except propagate the input directly to the output.

Typical imperative programs have a little more structure though. For example,

if we have a program p with input context Γ and output context Γ′ and we have some

fresh variable x with type τ , then there is a program with input Γ,x : τ and output

Γ′,x : τ that simply propagates the value of x. We can formalize this categorically

using a premonoidal category [65]. A premonoidal category has a binary function on

objects ⊗ which corresponds to combining two contexts together. Also, for any object

(i.e. context) Ḡ, there is a functorial function on morphisms mapping f : G→ G′ to

f ⊗ Ḡ : G⊗ Ḡ→ G′⊗ Ḡ, corresponding to extend f to propagate the unused context Ḡ.

Similarly, there is a functorial function Ḡ⊗ f propagating the unused context on the left

side.

If the imperative language is pure, then there is yet more structure. Suppose we

have programs p1 and p2 with inputs Γ1 and Γ2 and outputs Γ′1 and Γ′2 respectively. We

can sequence p1 and p2 by propagating contexts, using p1⊗Γ2 followed by Γ′1⊗ p2.

We can also do the reverse order using Γ1⊗ p2 followed by p1⊗Γ′2. However, since

these two programs are pure, their order of execution does not matter, so these two

programs will be equivalent semantically. As such, we can simultaneously represent both

of them with p1⊗ p2, essentially executing p1 and p2 side by side. We can formalize this

categorically using a monoidal category [50]. This is essentially a premonoidal category

where ⊗ actually forms a bifunctor, meaning it can combine two morphisms together

such that order of execution does not matter.

A typical imperative language, though, is a mix of pure and impure programs.

Pure programs are those for which order of execution with any other program is irrelevant.

Categorically, this is called the center of a premonoidal category: those morphisms

f : G→ G′ such that for any f̄ : Ḡ→ Ḡ′ the composition of f ⊗ Ḡ followed by G′⊗ f̄

is equal to G⊗ f̄ followed by f ⊗ Ḡ′ (and similarly swapping left and right sides). The
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center of a premonoidal category will always actually be a monoidal category. When ⊗

is actually the categorical product for the center, this is a slightly special case of Freyd

categories [66], which are equivalent [42] to arrows [43], which are a generalization of

strong monads on Cartesian categories [57], all of which have well known connections

to effects. Note that ⊗ is well defined on pairs of morphisms when either the left or the

right is in the center of the premonoidal category.

Diagrams and Order Irrelevance We have been emphasizing the role of order irrele-

vance. To understand why, let us explain how these concepts apply to effectful PEGs, or

more generally to string diagrams. With both PEGs and string diagrams, nodes sort of

float around. There is no clear ordering of the nodes except when the output of one node

feeds into the input of another. There can be pairs of nodes where nothing flows, even

transitively, from one to the other or vice versa, and so for these nodes the ordering is

ambiguous. They are in a sense sitting side by side, and essentially correspond to using

⊗ to combine two diagrams by placing them side by side. So, for the semantics of PEGs

or string diagrams to make sense, it is important that the order of execution is irrelevant

for any nodes or diagrams with no direct flow of information between them.

Monoidal categories guarantee that the order of execution for any pair of dis-

connected morphisms. As such, string diagrams are actually an internal language for

monoidal categories. This is why we had no problems using PEGs for pure computations.

Unfortunately, premonoidal categories do not have such a guarantee. We can have impure

operations op1 and op2, and it is not clear what the semantics for node op1 sitting next

to node op2 should be since op1⊗op2 is undefined (and cannot be functorially defined

since their order of execution affects the semantics). In fact, this tells us that there cannot

be any monoidal category with morphisms op1 and op2.
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Partially Monoidal Categories Fortunately, using the concept of effect witnesses, we

can turn any premonoidal category into a partially monoidal category. By this term

we mean a monoidal category except with ⊗ being a partial bifunctor such that, given

f1 : G1→ G′1 and f2 : G1→ G′2, f1⊗ f2 is defined whenever G1⊗G2 and G′1⊗G′2 are

defined. This means that not all morphisms/diagrams/programs can be placed by side,

but whenever it is possible for two such morphisms/diagrams/programs to be connected

essentially side by side then their order of execution will be irrelevant. In other words,

given a valid PEG or diagram, any rearrangement of that PEG or diagram will also be

valid and have the same semantics.

The intuition is that there should be only one effect witness live at any point in

time. So, if two diagrams both use effect witnesses then they cannot be placed side by

side since that would require two effect witnesses to be live at the same point in time.

In other words, if G and G′ both contain an effect witness, then G⊗G′ is undefined;

otherwise, if at most one of G and G′ contains an effect witness, then G⊗G′ is defined.

With that intuition, given a premonoidal category P, we define the following

partially monoidal category EWP whose string diagrams correspond to our effectful

PEGs:

• For any object G of P, we have two objects Ḡ and Ĝ corresponding to G without

and with an effect witness respectively.

• For any two objects G and G′ of P, the morphisms from Ḡ to Ḡ′ are the morphisms

from G to G′ in the center of P, and the morphisms from Ĝ to Ĝ′ are the morphisms

from G to G′ in P (and there are no morphisms between Ḡ and Ĝ′).

• Identity and composition are inherited from P.

• For any two objects G and G′ of P, Ḡ⊗ Ḡ′ is defined as G⊗G′, and Ḡ⊗ Ĝ′ and

Ĝ⊗ Ḡ′ are defined as Ĝ⊗G′ (and Ĝ⊗ Ĝ′ is undefined).
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• Given a pair of morphisms f1 : G1→ G′1 and f2 : G2→ G′2 of EWP, our definition

of ⊗ on objects guarantees that f1⊗ f2 is well defined in P whenever G1⊗G2 and

G′1⊗G′2 are defined.

In practice, we actually use different kinds of effect witnesses and will even allow

multiple effect witnesses of certain kinds to be live at the same point in time. This has to

do with more specialized properties of the effect being witnessed, such as the fact that

the state of the heap can be expressed as a heap-summary value. Nonetheless, we leave

thorough investigation into such extensions of this technique to future work.



Chapter 10

The Peggy Implementation

In this chapter we discuss details of our concrete implementation of equality

saturation as the core of an optimizer for Java bytecode and LLVM bitcode programs.

We call our system Peggy, named after our PEG intermediate representation. As opposed

to the previous discussion of the SIMPLE language, Peggy can operate on the entire Java

bytecode instruction set or LLVM bitcode instruction set, complete with side effects,

method calls, heaps, and exceptions. Recall from Figure 5.1 that an implementation

of our approach consists of three components: (1) an IR where equality reasoning is

effective, along with the translation functions ConvertToIR and ConvertToCFG, (2) a

saturation engine Saturate, and (3) a global profitability heuristic SelectBest. We now

describe how each of these three components work in Peggy.

10.1 Intermediate Representation

Peggy uses the PEG and E-PEG representations which, as explained in Chapter 6,

are well suited for our approach. Because Java and LLVM are effectful higher-order

languages, Peggy has to handle effects and method/function calls. Effects are represented

in PEGs usin the techniques described in Chapter 9, but reverting effectful PEGs to CFGs

comes with challenges we did not address in Chapter 8. Method/function calls have a

few subtleties of their own. Here we describe our solution to these in more explicit detail.
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invoke

ρσ ρv

σ obj1 C1.foo params

a b

C1 obj1 = ...
C2 obj2 = ...
T x = obj1.foo(a,b);
T y = obj2.bar(x);

(b)(a)

invoke

paramsC2.barobj2

ρσ ρv

Figure 10.1. Representation of Java method calls in a PEG: (a) the original Java source
code and (b) the corresponding PEG

Heap We model the heap using heap summaries which we call σ nodes. Any operation

that can read and/or write some object state may have to take and sometimes return

additional σ values. Because Java and LLVM stack and register variables cannot be

modified except by direct assignments, operations on them are precise in our PEGs and

do not involve σ nodes. None of these decisions of how to represent the heap are built

into the PEG representation. As with any heap-summarization strategy, one can have

different levels of abstraction, and we have simply chosen one where all objects are

put into a single summarization object σ . Because we handle other effects as well, and

these effects can have their own impact on the heap, we actually use effect witnesses as

described in Chapter 9, though we still denote them with σ .

Method Calls Figure 10.1 shows an example of how we encode two sequential method

calls in a PEG. Each non-static method call operator has four parameters: the input

σ effect witness, the context object of the method call, a method identifier, and a list

of actual parameters. A function call or static method call simply elides the context

object. Logically, our invoke nodes return a tuple (σ ,v), where σ is the resulting effect

witness and v is the return value of the method. The operator ρσ is used to project out the

effect witness from this tuple, and ρv is used to project out the return value. From this
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figure we can see that the call to bar uses the output effect witness from foo as its input

effect witness. This is how we encode the control dependency between the two invoke

operators. Many other Java and LLVM operators have side effects such as array accesses,

field accesses, object creation, and synchronization. They similarly take n effect witness

as input and sometimes return one as output, encoding the dependencies between the

different effectful operations.

Reverting Uses of the Heap One issue that affects our Peggy implementation is that

the effect witnesses cannot be duplicated or copied when running the program. More

technically, effect witnesses must be used linearly in the CFG. Linear values complicate

the reversion presented in Chapter 8, which assumes any value can be duplicated freely. In

order to adapt the algorithm from Chapter 8 to handle linear values, one has to “linearize”

effect witneses, which consists of finding a valid order for executing operations so that

the effect witness does not need to be duplicated. Since PEGs come from actual programs

which use the effect witnesses linearly, we decided to linearize the uses of the effect

witnesses within each branch node and loop node generated in the reversion algorithm.

This approach, unfortunately, is not complete. There are cases (which we can detect while

running the conversion algorithm) where partitioning into branch nodes and loop nodes

and then trying to solve linearity constraints, leads to unsolvable constraints, even though

the constraints are solvable when taking a global view of the PEG. Experimentally, this

incompleteness occurs in less than 3% of the Java methods we compiled (in which case

we simply do not optimize the method). We briefly present the challenges behind solving

this problem and some potential solutions.

Consider the SIMPLE style code shown in Figure 10.2(a), and its PEG repre-

sentation in Figure 10.2(b). Suppose that g is a unary operation that reads the heap and

returns a value but does not make any heap modifications. In the PEG representation,
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σz 1 2

g

f

if (z)
{ x := 1 }

else
{ x := 2 }

y := g(x);
if (z)

{ f() }
retvar := y;

(a) (b) (c)
σ z

g

ϕ

ϕ if (c)
{ a := 1;

f() }
else 
{ a := 2 }
σi c

aσo

Figure 10.2. Example demonstrating challenges of linearizing heap values.

g takes two inputs, an effect witness plus its explicit input, and g also returns a single

value, the computed return value of g, but g does not return a new effect witness since it

does not modify the heap. We also assume that f is a nullary operation that reads and

writes to the heap. For example, f could just increment a global on the heap. In the PEG

representation, f takes an input effect witness, and produces an output effect witness. We

see from the code in part (a) that its return value is produced by g. However, since f may

have modified the heap, we must also encode the new effect witness as a return value.

Thus, the code in part (a) returns two values: its regular return value, and a new effect

witness, as shown with the two arrows in part (b).

Looking at the PEG in Figure 10.2(b), we already see something that may be

cause for concern: the σ node, which represents a linear value in imperative code, is used

in three different places. However, there is absolutely nothing wrong with doing this

from the perspective of PEGs, since PEGs treat all values (including effect witnesses)

functionally. The only problem is that, to convert this PEG back to imperative code, we

must find a valid ordering of instructions so that we can run all the instructions in the

PEG without having to duplicate the effect witness. The ordering in this case is obvious:

since f modifies the heap, and g does not, run g first, followed by f.
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The problem with our current approach is that our reversion algorithm first creates

and fuses branch nodes, and then it tries to linearize effect witnesses in each branch node.

For example, Figure 10.2(c) shows the PEG after creating a branch node for each of the

two φ nodes in part (a) and fusing these two branch nodes together. Unfortunately, once

we have decided to place f inside the branch node, the linearization constraints are not

solvable anymore: f can no longer be executed after g since g relies on the result of the

branch node that executes f. This example shows the source of incompleteness in our

current reversion algorithm for linear values, and points to the fact that one needs to solve

the linearization constraints while taking a global view of the PEG.

However, devising a complete linearization algorithm for effect witnesses that

takes a global view of the PEG is non-trivial. Effect witnesses can be used by many

functions, some of which may commute with others. Other functions may occur in

different control paths, such as one on the true path of a branch and the other on the false

path. In a PEG, identifying which situations these functions fall in is not a simple task,

especially considering that PEGs can represent complex loops and branches. This gets

more challenging when using the saturation engine. The saturation engine can determine

that a write is accessing a different array index or field than a read, and therefore the write

commutes with the read. This information is not available to the reversion algorithm,

though, so it cannot determine that the write can be safely moved after the read.

Fortunately, in his thesis Stepp describes a number of techniques that address this

issue [74]. We will present a high-level summary here. First, the problem in Figure 10.2

is caused by g not outputing an effect witness. So, Stepp has g output an effect witness

so that it is subsequently used by f, making the ordering explicit in the PEG. This way

any PEG translated from imperative code is guaranteed to be revertible. Then, during

equality saturation he adds an equivalence indicating that the output effect witness of g is

equivalent to the input effect witness of g, which enables equality saturation to optimize
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f as if its input were the input to g as in Figure 10.2. Finally, he modifies the global

profitibality heuristic so that it only selects linearizable PEGs. The original PEG, now

guaranteed to be linearizable, is still in the E-PEG, so at worst that option will always

be available. Thanks to these improvements, while linearization constraints still inhibit

optimization, we can at least reliably handle effectful programs.

Equivalences The E-PEG data structure contains a large number of PEGs and stores

the equivalences between their nodes. The number of equivalences discovered during

saturation can be exponential in the number of axioms applied. So far in this thesis, I have

depicted equivalences as dotted lines between E-PEG nodes. In reality, storing a distinct

object for each equivalence discovered would require a large amount of memory. Instead,

we represent equivalences between nodes by partitioning the nodes into equivalence

classes and simply storing the members of each class. Before saturation, every node

is in its own equivalence class. Saturation proceeds by merging pairs of equivalence

classes A and B together whenever an equality is discovered between a node in A and

a node in B. The merging is performed using Tarjan’s union-find algorithm [34]. This

approach makes the memory overhead of an E-PEG proportional to the number of nodes

it contains, requiring little additional memory to track the equivalences between nodes.

10.2 Saturation Engine

The saturation engine’s purpose is to repeatedly dispatch equality analyses. In

our implementation an equality analysis is a pair (p, f ) where p is a trigger, which is an

E-PEG pattern with free variables, and f is a callback function that should be run when

the pattern p is found in the E-PEG. While running, the engine continuously monitors the

E-PEG for the presence of the pattern p. When it is discovered, the engine constructs a

matching substitution, which is a map from each node in the pattern to the corresponding



135

1: function Saturate(peg : PEG,A : set of analyses) : EPEG
2: let epeg = CreateInitialEPEG(peg)
3: while ∃(p, f ) ∈ A,subst ∈ S . subst = Match(p,epeg) do
4: epeg := AddNodesAndEqualities(epeg, f (subst,epeg))
5: return epeg

Figure 10.3. Peggy’s Saturation Engine. We use S to denote the set of all substitutions
from pattern nodes to E-PEG nodes.

E-PEG node. At this point, the engine invokes f with this matching substitution as a

parameter, and f returns a set of equalities that the engine adds to the E-PEG. In this

way, an equality analysis will be invoked only when events of interest to it are discovered.

Furthermore, the analysis does not need to search the entire E-PEG because it is provided

with the matching substitution.

Occasionally the callback f will want to add new does to the E-PEG because

it has found a new way to represent values. To do so, f provides the engine with a

specification of these new nodes. The engine then checks to see if nodes matching the

specification, or congruently equivalent nodes, are already present in the E-PEG. If so,

then it imposes the equivalences specified by f onto the existing nodes. If not, it creates

new nodes with the appropriate equivalences. This technique significantly reduces our

memory usage.

Figure 10.3 shows the pseudocode for Peggy’s saturation engine. On line 2, the

call to CreateInitialEPEG takes the input PEG and generates an E-PEG that initially

contains no equality information. The Match function invoked in the loop condition

performs pattern matching: if an analysis trigger occurs inside an E-PEG, then Match

returns the matching substitution. Once a match occurs, the saturation engine uses

AddNodesAndEqualities to add the nodes and equalities computed by the analysis to the

E-PEG.
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A remaining concern in Figure 10.3 is how to efficiently implement the existential

check on line 3. The main challenge in applying axioms lies in the fact that one axiom

application may trigger others. A naı̈ve implementation would repeatedly check all

axioms once an equality has been added, which leads to a lot of redundant work since

many of the axioms will not be triggered by the new equality. Our original attempt at

an implementation used this approach, and it was unusably slow. To make our engine

efficient, we use well known techniques from the AI community. In particular, our

problem of applying axioms is very similar to that of applying rules to infer facts in

rule-based systems, expert systems, or planning systems. These systems make use of an

efficient pattern-matching algorithm called the Rete algorithm [36]. Intuitively, the Rete

algorithm stores the state of every partially completed match as a finite-state machine.

When new information is added to the system, rather than reapplying every pattern

to every object, it simply steps the state of the relevant machines. When a machine

reaches its accept state, the corresponding pattern has made a complete match. We have

adapted this pattern-matching algorithm to the E-PEG domain. The patterns of our Rete

network are the preconditions of our axioms. These generally look for the existence of

particular sub-PEGs within the E-PEG, but can also check for other properties such as

loop invariance. When a pattern is complete it triggers the response part of the axiom,

which can build new nodes and establish new equalities within the E-PEG. The creation

of new nodes and equalities can cause other state machines to progress, and hence earlier

axiom applications may enable later ones.

In general, equality saturation may not terminate. Termination is also a concern

in traditional compilers where, for example, inlining recursive functions can lead to

unbounded expansion. By using triggers to control when equality edges are added (a

technique also used in automated theorem provers), we can often avoid infinite expansion.

The trigger for an equality axiom typically looks for the left-hand side of the equality and
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then makes it equal to the right-hand side. On occasion, though, we use more restrictive

triggers to avoid expansions that are likely to be useless. For example, the trigger for

the axiom equating a constant with a loop expression used to add edge D in Figure 3.3

also checks that there is an appropriate pass expression. In this way, it does not add a

loop to the E-PEG if there was not some kind of loop to begin with. Using our current

axioms and triggers, our engine completely saturates 84% of the methods in our Java

benchmarks.

In the remaining cases, we impose a limit on the number of expressions that the

engine fully processes (where fully processing an expression includes adding all the

equalities that the expression triggers). To prevent the search from running astray and

exploring a single infinitely deep branch of the search space, we currently use a breadth-

first order for processing new nodes in the E-PEG. This traversal strategy, however, can

be customized in the implementation of the Rete algorithm to better control the searching

strategy in those cases where an exhaustive search would not terminate.

10.3 Global Profitability Heuristic

Peggy’s SelectBest function uses a pseudo-boolean solver called Pueblo [70] to

select which nodes from an E-PEG to include in the optimized program. A pseudo-

boolean problem is an integer-linear-programming (ILP) problem where all the variables

have been restricted to 0 or 1. By using these 0-1 variables to represent whether or not

nodes have been selected, we can encode the constraints that must hold for the selected

nodes to be a CFG-like PEG. In particular, for each node or equivalence class x, we define

a pseudo-boolean variable that takes on the value 1 (true) if we choose to evaluate x, and

0 (false) otherwise. The constraints then enforce that the resulting PEG is CFG-like. The

nodes assigned 1 in the solution that Pueblo returns are selected to form the PEG that

SelectBest returns.
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Recall that an E-PEG is a quadruple 〈N,L,C,E〉, where 〈N,L,C〉 is a PEG and

E is a set of equalities inducing a set of equivalence classes N/E. Also recall that for

n ∈ N, params(n) is the list of equivalence classes that are parameters to n. We use

q ∈ params(n) to denote that equivalence class q is in the list. For each node n ∈ N, we

define a boolean variable Bn that takes on the value true if we choose to evaluate node n,

and false otherwise. For equivalence class q ∈ (N/E), we define a boolean variable Bq

that takes on the value true if we choose to evaluate some node in the equivalence class,

and false otherwise. We use r to denote the equivalence class of the return value.

Peggy generates the boolean constraints for a given E-PEG 〈N,L,C,E〉 using the

following Constraints function (to simplify exposition, we describe the constraints here

as boolean constraints, but these can easily be converted into the standard ILP constraints

that Pueblo expects):

Constraints(〈N,L,C,E〉) ≡ Br∧
∧

n∈N F(n)∧
∧

q∈(N/E) G(q)

F(n) ≡ Bn⇒
∧

q∈params(n)Bq

G(q) ≡ Bq⇒
∨

n∈q Bn

Intuitively, these constraints state that (1) we must compute the return value of the

function, (2) for each node that is selected, we must select all of its parameters, and

(3) for each equivalence class that is selected, we must compute at least one of its nodes.

Once the constraints are computed, Peggy sends the following minimization

problem to Pueblo:

min
Constraints(〈N,L,C,E〉)

∑
n∈N

Bn ·Cn

where Cn is the constant cost of evaluating n according to our cost model. The nodes

which are set to true in the solution that Pueblo returns are selected to form a PEG.

The cost model that we use assigns a constant cost Cn to each node n. In par-
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ticular, Cn = basic cost(n) · kdepth(n), where basic cost(n) accounts for how expensive

n is by itself, and kdepth(n) accounts for how often n is executed. k is simply a con-

stant, which we have chosen as 20. We use depth(n) to denote the loop-nesting depth

of n, computed as follows (recalling Definition 6.2 of invariant` from Section 6.3):

depth(n) = max`¬invariant`(n). Using this cost model, Peggy asks Pueblo to minimize

the objective function subject to the constraints described above. Hence, the PEG that

Pueblo returns has minimal cost according to our cost model.

The above cost model is very simple, taking into account only the cost of operators

and how deeply nested they are in loops. Despite being crude, and despite the fact that

PEGs pass through a reversion process that performs branch fusion, loop fusion, and

loop-invariant code motion, our cost model is a good predictor of relative performance.

A smaller cost usually means that, after reversion, the code will use cheaper operators or

will have certain operators moved outside of loops, leading to more efficient code. One

of the main contributors to the accuracy of our cost model is that depth(n) is defined in

terms of invariant`, and invariant` is what the reversion process uses for pulling code

outside of loops (see Section 8.9). As a result, the cost model can accurately predict at

what loop depth the reversion algorithm will place a certain node, which makes the cost

model relatively accurate even in the face of reversion.

There is an additional subtlety in the above encoding. Unless we are careful, the

pseudo-boolean solver can return a PEG that contains cycles in which none of the nodes

are θ nodes. Such PEGs are not CFG-like. For example, consider the expression x+0.

After axiom application, this expression (namely, the + node) will become equivalent

to the x node. Since + and x are in the same equivalence class, the above encoding

allows the pseudo-boolean solver to select + with + and 0 as its arguments. To forbid

such invalid PEGs, we explicitly encode that all cycles must have a θ node in them.

In particular, for each pair of nodes i and j, we define a boolean variable Bi; j that
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represents whether or not i reaches j without going through any θ nodes in the selected

solution. We then state rules for how these variables are constrained. In particular, if

a non-θ node i is selected (Bi) then i reaches its immediate children (for each child j

of i, Bi; j). Also, if i reaches a non-θ node j in the current solution (Bi; j), and j is

selected (B j), then i reaches j’s immediate children (for each child k of j, Bi;k). Finally,

we add the constraint that for each non-θ node n, Bn;n must be false. Note that, in

the face of effects, there are additional challenges to maintaining the linearity of effect

witnesses, as we explained in Section 10.1. In his thesis, Stepp describes the additional

processes and pseudo-boolean constraints that address this additional challenge [74].

It is worth noting that the particular choice of pseudo-boolean solver is indepen-

dent of the correctness of this encoding. We have chosen to use Pueblo because we have

found that it runs efficiently on the types of problems that Peggy generates, but it is a

completely pluggable component of the overall system. This modularity is beneficial

because it makes it easy to take advantage of advances in the field of pseudo-boolean

solvers. In fact, we have tested two other solvers within our framework: Minisat [28] and

SAT4J. We have found that occasionally Minisat performs better than Pueblo and that

SAT4J uniformly performs worse than the other two. These kinds of comparisons are

very simple to do with our framework since we can easily swap one solver for another.

10.4 Eval and Pass

One might wonder why we have eval and pass as separate operators rather than

combining them into a single operator, say µ . At this point we can reflect upon this

design decision and argue why we maintain the separation. One simple reason why we

maintain this separation is that there are useful operators other than pass that can act as

the second child to an eval. The loop-peeling example from Section 4.3 gives three such

examples, namely S, Z, and φ . It is also convenient to have each loop represented by
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a single node, namely the pass node. This does not happen when using µ nodes, since

there would be many µ nodes for each loop. These µ nodes would all share the same

break condition, but we illustrate below why that does not suffice.

Suppose that during equality saturation, some expensive analysis decides the

engine should explore peeling a loop. Using eval and pass, this expensive analysis could

initiate the peeling process by simply replacing the pass node of that loop with an appro-

priate φ node. Afterward, simple axioms would apply to each eval node independently in

order to propagate the peeling process. Using µ nodes on the other hand, the expensive

analysis would have to explicitly replace every µ node with its peeled version. Thus,

using eval and pass allows the advanced analysis to initiate peeling only once, whereas

using µ nodes requires the advanced analysis to process each µ node separately.

Next we consider our global profitability heuristic in this situation after loop

peeling has been performed. Now for every eval or µ node there are two versions: the

peeled version and the original version. Ideally we would select either only peeled

versions or only original versions. If we mix them up, this forces us to have two different

versions of the loop in the final result. In our pseudo-boolean heuristic with eval and pass

nodes, we encourage the use of only one loop by making pass nodes expensive; thus the

solver would favor PEGs with only one pass node (i.e. one loop) over two pass nodes.

However, there is no way to encourage this behavior using µ nodes as there is no single

node which represents a loop. The heuristic would select the peeled versions for those µ

nodes where peeling was beneficial and the original versions for those µ nodes where

peeling was detrimental, in fact encouraging an undesirable mix of peeled and original

versions.

For similar reasons, the separation of eval and pass nodes is beneficial to the

process of reverting PEGs to CFGs. A loop is peeled by rewriting the pass node, and

then all eval nodes using that pass node are automatically peeled simultaneously. Thus,
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when an optimization such as loop-invariant code motion determines that a loop needs to

be peeled, the optimization needs to make only one change and the automatic rewriting

mechanisms will take care of the rest.

To summarize, the separation of eval and pass nodes makes it easy to ensure that

any restructuring of a loop is applied consistently: the change is just made to the pass

node and the rest follows suit. This allows restructuring analyses to apply once and be

done with. The separation also enables us to encourage the global profitability heuristic

to select PEGs with fewer loops.
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Chapter 11

Evaluation of Optimization

In this chapter we use our Peggy implementation to validate two hypotheses

about our approach for structuring optimizers: our approach is practical both in terms of

space and time (Section 11.1), and it is effective at discovering both simple and intricate

optimization opportunities (Section 11.2).

11.1 Time and Space Overhead

To evaluate the running time of the various Peggy components, we compiled

SpecJVM, which comprises 2,461 methods. For 1% of these methods, Pueblo exceeded

a one-minute timeout we imposed on it, in which case we just ran the conversion to PEG

and back. We imposed this timeout because in some rare cases, Pueblo runs too long to

be practical.

The following table shows the average time in milliseconds taken per method for

the four main Peggy phases (for Pueblo, a timeout counts as 60 seconds).

CFG to PEG Saturation Pueblo PEG to CFG

Time 13.9 ms 87.4 ms 1,499 ms 52.8 ms

All phases combined take slightly over 1.5 seconds. An end-to-end run of Peggy

is on average 6 times slower than Soot with all of its intraprocedural optimizations turned

144
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on. Nearly all of our time is spent in the pseudo-boolean solver. We have not focused our

efforts on compile time, and we conjecture there is significant room for improvement,

such as better pseudo-boolean encodings, or other kinds of profitability heuristics that

run faster.

Since Peggy is implemented in Java, to evaluate memory footprint, we limited

the JVM to a heap size of 200MB, and observed that Peggy was able to compile all the

benchmarks without running out of memory.

In 84% of compiled methods, the engine ran to complete saturation without

imposing bounds. For the remaining cases, the engine limit of 500 was reached, meaning

the engine ran until fully processing 500 expressions in the E-PEG along with all the

equalities they triggered. In these cases, we cannot provide a completeness guarantee, but

we can give an estimate of the size of the explored state space. In particular, using just

200MB of heap, our E-PEGs represented more than 2103 versions of the input program

(using geometric average).

11.2 Implementing Optimizations

The main goal of our evaluation is to demonstrate that common, as well as unan-

ticipated, optimizations result in a natural way from our approach. To achieve this, we

implemented a set of basic equality analyses, listed in Figure 11.1(a). We then manually

browsed through the code that Peggy generates on a variety of benchmarks (including

SpecJVM) and made a list of the optimizations that we observed. Figure 11.1(b) shows

the optimizations that we observed fall out from our approach using equality analyses 1

through 6, and Figure 11.1(c) shows optimizations that we observed fall out from our ap-

proach using equality analyses 1 through 7. Based on the optimizations we observed, we

designed some micro-benchmarks that exemplify these optimizations. We then ran Peggy

on each of these micro-benchmarks to show how much these optimizations improve the
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(a) EQ Analyses Description
1. Built-in E-PEG ops Axioms about primitive PEG nodes (φ , θ , eval, pass)
2. Basic Arithmetic Axioms about arithmetic operators like +, −, ∗, /, <<, >>
3. Constant Folding Equates a constant expression with its constant value
4. Java-specific Axioms about Java operators like field/array accesses
5. Tail-Rec Elim Replaces the body of a tail-recursive procedure with a loop
6. Method Inlining Inlining based on intraprocedural class analysis
7. Domain-specific User-provided axioms about application domains

(b) Optimizations Description
8. Constant Prop/Fold Traditional Constant Propagation and Folding
9. Simplify Algebraic Various forms of traditional algebraic simplifications
10. Peephole SR Various forms of traditional peephole optimizations
11. Array Copy Prop Replace read of array element by last expression written
12. CSE for Arrays Remove redundant array accesses
13. Loop Peeling Pulls the first iteration of a loop outside of the loop
14. LIVSR Loop-induction-variable strength reduction
15. Inter-Loop SR Optimization described in Chapter 3
16. Entire-Loop SR Entire loop becomes one op, e.g. n incrs becomes “plus n”
17. Loop-op Factoring Factor op out of a loop, e.g. multiplication
18. Loop-op Distrib Distribute op into loop, where it cancels out with another
19. Partial Inlining Inlines part of method in caller, but keeps the call
20. Polynomial Fact Evaluates a polynomial in a more efficient manner

(c) DS Opts Description
21. DS LIVSR LIVSR on domain ops like matrix addition and multiply
22. DS Code Hoisting Code hoisting based on domain-specific invariance axioms
23. DS CSE Removes redundant computations based on domain axioms
24. Temp-Obj Rem Remove temp objects made by calls to, e.g., matrix libraries
25. Math Lib Spec Spec matrix algs based on, e.g., the size of the matrix
26. Design-Patt Opts Remove overhead of common design patterns
27. Method Outlining Replace code by method call performing same computation
28. Spec Redirect Replace call with more efficient call based on calling context

Figure 11.1. Optimizations performed by Peggy. Throughout this table we use the
following abbreviations: EQ means “equality”, DS means “domain-specific”, CSE means
“common-subexpression elimination”, SR means “strength reduction”
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code when isolated from the rest of the program.

Figure 11.2 shows our experimental results for the run times of the micro-

benchmarks listed in Figure 11.1(b) and (c). The y-axis shows run time normalized to the

run time of the unoptimized code. Each number along the x-axis is a micro-benchmark

exemplifying the optimization from the corresponding row number in Figure 11.1. The

“rt” and “sp” columns correspond to our larger ray-tracer benchmark and SpecJVM,

respectively. The value reported for SpecJVM is the average ratio over all benchmarks

within SpecJVM. Our experiments with Soot involve running it with all intraprocedural

optimizations turned on, which include: common-subexpression elimination, lazy code

motion, copy propagation, constant propagation, constant folding, conditional branch

folding, dead-assignment elimination, and unreachable-code elimination. Soot can also

perform interprocedural optimizations, such as class-hierarchy analysis, pointer analysis,

and method specialization. We did not enable these optimizations when performing our

comparison against Soot, because we have not yet attempted to express any interpro-

cedural optimizations in Peggy. In terms of run-time improvement, Peggy performed

very well on the micro-benchmarks, optimizing all of them by at least 10%, and in many

cases much more. Conversely, Soot gives almost no run-time improvements, and in some

cases makes the program run slower. For the larger ray-tracer benchmark, Peggy is able

to achieve a 7% speedup, while Soot does not improve performance. On the SpecJVM

benchmarks both Peggy and Soot had no positive effect, and Peggy on average made

the code run slightly slower. This leads us to believe that traditional intraprocedural

optimizations on Java bytecode generally produce only small gains, and in this case there

were few or no opportunities for improvement.

With effort similar to what would be required for a compiler writer to implement

the optimizations from part (a), our approach enables the more advanced optimizations

from parts (b) and (c). Peggy performs some optimizations (for example 15 through 20)
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Figure 11.2. Run times of generated code from Soot and Peggy, normalized to the
runtime of the unoptimized code. The x-axis denotes the optimization number from
Figure 11.1, where “rt” is our raytracer benchmark and “sp” is the average over the
SpecJVM benchmarks.

that are quite complex given the simplicity of its equality analyses. To implement such

optimizations in a traditional compiler, the compiler writer would have to explicitly

design a pattern that is specific to those optimizations. In contrast, with our approach

these optimizations fall out from the interaction of basic equality analyses without

any additional developer effort, and without specifying an order in which to run them.

Essentially, Peggy finds the right sequence of equality analyses to apply for producing

the effect of these complex optimizations.

With the addition of domain-specific axioms, our approach enables even more op-

timizations, as shown in part (c). To give a flavor for these domain-specific optimizations,

we describe two examples.

The first is a ray tracer (5 KLOCs) that one of the authors had previously de-

veloped. To make the implementation clean and easy to understand, the author used

immutable vector objects in a pure-programming style. This approach however intro-

duces many intermediate objects. With a few simple vector axioms, Peggy is able to
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remove the overhead of these temporary objects, thus performing a kind of deforesta-

tion optimization. This makes the application 7% faster, and reduces the number of

allocated objects by 40%. Soot is not able to recover any of the overhead, even with

interprocedural optimizations turned on. This is an instance of a more general technique

where user-defined axioms allow Peggy to remove temporary objects (optimization 24 in

Figure 11.1).

Our second example targets a common programming idiom involving Lists,

which consists of checking that a List contains an element e and, if it does, fetching and

using the index of the element. If written cleanly, this pattern would be implemented

with a branch whose guard is contains(e) and a call to indexOf(e) on the true side

of the branch. Unfortunately, contains and indexOf would perform the same linear

search, which makes this clean way of writing the code inefficient. Using the equality

axiom l.contains(e) = (l.indexOf(e) 6= -1), Peggy can convert the clean code into

the hand-optimized code that programmers typically write, which stores indexOf(e)

into a temporary and then branches if the temporary is not -1. An extensible rewrite

system would not be able to provide the same easy solution: although a rewrite of

l.contains(e) to (l.indexOf(e) 6= -1) would remove the redundancy mentioned above,

it could also degrade performance in the case where the list implements an efficient

hash-based contains. In our approach, the equality simply adds information to the

E-PEG, and the profitability heuristic can decide after saturation which option is best,

taking the entire context into account. In this way our approach transforms contains to

indexOf, but only if indexOf would have been called anyway.

These two examples illustrate the benefits of user-defined axioms. In partic-

ular, the clean, readable, and maintainable way of writing code can sometimes incur

performance overheads. User-defined axioms allow the programmer to reduce these

overheads while keeping the code base clean of performance-related hacks. Our approach
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makes domain-specific axioms easier to add for the end-user programmer, because the

programmer does not need to worry about what order the user-defined axioms should be

run in, or how they will interact with the compiler’s internal optimizations. The set of

axioms used in the programs from Figure 11.1 is presented in Appendix A.
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Chapter 12

Translation Validation

Equality saturation can be used not only to optimize programs but also to prove

programs equivalent. Intuitively, if during saturation an equality analysis finds that the

return values of two programs are equal, then the two programs are equivalent. Our

approach can therefore be used to perform translation validation, a technique that consists

of automatically checking whether or not the optimized version of an input program

is semantically equivalent to the original program. For example, we can prove the

correctness of optimizations performed by existing compilers, even if our profitability

heuristic would not have selected those optimizations.

12.1 Overview

To illustrate this in more detail, we first present several examples demonstrating

how Peggy performs translation validation. These examples are distilled versions of real

examples that we found while doing translation validation for LLVM on SPEC 2006.

Example 1 Consider the original code in Figure 12.1(a) and the optimized code in

Figure 12.1(b). There are two optimizations that LLVM applied here. First, LLVM

performed copy propagation through the location *p, thus replacing *p with t. Second,

LLVM removed the now-useless store *p := t.

151
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int g(p,t) {
*p := t | (t & 4)
return 0

}

store

σ

load

tp 4

&

|
|

p

store

σ p

store

p

1

2

3int f(p,t) {
*p := t
*p := *p | (t & 4)
return 0

}
(a)
(b)

(c)

fσ gσfv gv

0

Figure 12.1. (a) Original code (b) Optimized code (c) Combined E-PEG

Figure 12.1(c) shows the E-PEG for f and g combined. The labels fv and fσ

point to the value and effect witness returned by f respectively, and likewise for g –

for now, let us ignore the dashed lines. Nodes with a square around them represent

parameters to the function.

Our approach to translation validation builds the PEGs for both the original and

the optimized programs in the same E-PEG, reusing nodes when possible. In particular,

note how t & 4 is shared. Once this combined E-PEG has been constructed, we apply

equality saturation. If through this process Peggy infers that node fσ is equivalent to

node gσ and that node fv is equivalent to node gv, then Peggy has shown that the original

and optimized programs are equivalent.

Peggy proves the equivalence of f and g in the following three steps:

1. Peggy adds equality ¬ using axiom load(store(σ , p,v), p) = v

2. Peggy adds equality ­ by congruence closure: a = b⇒ f (a) = f (b)

3. Peggy adds equality ® using axiom store(store(σ , p,v1), p,v2) = store(σ , p,v2)

Through equality ®, Peggy has shown that f and g have the same effect and are therefore

equivalent since they are already known to return the same value 0.
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load

σ p

char* f(p,s,r) {
x := strchr(s,*p)
*r := *p+1
return x

} (a)
(b)

(c)
char* g(p,s,r) {

t := *p
x := strchr(s,t)
*r := t+1
return x

}

params

s

call

strchr

load

p

+

1

only-reads

true
1

2
3

ρσ

ρv store

+

1

r

store

r

4

5
fσfv gσgv

Figure 12.2. (a) Original code (b) Optimized code (c) Combined E-PEG

Example 2 As a second example, consider the original function f in Figure 12.2(a)

and the optimized version g in Figure 12.2(b). p is a pointer to an int, s is a pointer

to a char, and r is a pointer to an int. The function strchr is part of the standard

C library, and works as follows: given a string s (i.e. a pointer to a char) and an integer c

representing a character1, strchr(s,c) returns a pointer to the first occurrence of the

character c in the string, or null otherwise. The optimization is correct because LLVM

knows that strchr does not modify the heap, and the second load *p is redundant.

The combined E-PEG are shown in Figure 12.2(c). The call to strchr is repre-

sented using a call node, which has three children: the name of the function, the incoming

effect witness, and the parameters (which are passed as a tuple created by the params

node). A call node returns a pair consisting of the return value and the resulting effect

witness. We use projection operators ρv and ρσ to extract the return value and the effect

witness from the pair returned by a call node.

To give Peggy the knowledge that standard-library functions such as strchr

do not modify the heap, we have annotated such standard-library functions with an

only-reads annotation. Whenever a function foo is annotated with only-reads, Peggy

adds the equality only-reads(foo) = true to the E-PEG. Equality ¬ in Figure 12.2(c) is

1It may seem odd that c is not declared a char, but this is indeed the interface.
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+

eval

pass

0
θ

int f(x,y,z) {
for (t:=0; t<z; t:=x*y+t) {} 
return t

} (a)
(b)

(c)
int g(x,y,z) {

xy := x*y
for (t:=0; t<z; t:=xy+t) {}
return t

}

*
zx y

fv gv

σ

fσ gσ

Figure 12.3. (a) Original code (b) Optimized code (c) Combined E-PEG

added in this way.

Peggy adds equality ­ using: only-reads(n) = true⇒ ρσ (call(n,σ , p)) = σ .

This axiom encodes the fact that a read-only function call does not modify the heap.

Equalities ®, ¯, and ° are added by congruence closure.

In these five steps, Peggy has identified that the heaps fσ and gσ are equal, and

since the returned values fv and gv are trivially equal, Peggy has shown that the original

and optimized functions are equivalent.

Example 3 As a third example, consider the original code in Figure 12.3(a) and the

optimized code in Figure 12.3(b). LLVM has pulled the loop-invariant code x*y outside

of the loop. The combined PEG for the original function f and optimized function g

is shown in Figure 12.3. As it turns out, f and g will produce the exact same PEG, so

let us focus on understanding the PEG itself. Peggy has validated this example just by

converting to PEGs, without even running equality saturation. One of the key advantages

of PEGs is that they are agnostic to code-placement details, and so Peggy can validate

code-placement optimizations such as loop-invariant code motion, lazy code motion, and

scheduling by just converting to PEGs and checking for syntactic equality.
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12.2 Implementation

Axioms Peggy uses a variety of axioms to infer equality information. Some of these ax-

ioms were previously developed and state properties of built-in PEG operators like θ , eval,

pass, and φ . We also implemented LLVM-specific axioms to reason about load and store,

some of which we have already seen. An additonal such axiom is important for moving

unaliased loads/stores across each other: p 6= q⇒ load(store(σ ,q,v), p) = load(σ , p).

Alias Analysis The axiom above can only fire if p 6= q, requiring alias information.

Our first attempt was to encode an alias analysis using axioms and the saturation engine.

However, this added a significant run-time overhead, and so we instead took the approach

from [84], which is to pre-compute alias information. We then used this information

when applying axioms.

Generating Proofs After Peggy validates a transformation it can use the resulting

E-PEG to generate a proof of equivalence of the two programs. This proof has already

helped us determine how often axioms are useful. In the future, we could also use this

proof to improve the run time of our validator: after a function f has been validated,

we could record which axioms were useful for f , and enable only those axioms for

subsequent validations of f (reverting back to all axioms if the validation fails).

12.3 Results

We used Peggy to perform translation validation for the Soot optimizer [86]. In

particular, we used Soot to optimize a set of benchmarks with all of its intraprocedural

optimizations turned on. The benchmarks included SpecJVM, along with other programs,

comprising a total of 3,416 methods. After Soot finished compiling, for each method we

asked Peggy’s saturation engine to show that the original method was equivalent to the
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corresponding method that Soot produced. The engine was able to show that 98% of

methods were compiled correctly.

Among the cases that Peggy was unable to validate, we found three methods that

Soot optimized incorrectly. In particular, Soot incorrectly pulled statements outside of an

intricate loop, transforming a terminating loop into an infinite loop. It is a testament to

the power of equality saturation that it is able not only to perform optimizations, but also

to validate a large fraction of Soot runs, and that in doing so it exposed a bug in Soot.

Furthermore, because most false positives are a consequence of our coarse heap model, a

finer-grained model can increase the effectiveness of translation validation and would

also enable more optimizations.

Inspired by the recent results of Tristan et al. [84] on translation validation for

LLVM, we used Peggy to perform translation validation for LLVM 2.8, a more aggressive

and more widely used compiler than Soot, on SPEC 2006 C benchmarks. We enabled

the following optimizations: dead-code elimination, global value numbering, partial-

redundancy elimination, sparse conditional constant propagation, loop-invariant code

motion, loop deletion, loop unswitching, dead-store elimination, constant propagation,

and basic-block placement.

Figure 12.4 shows the results. “#Func” and “#Instr” are the number of functions

and instructions. “% Success” is the percentage of functions whose compilation Peggy

validated (“All” considers all functions. “OC”, which stands for “Only Changed”,

ignoring functions for which LLVM’s output is identical to the input). “To PEG” is the

average time per function to convert from CFG to PEG. “Avg Eng Time” is the average

time per function to run the equality saturation engine (“Success” is over successful runs,

and “Failure” over failed runs).

Overall our results are comparable to [84]. However, because of implementation

differences (including the set of axioms), an in-depth and meaningful experimental
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Benchmark #Func #Instr % Success To Avg Eng Time
All OC PEG Success Failure

400.perlbench 1,864 269,631 79.0% 73.3% 0.531s 1.028s 11s
401.bzip2 100 16,312 82.0% 76.9% 0.253s 0.733s 19s
403.gcc 5,577 828,962 80.8% 74.9% 0.558s 0.700s 19s
429.mcf 24 2,541 87.5% 87.0% 0.216s 0.500s 19s
433.milc 235 21,764 80.4% 75.0% 0.246s 0.188s 9s
456.hmmer 538 57,102 86.4% 84.6% 0.285s 0.900s 11s
458.sjeng 144 23,807 77.1% 72.5% 1.099s 0.253s 7s
462.libquantum 115 5,864 73.9% 64.3% 0.123s 0.167s 8s
464.h264ref 590 131,627 74.2% 70.5% 0.587s 0.846s 12s
470.lbm 19 3,616 78.9% 76.5% 0.335s 0.154s 3s
482.sphinx3 369 28,164 88.1% 86.0% 0.208s 0.480s 12s

Figure 12.4. Results for Peggy’s translation validator on SPEC 2006 C benchmarks

comparison is difficult. Nonetheless, conceptually the main difference is that [84] uses

axioms for destructive rewrites, whereas we use axioms to add equality information to

the E-PEG, thus expressing multiple equivalent programs at once. Our approach has

several benefits over [84]:

• We simultaneously explore an exponential number of paths through the space of

equivalent programs, whereas [84] explores a single linear path – hence we explore

more of the search space.

• We need not worry about axiom ordering, whereas [84] must pick a good ordering

of rewrites for LLVM – hence it is easier to adapt our approach to new compilers,

and a user can easily add or remove axioms (without worrying about ordering) to

balance precision with speed or to specialize for a given code base.

• Our approach effectively reasons about loop-induction variables, which is more

difficult using the techniques in [84].

However, the approach in [84] is faster, exploring a single linear path through the space
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of programs.

Failures were caused by: (1) incomplete axioms for linear arithmetic, (2) insuffi-

cient alias information, and (3) LLVM’s use of pre-computed interprocedural information

even in intraprocedural optimizations. These limitations point to several directions for

future work, including incorporating SMT solvers and better alias analyses, as well as

investigating interprocedural translation validation.
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Chapter 13

Learning Optimizations from Proofs

Our translation validator outputs a proof that the two input programs are equiva-

lent. Similarly, our optimizer can output a proof that the optimized program is equivalent

to the original program. These proofs of equivalence tell us precisely what parts of the

programs mattered and how. If we are careful, we can generalize the programs in a

way that retains the validity of the proof structure. Recognizing this, we developed a

technique for learning optimizations from just one example of a transformed program

given snapshots of the program before and after transformation. This enables us to learn

optimizations from programmers without requiring them to understand anything about

the compiler they are using.

Intuitively, our approach is to fix the proof structure and then try to find the most

general optimization rule that a proof of that structure proves correct. Focusing on a

given proof structure also has the added advantage that, once the structure is fixed, we

will be able to show that there exists a unique most general optimization rule with that

proof structure, something that may not exist ignoring the proof structure. For example,

consider the optimization instance 0∗0 Z⇒ 0. This transformation has two incomparable

generalizations, X ∗ 0 Z⇒ 0 and 0 ∗X Z⇒ 0, depending on whether one uses the axiom

∀x.x ∗ 0 = 0 or ∀x.0 ∗ x = 0 to prove correctness. However, once we settle on a given

proof of correctness, not only does there exist a most general optimization rule given the

160
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proof structure, but we can also show that our algorithm infers it.

In this chapter, we start by giving some examples of proof-based generalization

(Section 13.1), explain some of the challenges behind generalization (Section 13.2), give

an overview of our algorithm (Section 13.3), and finally describe a way of decomposing

optimizations we generate into smaller independent ones (Section 13.4).

13.1 Generalization Examples

As we will show in Chapter 14, our approach is general and can be applied to

many kinds of intermediate representations, and even to domains other than compiler

optimizations. However, to make things concrete for our examples, we will use PEGs

and E-PEGs.

Figure 13.1 shows an example of how our approach works. We describe the

process at a high level, and then describe the details of each step. At a high level, we start

with two concrete programs, presenting an example of what the desired transformation

should do – parts (a) and (b). We convert these programs into PEGs – parts (c) and (d).

We then prove that the two programs are equivalent using translation validation as in

Chapter 12 – part (e). From the proof of equivalence we then generalize into optimization

rules – parts (f) and (g) show two possible generalizations depending on the logic we use.

The starting point of generalization is the annotated E-PEG from Figure 13.1(e),

which represents a proof that the PEGs from Figure 13.1(c) and Figure 13.1(d) are

equivalent. In particular, edges a© through d© in the E-PEG represent the steps of the

equivalence proof: edge a© is added by applying the axiom θ(x,y)∗ z = θ(x ∗ z,y∗ z);

edge b© is added by applying the axiom (x+ y)∗ z = x ∗ z+ y ∗ z; edge c© is added by

applying the axiom 1 ∗ x = x; and edge d© is added by applying the axiom 0 ∗ x = 0.

This E-PEG represents many different versions of the original program, depending on

how we choose to compute each equivalence class. By picking θ to compute the {∗,θ}
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Figure 13.1. Learning loop-induction-variable strength reduction from an example

equivalence class, and + to compute the {∗,+} equivalence class, we get the PEG

from Figure 13.1(d). Thus, the E-PEG shows that the PEGs from parts (c) and (d) are

equivalent, and the edge annotations give the proof.

Our goal is to take the conclusion of the proof – in this case edge a© – and

determine how one can generalize the E-PEG so that the proof encoded in the E-PEG

is still valid. Figures 13.1(f) and 13.1(g) show two possible generalized optimizations

that can result from this process. We represent a generalized optimization by an E-PEG

containing a single equality edge, representing the conclusion of the proof. There are two

ways of interpreting such E-PEGs. One is that it represents a transformation rule, with

the single equality edge representing the transformation to perform. The direction of the

rule is determined by which of the two programs in the instance was the original, and

which was the transformed. Another way to interpret these rules is that they represent

equality analyses used in Peggy. Chapter 18 will show that our generated optimizations,

when used as equality analyses, make Peggy faster while still producing the same results.

Figure 13.1(f) shows a generalization where the constant 5 has been replaced

with an arbitrary pure expression C. The key observation is that the particular choice of

constant does not affect the proof – if we have a proof of LIVSR for 5, the same proof

holds for an arbitrary constant. Note that PEGs abstract away the details of the control

flow graph. As a result the generalizations of Figure 13.1(f) could be applicaple to a PEG
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even if there were many other nodes in the PEG representing various kinds of loops or

statements not affecting the induction variable being optimized.

Figure 13.1(g) shows a more sophisticated generalization, where instead of just

generalizing constants, we also generalize operators. In particular, the ∗ and + operators

have been generalized to OP1 and OP2, with the added side condition that OP1 distributes

over OP2 (there is no need to add a side condition stating that OP1 distributes over θ

since all operators distribute over θ ). Furthermore, the constants 0 and 1 have been

generalized to C2 and C3 with the additional side conditions that C2 is a zero for OP1 and

C3 is an identity for OP2. The generalization in Figure 13.1(g) can apply to operators

that have the same algebraic properties as integer plus/multiply, for example boolean

OR/AND, vector plus/multiply, set union/intersect, or any other operators for which the

programmer states that the side conditions from Figure 13.1(g) hold.

The choice of logic is what makes the difference between the above two general-

izations. Figure 13.1(g) results from a proof expressed with a more general logic. Instead

of the axiom (x+ y)∗ z = x∗ z+ y∗ z, the proof uses:

OP1(OP2(x,y),z) = OP2(OP1(x,z),OP1(y,z)) where distributes(OP1,OP2)

and instead of 0∗ x = 0, the proof uses:

OP(C,x) =C where zero(C,OP)

The LIVSR example therefore shows that the domain of axioms and proofs affects

the kind of generalization that one can perform. More general logics typically lead to

more general generalizations. By using category theory to formalize our algorithm, we

will be able to abstract away the domain in which axioms and proofs are expressed, thus
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separating the particular choice of domains from the description of our algorithm. As a

result, our algorithm as expressed in category theory will be general enough so that it can

be instantiated with many different kinds of domains for proofs and axioms, including

those that produce the different generalizations presented above.

13.2 Obtaining the Most General Form

Looking at the LIVSR example, one may think that generalization is as simple as

replacing all nodes and operators in an E-PEG with meta-variables, and then constraining

the meta-variables based on the axioms that were applied. Although this approach is

very simple, it does not always produce the most general optimization rule for a given

proof. Consider for example the E-PEG from Figure 13.2(a), where α is some PEG

expression. Edge a© is produced by axiom x+0 = x, edge b© by x− x = 0, edge c© by

(x+ y)− y = x, edge d© by 0+ x = x, and edge e© by transitivity of edges c© and d©.

This E-PEG therefore represents a proof that the sum at the top is equivalent to α .

If we replace nodes with meta-variables and constrain the meta-variables based on

axiom applications, one would simply generalize α to a meta-variable. However, the

most general optimization rule from the proof encoded in Figure 13.2(a) is shown in

Figure 13.2(b). The key difference is that by duplicating the shared + node, one can

constrain the arguments of the two new + nodes differently. However, because PEGs can

contain cycles, one cannot simply duplicate every node that is shared, as this would lead

+

- -

+

0α

+

-

+

0X

-

+

ZY

(b)(a)

c

e
b

a

d

Figure 13.2. Example showing the need for splitting
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to an infinite expansion. The main challenge then with getting the most general form is

determining precisely how much to split.

13.3 Our Approach

Instead of generalizing the operators in the final E-PEG to meta-variables and

then constraining the meta-variables, our approach is to start with a near empty E-PEG,

and step through the proof backwards, augmenting and constraining the E-PEG as each

axiom is applied in the backward direction. This allows us to solve the above splitting

problem by essentially turning the problem on its head: instead of starting with the final

E-PEG and splitting, we gradually add new nodes to a near-empty E-PEG, constraining

and merging as needed. Our algorithm therefore merges only when required by the proof

structure, keeping nodes separate when possible.

We illustrate our approach on a very simple example so that we can show all the

steps. Consider the E-PEG of Figure 13.3(a), where two axioms have been applied to

determine equality edges a© and b©. The axioms are shown in Figure 13.3(c), with each

axiom being an E-PEG where one edge has been labeled “P” for “Premise”, and one edge

has been labeled “C” for “Conclusion”. The • in the axioms represent meta-variables to

be instantiated. The first axiom states x− x = 0, and the second axiom states x+0 = x.

Our process is shown in Figure 13.3(b). We start at the top with a single equality

edge representing the conclusion of the proof, and then work our way downward by

applying the proof in reverse order: in step 1 we apply the second axiom backwards,

and then in step 2 we apply the first axiom backwards. Each time we apply an axiom

backwards, we create and/or constrain E-PEG nodes in order to allow that axiom to be

applied. Figure 13.3 shows using fine-dotted edges how the “Premise” and “Conclusion”

edges of the axioms map onto the E-PEGs being constructed. For example, note that in

step 1, when the second axiom is applied backwards, we remove the final conclusion
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+

+

0

+

0

0

P
C

P

C

+

0

77

5

Second Axiom

First Axiom

(a)

(b) (c)

Step 1

Step 2

b
a

Figure 13.3. Example showing how generalization works

edge, and instead replace it with an E-PEG that essentially represents •+0.

There is an alternate way of viewing our approach. In this alternate view, we

instantiate all the axioms that have been applied in the proof with fresh meta-variables,

and then use unification to stitch these freshly instantiated axioms together so that they

connect in the right way to make the proof work. With this view in mind, we show

in Figure 13.3 how the first and second axioms would be stitched together using a

bidirectional arrow.

This section has only given an overview of how our approach works. Chapters 14

and 15 will formalize our approach using category theory and revisit the above example

in much more detail.

13.4 Decomposition

Even though our algorithm finds the most general transformation rule for a given

proof, the produced rule may still be too specific to be reused. This can happen if the

input-output example has several conceptually different optimizations happening at the

same time. Consider for example the optimization instance shown in Figure 13.4. The
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eval

θ
+0

1

*
5

θ
+0

pass

≥

p ki 0

pass

≥

evalp 0

if (!p) return 0
sum,i,j := 0
while (i < k)
sum += j
j += 5
i++

return sum

if (!p) k = 0
sum,i := 0
while (i < k)
sum += 5*i
i++

return sum

ki

O

O

a

b

θ
+0

1

θ
+0

5

θ
+0

Figure 13.4. One E-PEG with conceptually two optimizations

top of the Figure shows the original and transformed code. There are two independent

high-level optimizations. The first is LIVSR, which replaces the i*5 with a variable j

that is incremented by 5 each time around the loop; the second is specialization for the

true case of the if(!p) branch, so that it immediately returns.

The corresponding E-PEG is shown at the bottom of the Figure. The E-PEG

does not show all the steps – instead it just displays the final equality edge a©, and an

additional edge b© that we will discuss shortly. In the E-PEG, the two optimizations

manifest themselves as follows: LIVSR happens using steps similar to those from

Figure 13.1 on the PEG rooted at the ∗ node (producing edge b©), and the specialization

optimization happens by pulling the φ node up through the ≥, pass, and eval nodes

(producing edge a©). Each of these optimizations takes several axiom applications to

perform, introducing various temporary nodes that are not shown in Figure 13.4.

If we simply apply the generalization algorithm outlined in Section 13.3, we

will get a single rule (although generalized) that applies the two optimizations together.

However, these two optimizations are really independent of each other in the sense that

each can be applied fruitfully in cases where the other does not apply. Thus, in order to
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learn optimizations that are more broadly applicable, we further decompose optimizations

that have been generalized into smaller optimizations. One has to be careful, however,

because decomposing too much could just produce the axioms we started with.

To find a happy medium, we decompose optimizations as much as possible,

subject to the following constraint: we want to avoid generating optimization rules that

introduce and/or manipulate temporary nodes (i.e. nodes that are not in the original

or transformed PEGs). The intuition is that these temporary nodes really embody

intermediate steps in the proof, and there is no reason to believe that these intermediate

steps individually would produce a good optimization.

To achieve this goal, we pick decomposition points to be equalities between

nodes in the generalized original and transformed PEGs (and not intermediate nodes).

In particular, we perform decomposition in two steps. In the first step, we generalize

the entire proof without any decomposition, which allows us to identify the nodes that

are part of the generalized original or final terms. We call such nodes required, and

equalities between them represent decomposition points. In the second step, we perform

generalization again, but this time, if we reach an equality between two required nodes,

we take that equality as an assumption for the current generalization and start another

generalization beginning with that equality.

In the example of Figure 13.4, we would find one such equality edge, namely

edge b©. As a result, our decomposition algorithm would perform two generalizations.

The first one starts at the conclusion a©, going backwards from there, but stops when

edge b© is reached (i.e. edge b© is treated as an assumption). This would produce a

branch-lifting optimization. Separately, our decomposition algorithm would perform a

generalization starting with b© as the conclusion, which would essentially produce the

LIVSR optimization.
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Chapter 14

Proofs in Categories

Having seen an overview of how our approach works, we now give a formal de-

scription of our framework for generalizing proofs using category theory. The generality

of our framework not only gives us flexibility in applying our algorithm to the setting of

compiler optimizations by allowing us to choose the domain of axioms and proofs, but it

also makes our framework applicable to settings beyond compiler optimizations. After a

quick overview of category theory (Section 14.1), we show how axioms (Section 14.2)

and inference (Section 14.3) can be encoded in category theory. We then define what a

generalization is (Section 14.4), and finally we show how to construct the most general

one (Section 14.5).

14.1 Overview of Category Theory

A category is a collection of objects and morphisms from one object to another.

For example, the objects of the commonly used Set category are sets, and its morphisms

are functions between sets. Not all categories use functions for morphisms, and the con-

cepts we present here apply to categories in general, not only to those where morphisms

are functions. Nonetheless, thinking of the case where morphisms are functions is a good

way of gaining intuition.

Given two objects A and B in a category, the notation f : A→B indicates that f

170
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is a morphism from A to B. This same information is displayed graphically as follows:

A B................................................................................................................. ............
f

In addition to defining the collection of objects and morphisms, a category must

also define how morphisms compose. In particular, for every f :A→B and g :B→ C the

category must define a morphism f ;g : A→ C that represents the composition of f and g .

The composition f ;g is also denoted g ◦ f . Morphism composition in the Set category is

simply function composition. Morphism composition must be associative. Also, each

object A of a category must have an identity morphism id A : A→A such that id A is an

identity for composition (that is to say, id A ; f = f ; id A = f for any morphism f ).

Information about objects and morphisms in category theory is often displayed

graphically in the form of commuting diagrams. Consider for example the following

diagram:

A B

C D

..................................................... ............
f

................................................
.....
.......
.....

g
................................................
.....
.......
.....h

..................................................... ............

i

By itself, this diagram simply states the existence of four objects and the appropriate

morphisms between them. However, if we say that the above diagram commutes then it

also means that f ;h = g ; i . In other words, the two paths from A to D are equivalent.

The above diagram is known as a commuting square. In general, a diagram commutes if

all paths between any two objects in the diagram are equivalent. Commuting diagrams

are a useful visual tool in category theory, and in our exposition all diagrams we show

commute.

Although there are many kinds of categories, we will be focusing on structured

sets. In such categories, objects are sets with some additional structure and the morphisms

are structure-preserving functions. The Set category is the simplest example of such a
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category, since there is no structure imposed on the sets. A more structured example is

the Rel(2) category of binary relations. An object in this category is a binary relation

(represented, say, as a set of pairs), and a morphism is a relation-preserving function. In

particular, the morphism f : R1→ R2 is a function from the domain of R1 to the domain

of R2 satisfying: ∀x,y. x R1 y =⇒ f (x) R2 f (y). Informally, there are also categories of

expressions, even recursive expressions, and the morphisms are substitutions of variables.

As shown in more detail in Chapter 15, in the setting of compiler optimizations, we will

use a category in which objects are E-PEGs and morphisms are substitutions.

14.2 Encoding Axioms in Category Theory

Many axioms can be expressed categorically as morphisms [1]. For example,

transitivity (∀x,y,z. x R y∧ y R z⇒ x R z) can be expressed as the following morphism in

the Rel(2) category:

x y

y z

x y

y z

x z

........................................................................................ ............
trans

where trans is the function (x 7→ x,y 7→ y,z 7→ z) (we display a relation graphically as

a listing of pairs – the left object above is the relation {(x,y),(y,z)}). In this case, the

axiom is identity-carried, meaning the underlying function is the identity function, but

that need not be the case in general.

Now consider an object A in the Rel(2) category. We will see how to state that

this object (relation) is transitive. In particular, we say that A satisfies trans if for every

morphism f : {(x,y),(y,z)}→A there exists a morphism f ′ : {(x,y),(y,z),(x,z)}→A
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such that the following diagram commutes:

x y

y z

x y

y z

x z

A

............................................................................................................................................................................................................................... ............
trans

....................................................................
.....
.......
.....

f

...........................................................................................................................................................................................................................................................................
...
............

f ′

To see how this definition of A satisfying trans implies that A is a transitive

relation, consider a morphism f from {(x,y),(y,z)} to A. This morphism is a function

that selects three elements a,b,c in the domain of A such that aA b and bA c. Since trans

is the identity function, a morphism f ′ will exist if and only if a A c also holds. Since

this has to hold for any f (i.e. any three elements a,b,c in the domain of A with a A b

and b A c), A will satisfy trans precisely when the relation defined by A is transitive.

Similarly, our E-PEG axioms can be encoded as identity-carried morphisms which

that add an equality. The axiom x∗0 = 0 is encoded as the identity-carried morphism

from the E-PEG x∗ y, with y equivalent to 0, to the E-PEG x∗ y, with y equivalent to 0

and x ∗ y equivalent to 0. Thus, an E-PEG satisfies this axiom if for every x ∗ y node

where y is equivalent to 0, the x ∗ y node is also equivalent to 0. More details on our

E-PEG category can be found in Chapter 15.

14.3 Encoding Inference in Category Theory

Inference is the process of taking some already known information and applying

axioms to learn additional information. In the E-PEG setting, inference consists of

applying axioms to learn equality edges. To start with a simpler example, consider the

relation {(a,b),(b,c),(c,d)}, and suppose we want to apply transitivity to (a,b) and

(b,c) to learn (a,c). Applying transitivity first involves selecting the elements on which
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we want to apply the axiom. This can be modeled as a morphism from {(x,y),(y,z)}

to {(a,b),(b,c),(c,d)}, specifically (x 7→ a,y 7→ b,z 7→ c). This produces the following

diagram:

x y

y z

x y

y z

x z

a b

b c

c d

.............................................................................................................. ............
trans

..................................................................................................
.....
.......
.....

(x 7→ a,y 7→ b,z 7→ c) (14.1)

Adding (a,c) completes the diagram into a commuting square:

x y

y z

x y

y z

x z

a b

b c

c d

a b

b c

c d

a c

............................................................................................................................................................................. ............
trans

..................................................................................................
.....
.......
.....

(x 7→ a,y 7→ b,z 7→ c)
......................................
.....
.......
.....(x 7→ a,y 7→ b,z 7→ c)

........................................................................................................................................................................ ............

(14.2)

The above commuting diagram therefore encodes that transivity was used to learn

information, in particular (a,c), but unfortunately, it does not state that nothing more

than transivity was learned. For example, the bottom-right object (relation) in the above

commuting square could acually contain more entries, say (a,a), and the diagram would

still commute. To address this issue, we use the concept of pushouts from category

theory.
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Definition 14.1 (Pushout). A commuting square [A,B,C,D] is said to be a pushout

square if for any object E that makes [A,B,C,E] a commuting square, there exists a

unique morphism from D to E such that the following diagram commutes:

A B

C D

E

........................................... ............
f

......................................
.....
.......
.....

g ......................................
.....
.......
.....h

........................................... ............
i

..........................................................................................................
..
.......
.....

................................................................................................. ..........
..

.............
................ ........
....

Furthermore, given A, B, C, f , and g in the diagram above, the pushout operation

constructs the appropriate D, i , and h that makes [A,B,C,D] a pushout square. When

the morphisms are obvious from context, we omit them from the list of arguments to the

pushout operation, and in such cases we use the notation B+AC for the result D of the

pushout operation.

Pushouts in general are useful for imposing additional structure. Intuitively, when

constructing pushouts, A represents “glue” that will join together B and C: f says where

to apply the glue in B; g says where to apply the glue in C. The pushout produces D

by gluing B and C together where indicated by f and g . For example, in a category

of expressions, pushouts can be used to accomplish unification: if A is the expression

consisting of a single variable x, and f and g map x to the root of expressions B and C

respectively, then the pushout D is the unification of B and C. If the expressions cannot

be unified, then no pushout exists.

Going back to our example, to encode the application of the transitivity axiom, we

require that the commuting square in Diagram (14.2) be a pushout square. The pushout

square property applied to Diagram (14.2) ensures that, for any relation E such that a E c,

there will be a morphism from the bottom-right object in the diagram (call it D) to E,

meaning that E contains as much or more information than D, which in turn means that
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D encodes the least relation that includes (a,c). This is exactly the result we want from

applying transitivity on our example.

Furthermore, we can obtain the bottom-right corner of Diagram (14.2) by taking

the pushout of Diagram (14.1). Thus, inference is the process of repeatedly identifying

points where axioms can apply and pushing out to add the learned information. This

produces a sequence of pushout squares whose bottom edges all chain together. For

example, in the diagram below, app1 states where to apply axiom1 in E0, and the pushout

E0 +A1 C1 produces the result E1; in the second step, app2 states where to apply axiom2

in E1, and the pushout E1 +A2 C2 produces E2; this process can continue to produce an

entire sequence (Ei)i∈{0...n}, where each Ei encodes more information than the previous

one.

A1 C1 A2 C2

E0 E1 E2

. . .

................................................................................... ............
axiom1

................................................................................... ............
axiom2

........................................................................................................................... ............ ........................................................................................................................... ............

......................................
.....
.......
.....
app1

.........................................
..
.......
.....

......................................
.....
.......
.....
app2

.........................................
..
.......
.....

(14.3)

In the E-PEG setting, each Ei will be an E-PEG, and each axiom application will

add an equality edge. The entire sequence above constitutes a proof in our formalism: it

encodes both the axioms being applied (axiom1, axiom2, etc.), how they are applied (app1,

app2, etc.), and the sequence of conclusions that are made (E0, E1, E2, etc.). Traditional

tree-style proofs (such as derivations) can be linearized into our categorical encoding of

proofs (see Chapter 17 for more details on how this can be done).

14.4 Defining Generalization in Category Theory

Proof generalization involves identifying a property of the result of an inference

process and determining the minimal information necessary for that proof to still infer

that property. We represent a property as a morphism to the final result of the inference

process. For example, in the Rel(2) category, a morphism from {(x,y)} to the final
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result of inference would identify a related a and b whose inferred relationship we are

interested in generalizing. For E-PEGs, a morphism from α ≈ β to an E-PEG E identifies

two equivalent nodes in E, phrasing the property “these two nodes are equivalent”.

Generalization applied to this property will produce a generalized E-PEG for which the

proof will make those two nodes equivalent.

We start by looking at the last axiom application in the inference process, the one

that produces the final result. In this case we have:

A C

E E′
P

.......................................................... ............
axiom

.....................................................
.....
.......
.....

app
.....................................................
.....
.......
.....
app′

.......................................................... ............

....................................................
...
............ prop

A
axiom−−−→ C is the (last) axiom being applied. A

app
−−→ E is where the axiom is being applied.

E′ is the result of pushing out axiom and app. P
prop−−→ E′ is the property of E′ for which

we want a generalized proof.

Next we need to identify which parts of P the last axiom application contributes

to. This step is necessary because, in general, P may only be partially established by

the last step of inference. For example, in the Rel(2) category, we may be interested in

generalizing a proof whose conclusion is that the final relation includes (a,b) and (b,c).

In this case, it is entirely possible that the last step of inference produced (a,b) whereas

an earlier step produced (b,c).

To identify which parts of P the last axiom application contributed, we use the

concept of pullbacks from category theory. Pullbacks are the dual concept to pushouts.

Definition 14.2 (Pullback). A commuting square [A,B,C,D] is said to be a pullback

square if for any object E that makes [E,B,C,D] a commuting square, there exists a



178

unique morphism from E to A such that the following diagram commutes:

A B

C D

E

..................................................... ............

f................................................
.....
.......
.....
g

................................................
.....
.......
.....h

..................................................... ............

i

........................................................................................................ ..........
..

...............................................................................................................
...
.......
.....

.............
................ ........
....

Furthermore, given B, C, D, i , and h in the diagram above, the pullback operation

constructs the appropriate A, f , and g that makes [A,B,C,D] a pullback square. When

the morphisms are obvious from context, we omit them from the list of arguments to the

pullback operation, and in such cases we use the notation B×DC for the result A of the

pullback operation.

Whereas pushouts are good for imposing additional structure, pullbacks are

good for identifying common structure. For example, in the Set category with injective

functions, B×DC would intuitively be the intersection of the images of B and C in D.

Returning to our diagram, we take the pullback C×E′ P:

A C

E E′
P

O

.......................................................... ............
axiom

.....................................................
.....
.......
.....

app
.....................................................
.....
.......
.....
app′

.......................................................... ............

....................................................
...
............ prop

....................................................
...
............

.....................................................
.....
.......
.....

O now identifies where the result of the application and the property overlap.

A generalization of E is an object G with a morphism gen : G→ E (see Di-

agram (14.4) below). A generalization of app is a morphism appG : A→ G such that

appG ;gen = app. We apply axiom to the generalized application appG by taking the pushout

to produce G′. Lastly, we want our property to hold in G′ for the same reason that it holds

in E′; that is, any information added by axiom to make the property prop hold in E′ should

also make the property hold in G′. We enforce this by requiring an additional morphism
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propG : P→ G′. To summarize, a generalization of applying axiom via app to produce

prop is an object G with morphisms gen , appG, and propG making the following diagram

commute:

A C

E E′

P

O

G G′

................................................................................... ............
axiom

.....................................................................................
.....
.......
.....

app
.....................................................................................
.....
.......
.....

................................................................................... ............

.................................................................................................
...
............ prop

.........................................................................................
..

............

......................................................................
.....
.......
.....

............................................... .......
.....
appG
.............................................

.....
............ gen

................................................................................... ............

............................................... .......
.....

.............
....................
.....
............

.................................................................

propG (14.4)

Recall that G′ in the above diagram is the pushout of axiom and appG. The dashed line

from G′ to E′ is the unique morphism induced by that pushout (note that there is a

morphism from G to E′ passing through E).

The above diagram defines a generalization for the last step of the inference

process. A generalization for an entire sequence of steps – such as Diagram (14.3) – is

an initial G0 and a morphism gen from G0 to E0 with a sequence of generalized axiom

applications such that the property holds in the final Gn.

14.5 Constructing Generalizations using Categories

Above we have defined what a generalization is, but not how to construct one.

Furthermore, our goal is not just to construct some generalization; after all E is a trivial

generalization of itself. We would like to construct the most general generalization,

meaning that not only does it generalize E, but it also generalizes any other generalization

of E.

In order to express our generalization algorithm, we introduce a new category-

theoretic operation we call a pushout completion.
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Definition 14.3 (Pushout completion). Given a diagram

A B

D

.............................. ............
f

.........................
.....
.......
.....g

the pushout completion of [A,B,D, f ,g ] is a pushout square [A,B,C,D] with the prop-

erty that, for any other pushout square [A,B,E,F] in which the morphism from B to F

passes through D, there is a unique morphism from C to E (shown below with a dashed

arrow) such that the following diagram commutes:

A B

DC

E F

....................................................................................................... ............
f

............................
.....
.......
.....g

.......................................................... ........
....

................................. ............

..................................................................................................
.....
.......
.....

............................
.....
.......
.....

....................................................................................................... ............

.............
.............

........
....
............

When the morphisms are obvious from context, we omit them from the list of arguments

to the pushout completion, and in such cases we use the notation D−AB for the result C

of the pushout completion (the minus notation is used because in the above diagram we

have D=B+A C).

The intuition is that C captures the structure of D minus the structure of B

(reflected into D through g ) while keeping the structure of A (reflected into D through

f ;g ). For example, in the Rel(2) category, intuitively we would have: C= (D\B)∪A

(where A, B, C, and D are sets of tuples that represent relations).

Our key requirement for constructing generalizations is that, for every axiom

A
axiom−−−→ C, there is a pushout completion for any morphism f from C to any object. There

is encouraging evidence that axioms with pushout completions are quite common. In par-

ticular, all of our PEG axioms satisfy this condition. More generally, all identity-carried

morphisms in Rel(2) or the category of expressions satisfy this condition. Furthermore,
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in Section 14.6 we show how to loosen this condition in a way that allows all morphisms

in Set and Rel(2) to qualify as generalizable axioms.

Now that we have all the necessary concepts, the diagram below and the sub-

sequent description explain the steps that our algorithm takes to construct the best

generalization:

A C

E E′

P

O

P′ P̄

................................................................................... ............
axiom

..............................................................................
.....
.......
.....

app
..............................................................................
.....
.......
.....

................................................................................... ............

...............................................................................................
..

............ prop

.........................................................................................
..

............

......................................................................
.....
.......
.....

......................................... ........
....

.............
............
....
............

................................................................................... ............

......................................... ........
....

.............
............
....
............

..................................................

(14.5)

1. O is constructed by taking the pullback C×E′ P.

2. P̄ is constructed by taking the pushout C+OP. The pushout P̄ intuitively represents

the unification of property P with the assumptions and conclusions of axiom (which

are represented by C). The dashed morphism from P̄ to E′ is induced by the

pushout property of P̄; it identifies how this unified structure fits in E′.

3. P′ is constructed by taking the pushout completion P̄−AC. The pushout comple-

tion P′ intuitively represents the information in P̄ but with the inferred conclusion

of axiom removed. The dashed morphism from P′ to E is induced by the pushout

property of P̄; it identifies the minimal information necessary in E so that applying

axiom produces property P.

Let us return to the larger context of a chain of axioms rather than applying

just one axiom. In Diagram (14.5) above, E would be the result of an earlier axiom

application. P′ then identifies the property of E that needs to be generalized in that

axiom application. This process of generalization can be repeated backwards through

the chain of axioms until we arrive at the original E0 that the inference process started

with. The generalized property of E0 at that point is then the best generalization of E0

such that the proof infers the property P we started with in Diagram (14.5). The fact
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that this solution is the most general falls immediately from the pushout and pushout-

completion properties of the construction. In particular, suppose that in Diagram (14.5)

there is another generalization G, which essentially means that we merge diagrams (14.4)

and (14.5) together. We need to show that there exists a morphism from P′ to G. First, the

pushout property on P̄ induces a morphism from P̄ to G′. Second, the pushout-completion

property on P′ induces the desired morphism from P′ to G.

The above process provides a categorical algorithm for generalizing proofs. The

algorithm is parameterized by the choice of category used to represent the inference

process, along with the details of implementing pushouts, pullbacks, and pushout com-

pletions on this category.

14.6 Subpushout Completions

The requirement that all axioms always have pushout completions is more re-

strictive than necessary. Although all the axioms in our implementation satisfy this

requirement, other applications of proof generalization may need more freedom in their

choice of axioms. Here we formalize the actual requirement of all axioms needed to

apply our proof-generalization technique.

In our proof-generalization process, we only apply proof generalization in the

following situation:

A C

E E′

P

O

P̄

........................................................................................................................... ............
axiom

......................................................................................................................
.....
.......
.....

app

......................................................................................................................
.....
.......
.....

app′

........................................................................................................................... ............

..................................................................................................................................................................................
..

............
prop

.................................................................................................................................................................................
..

............

............................................................................................................
.....
.......
.....

............................................................................................ .........
...

app

.............
.............

.............
..............
...
............

prop
...........................................................................

where O is the pullback of app′ and prop, and P̄ is the pushout of this pullback.

Whenever this situation arises, there needs to be a subpushout completion of the
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pushout square [A,C,E,E′] and P̄, which we define in steps. A subpushout of the pushout

square [A,C,E,E′] is a pushout square [A,C,G,G′] with a morphism genG : G→E making

the following diagram commute:

A C

E E′

G G′

........................................................................................................................... ............
axiom

..........................................................................................................................................
.....
.......
.....

app

..........................................................................................................................................
.....
.......
.....

........................................................................................................................... ............

............................................................................. .......
.....

appG
............................................................................. .......

.....

app′G

........................................................................................................................... ............

.......................................................
....
............ genG

.............
.............

........
....
............ gen ′G

A subpushout through P̄ also has a morphism extG : P̄→ G′ with app′G = app ; extG and

extG ;gen ′G = prop.

A subpushout completion of [A,C,E,E′] and app is a universal subpushout

[A,C,P′, P̂] of [A,C,E,E′] through P̄, meaning that for any other subpushout [A,C,G,G′]

of [A,C,E,E′] extending P̄ there is a unique morphism from P′ to G making the following

diagram commute:

A C
P̄

P′ P̂

G G′

E E′

................................................................................................................................................................... ............
axiom

..................................................................................................................................................................................................................................................................
.....
.......
.....

app

..................................................................................................................................................................................................................................................................
.....
.......
.....

................................................................................................................................................................... ............

...................................................................................................................... ........
....

appP
...................................................................................................................... ........

....

................................................................................................................................................................... ............

...................................................................................................................................................................................................... .......
.....

appG

...................................................................................................................................................................................................... .......
.....

................................................................................................................................................................... ............

.................................................................................................................................................................................................
.....
............

genP

.............

.............

.......
.....
.......
.....

.............
.............

.............
.............

.............
.............

.............
..................
.....
............

.............

.............

.......
.....
.......
.....

..................................................................................................................
....
............

genG

.............
.............

.............
.............

..............

....
............

..................................................................................................................................................... ............

app

.................................................
.....
............

extP .......................................................................................................................................
.....
.........
...

extG

This is admittedly complicated, but this more precise requirement actually makes

many more axioms valid for generalization. For example, in (classical) Set only the

surjective functions (and the unique function from the empty set to the singleton set)

satisfy the less precise requirement. However, all morphisms in Set satisfy the more

precise requirement. Because of this, all morphisms in Rel(2) also satisfy the more
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precise requirement. In fact, in both categories, the extension morphism extP is always

an identity morphism (and P̂ is always equal to P̄).

14.7 Proof of Generality

Before constructing the most general proof, we have to define what a gener-

alized proof is. Suppose we have a concrete proof with objects (Ei)i∈{0...n}, axioms

(axiom i : Ai→ Ci)i∈{1...n}, and applications (appi : Ai→ Ei−1)i∈{1...n} such that E0 is the

concrete assumption and En is the concrete conclusion. app′i : Ci→ Ei, for i in {1 . . .n}, is

defined as the appropriate morphism in the pushout diagram [Ai,Ci,Ei−1,Ei]. Also sup-

pose we have a desired property of our concrete conclusion, prop : P→ En, that we want

to have hold in our generalized proof. Then a generalized proof is a proof using the same

axioms but different objects (Xi)i∈{0...n} and applications (appXi : Ai → Xi−1)i∈{1...n}

along with morphisms (genX
i : Xi→ Ei)i∈{0...n} and propX : P→ Xn evidencing general-

izations satisfying a few properties. First, appXi ;genX
i equals appi, for i in {1 . . .n}, so

that applications in proof X are generalizations of the applications in proof E. Second,

propX ;genX
n equals prop, so that the property of the generalized conclusion Xn is a gener-

alization of the desired property of the concrete conclusion En. Lastly, [O,P,Cn,Xn] must

form a commutative square (where O is the pullback of prop and appn), so that the desired

property is still a result of the final axiom application. Now we procede to construct a

generalized proof and prove that it is the most general generalization.

First, we use the process for generalizing axiom applications in order to con-

struct the significant property (propi : Pi → Ei)i∈{0...n} at each stage. P n is defined

as P, and propn : Pn → En is defined as prop : P→ En. Oi, for i in {1 . . .n}, is the

pullback of app′i and propi. P̄i, for i in {1 . . .n}, is the pushout of Oi’s pullback dia-

gram, with appi : Ci → P̄i as the appropriate morphism in the pushout square. Pi−1,

P̂i, extPi : P̄i→ P̂i, appPi : Ai→ Pi−1, and propi−1 : Pi−1 → Ei−1, for i in {1 . . .n}, are
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all defined as the appropriate objects and morphisms resulting from the subpushout

completion of [Ai,Ci,Ei−1,Ei] and appi.

From this we construct a generalized proof (Gi)i∈{0...n} with generalizations

(genG
i : Gi→ Ei)i∈{0...n} and applications (appGi : Ai→ Gi−1)i∈{1...n}. We will also con-

struct a morphism propG : P→ Gn such that propG ;genG
n equals prop and [O,P,Cn,Gn] is

a commuting square (where O is the pullback of prop and appn), demonstrating that the

desired property is concluded by this generalized proof using the final axiom application.

G0 is defined as P0 with genG
0 : G0→ E0 defined as prop0, thus the generalized property

we constructed is the starting point of our generalized proof. As we construct the rest

of our proof, we will also construct a sequence of morphisms (propGi : Pi→ Gi)i∈{0...n},

with propGi ;genG
i = propi always holding, showing that the generalized property for each

stage holds in our generalized object at the stage. propG0 : P0→ G0 is defined simply as

the identity morphism, automatically satisfying the above property. appGi : Ai→ Gi, for

i in {1 . . .n}, is simply defined as appPi ;propGi . Gi, for i in {1 . . .n}, is then defined as

the pushout of axiom i and appGi . propGi : Pi→ Gi and genG
i : Gi→ Ei, for i in {1 . . .n}, are

defined using the morphisms induced by pushouts in the following commutative diagram:

Oi

Pi
Ai Ci

P̄i

Pi−1 P̂i

Gi−1 Gi

Ei−1 Ei

...................................................................................................................................................................................................
..

............

............................................................. .........
...

...................................................................................................................................................................................................
..

............

.................................................................................................................................................................................................................
.....
............

propGi

.......................................................................................................................................................................................................................................................... ............
axiom i

..................................................................................................................................................................................................................................................................
.....
.......
.....

appi

..................................................................................................................................................................................................................................................................
.....
.......
.....

................................................................................................................................................................................................................................................... ............

......................................................................................................................................................................... .........
...

appPi

................................................................................................................................................................................................................................................ ............

........................................................................................................................................................................................................................................ ........
....

appGi

........................................................................................................................................................................................................................................... ........
....

................................................................................................................................................................................................................................................... ............

................................................................................................................................................................................................................................
....
............

propi−1

..........................................................
.....
.......
.....
propGi−1

.......................................................................................................................................................................................................................................
....
............

prop′i−1

.............

.............

.......
.....
.......
.....

.........................................................................................................................................................................
...
............ genG

i−1

.................................................................................................
...
............ genG

i

............................................................. .........
...

appi

............................................................. .........
...

extPi


.............

propi

Although most components of this diagram commute by either assumption or construc-

tion, the two paths from P̂i to Ei commute due to the uniqueness property of pushout
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squares (specifically of the pushout square [Ai,Ci,Pi−1,Pi]). Because of this, propGi ;genG
i

is equal to propi, maintaining our inductive property. In particular, propGn ;genG
n equals

propn and [On,Cn,Pn,Gn] is a commuting square, so by defining propG as propGn we demon-

strate that the desired property holds appropriately in the result of our proof (since propn

is defined as prop and On is O). Thus, we have constructed a valid generalized proof.

Lastly we need to prove that this is the most general proof of the given con-

crete proof. So suppose there is another generalized proof (Xi)i∈{0...n} with gener-

alizations (genX
i : Xi → Ei)i∈{0...n} and applications (appXi : Ai → Xi−1)i∈{1...n}. This

generalized proof also has a morphism propX : P→ Xn such that propX ;genX
n equals prop

and [O,P,Cn,Xn] is a commuting square, demonstrating that the desired property is con-

cluded by this generalized proof using the final axiom application. First we demonstrate

that the generalized property propi we constructed at each stage holds in Xi at each stage

by constructing a suitable morphism propXi : Pi→ Xi such that propXi ;genX
i equals propi

and [Oi,Pi,Ci,Xi] is a commuting square. We define propXn as propX which satisfies the

relevant properties by assumption, since propn is defined as prop and On is O. We define

propXi−1, for i in {1 . . .n}, using the morphisms induced in the following commutative

diagram:

Oi

Pi
Ai Ci

P̄i

Pi−1 P̂i

Xi−1 Xi

Ei−1 Ei

...................................................................................................................................................................................................
..

............

............................................................. .........
...

...................................................................................................................................................................................................
..

............

.................................................................................................................................................................................................................
.....
............

propXi

.......................................................................................................................................................................................................................................................... ............
axiom i

..................................................................................................................................................................................................................................................................
.....
.......
.....

appi

..................................................................................................................................................................................................................................................................
.....
.......
.....

................................................................................................................................................................................................................................................... ............

......................................................................................................................................................................... .........
...

appPi

................................................................................................................................................................................................................................................ ............

........................................................................................................................................................................................................................................ ........
....

appXi

........................................................................................................................................................................................................................................... ........
....

................................................................................................................................................................................................................................................ ............

................................................................................................................................................................................................................................
....
............

propi−1

.............

.............

.......
.....
.......
.....
propXi−1

.......................................................................................................................................................................................................................................
....
............

prop′i−1

.............

.............

.......
.....
.......
.....

......................................................................................................................................................................
...
............ genX

i−1

.........................................................................................................................................................................
...
............

genX
i

............................................................. .........
...

appi

............................................................. .........
...

extPi.............
.............

.............
.............

.............
............ .......
.....


.............

propi

(14.6)

The morphism from P̄i to Xi is induced by the pushout property of P̄i since [Oi,Pi,Ci,Xi]
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is a commuting square by inductive assumption; call this morphism extXi . The morphism

from Pi−1 to Xi−1 and the morphism from P̂i to Xi are induced by the subpushout-

completion property of [Ai,Ci,Pi−1, P̂i] since genX
i demonstrates that [Ai,Ci,Xi−1,Xi] is

a subpushout of [Ai,Ci,Ei−1,Ei] and extXi demonstrates that this subpushout extends P̄i.

Lastly, we construct a sequence of morphisms (gen i : Gi→Xi)i∈{0...n} demonstrating that

(Gi)i∈{0...n} is a generalized proof of (Xi)i∈{0...n}. For each i in {0 . . .n}, we will maintain

the property that propGi ;gen i equals propXi , demonstrating that G generalizes the significant

property in X in each stage. gen0 is defined as propX0 (since G0 is defined as P0), satisfying

the above property since propG0 is simply the identity morphism. gen i, for i in {1 . . .n},

is induced by the pushout property of [Pi−1, P̂i,Gi−1,Gi] using gen i−1, satisfying the

above property by construction and the fact that propGi is defined in terms of the unique

morphism from P̂i to Gi ([Pi−1, P̂i,Gi−1,Gi] is a pushout square using the pushout lemma,

not repeated here as it is standard, since [Ai,Ci,Pi−1, P̂i] and [Ai,Ci,Gi−1,Gi] are both

pushout squares). From this, we can also easily deduce that propG ;genn equals propX and,

for i in {1 . . .n}, appGi ;gen i−1 equals appXi , demonstrating that G is a generalized proof

of X. Also, for i in {0 . . .n}, genG
i equals gen i ;genX

i due to the uniqueness property of

pushouts, demonstrating that G is a generalization of the generalization X.

The proof we have presented is actually flawed. We have made a major over-

simplification for sake of explanation. The flaw is that, in Diagram (14.6), it is not

necessarily the case that the square [Oi,Pi,Ci,Xi] commutes. The reason is that we have

not imposed enough constraints on the generalized proof X. In particular, we have not

required a generalized proof to make the conclusions of earlier axiom applications to

contribute to the assumptions of later axioms in the same way they do in the original

proof. In fact, as it stands often it can be the case that X0 is the coproduct (e.g. disjoint

union) of all the axiom assumptions, completely disconnected, and Xn is the coproduct

of all the axiom conclusions, again completely disconnected, with the conclusion of
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no axiom application contributing to the assumption of another. The reason is that a

proof is more than just a sequence of pushout squares. A proof also details how the

conclusion of one axiom application contributed to the conclusion of another. Our use

of pullbacks in the generalization process was an approximation of this. Should one

include objects and morphisms mapping into the concrete proof along with required

equivalences indicating the glue of the proof across axioms, then one can use pushouts

along those morphisms instead to get a proof generalization process very similar to the

one we presented. Then one requires that the required equivalences factor through a

generalized proof to indicate that it glues together appropriately, in which case the square

analogous to [Oi,Pi,Ci,Xi] in Diagram (14.6) will commute and the proof we presented

will be valid. Nonetheless, the algorithm and arguments we gave convey the critical

concepts behind our proof-generalization technique.
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Chapter 15

E-PEG Instantiation

We now show how to instantiate the categorical algorithm from Chapter 14 with

E-PEGs. The category of E-PEGs can be formalized in a straghtforward way using well

established categories such as partial algebras PAlg(Ω) and relations Rel(2) [1]. The

full formal description, however, is lengthy to expose, so we provide here a semi-formal

description.

An object in the E-PEG category is simply an E-PEG. These E-PEGs can have

free variables, and a morphism f from one E-PEG A to another E-PEG B is a map

from the free variables of A to nodes of B such that, when the substitution f is applied

to A, the resulting E-PEG is a sub-graph of B. The substitution is also required to map

expressions equivalent in A to expressions equivalent in B.

The three operations that need to be defined on the E-PEG category intuitively

work as follows:

• The pullback A×CB treats A and B as sub-E-PEGs of C and takes their intersec-

tion.

• The pushout A+CB treats C as a sub-E-PEG of both A and B and unifies A and B

along the common substructure C.

• The pushout completion C−AB removes from C the equalities in B that are not

190



191

x x x x
0

+

7 7
5

+

7 7
5 0

+

c c
a

+

c c
a 0

0

+

ba 0

+

ba 0

+

7 7
5 0

+

7 7
5 0

+

yx 0

+

yx 0

+

ba 0

First Axiom Second Axiom

Axiom
Application

Copy

Pushout
Pushout

Copy

Pushout
Completion

Axiom
Application

Pushout
Completion

Pullback
Pullback

Identify Equality
to Generalize

Figure 15.1. Example of generalization using E-PEGs

present in A.

We now revisit the example from Figure 13.3 and this time explain it using

our category-theoretic algorithm. Figure 15.1 shows the generalization process for this

example using E-PEGs. The objects (boxes) in this figure are E-PEGs, and the thin

arrows between them are morphisms. The example has two axiom applications, and so

Figure 15.1 consists essentially of two side-by-side instantiations of Diagram (14.5). The

thick arrows identify the steps taken by inference and generalization. The equality edges

in each E-PEG are labeled with either a # or a4 to show how these equality edges map

from one E-PEG to another through the morphisms.

In this example the inference process uses two axioms to infer that 5+(7−7) is

equal to 5. First, it applies the axiom x−x = 0 to learn that 7−7 = 0, and then x+0 = x

to learn that 5+(7−7) = 5. We use the “Copy” arrows just for layout reasons – these

copy operations are not actually performed by our algorithm.

Once the inference process is complete, we identify the equality we are interested

in generalizing by creating an E-PEG containing the equality α ≈ β (with α and β fresh)

and a morphism from this E-PEG to the final result of inference which maps α to 5 and

β to the + node. Thus we are singling out the4 equality in the final result of inference
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to generalize.

Having singled out which equality we want to focus on, we generalize the second

axiom application using our three-step approach from Chapter 14: a pullback, a pushout,

and then a pushout completion. The pullback identifies how the axiom is contributing

to the equalities we are interested in – in this case it contributes through the4 equality.

The pushout then unifies the equality we are interested in generalizing with a freshly

instantiated version of the axiom’s conclusion (with a and b being fresh). Finally,

the pushout completion essentially runs the axiom in reverse, removing the axiom’s

conclusion. In particular, it takes the substitution from the unification and applies it to

the premise of the axiom to produce the E-PEG [a+b · · ·0].

This E-PEG, which is the result of generalizing the second axiom application,

is then used as a starting point for generalizing the first axiom application, again using

our three steps. The pullback identifies that the first axiom establishes the # equality

edge. The pushout unifies [a+b · · ·0] with a freshly instantiated version of the axiom’s

conclusion (with c being fresh). Note that the # equality edge in [a+b · · ·0] must unify

with the corresponding equality edge in the axiom’s conclusion, and so b gets unified

with the minus node. Finally, the pushout completion runs the first axiom in reverse,

essentially removing the axiom’s conclusion. The result is our generalized starting E-PEG

for that proof. We then generate a rule stating that whenever this starting E-PEG is found,

the final conclusion of the proof is added, in this case the4 equality.

The details of how our E-PEG category is designed affects the optimizations that

our approach can learn. For example, the category described above has free variables, but

they only range over E-PEG nodes. For additional flexiblity, we can also introduce free

variables that range over node operators, such as variables OP1 and OP2 in Figure 13.1.

This would allow us to generate optimizations that are valid for any operator, for example

pulling an operation out of a loop if its arguments are invariant in the loop. For even
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more flexibility, we can augment our E-PEG catgory with domain-specific relationships

on operator variables, which could be used to indicate that one operator distributes over

another. With this additional flexiblity, we can learn the more general version of LIVSR

show in Figure 13.1. In all these cases, to learn the more general optimizations, one

has to not only add flexiblity to the category, but also re-express the axioms so that

they take advantage of the more general category (as was shown in Section 13.1). The

E-PEG category can also be augmented with new structure in order to accommodate

analyses not based on equalities. For example, an alias analysis could add a distinctness

relation to identify when two references point to different locations. This would allow

our generalization technique to apply beyond the kinds of equality-based optimizations

that Peggy currently performs.
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Chapter 16

More Applications of Generalization

The main advantage of having an abstract framework for proof generalization

is that it separates the domain-independent components of proof generalization — how

to combine pullbacks, pushouts, and pushout completions — from the domain-specific

components of the algorithm — how to compute pullbacks, pushouts, and pushout com-

pletions. As a result, not only does this abstraction provide us with a significant degree of

flexibility within our own domain of E-PEGs, as described in Chapter 15, but it also en-

ables applications of proof generalization to problems unrelated to E-PEGs. We illustrate

this point by showing how our generalization framework from Chapter 14 can be used

to learn efficient query optimizations in relational databases (Section 16.1), assist pro-

grammers with debugging static type errors (Section 16.2), and improve polymorphism

in programs that have already been type checked (Section 16.3).

16.1 Database Query Optimization

In relational databases, a small optimization in a query can produce massive

savings. However, these optimizations become more expensive to find as the query size

grows and as the database schema grows. We focus here on the setting of conjunctive

queries, which are existentially quantified conjunctions of the predicates defined in the

database schema. For example, the query ∃y. R(x,y)∧R(y,z) returns all elements x and z
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for which there exists a y such that (x,y) and (y,z) are in the R table (relation). For sake

of brevity, we discuss only conjunctive queries without existential quantification.

A conjuctive query can itself be represented as a small database. For example, the

query q := R(x,y,z,1)∧R(x′,y,0,1) can be represented by the following database (our

notation assumes there is one table in the database called R and just lists the tuples in R):

Q :=
x y z 1

x′ y 0 1

Any result produced by q on a database instance I corresponds to a relation-preserving

and constant-preserving function from Q to I. One nice property of this representation is

that the number of joins required to execute a query is exactly one less than the number

of rows in the small database representing the query. Thus, reducing the number of rows

means reducing the number of joins.

Most databases have some additional structure known by the designer. One such

structure could be that the first column of R determines the third column (we will use

A, B, C, and D to refer to the columns of R). This is known as a functional dependency,

noted by A→C. Functional dependencies fit into the broader class of equality-generating

dependencies since they can be used to infer equalities. A query optimizer can exploit

this information to reduce the number of variables in a query, identify better opportunities

for joins, or even identify redundant joins. Unfortunately, the functional dependency

A→C provides no additional information for our example query, at least not yet.

Another form of dependencies is known as tuple-generating dependencies. These

dependencies take the form “if these tuples are present, then so are these”. One common

example is known as multi-valued dependencies. Suppose in our example database, the

designer knows that, for a fixed element in B, column A is completely independent of

C and D. In other words, R(a,b,c,d)∧R(a′,b,c′,d′) implies R(a,b,c′,d′), as well as
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R(a′,b,c,d). This is denoted as B� A or equivalently as B�CD.

Adding tuples to a query in general is harmful because each added tuple represents

an additional join. However, combined with equality-generating dependencies, these

additional tuples can be used to infer useful equalities, which can then simplify the query.

Let us apply an algorithm known as “the chase” [25] to optimize our example query

using A→C and B� A:

x y z 1

x′ y 0 1
|B�A
==⇒

x y z 1

x′ y 0 1

x y 0 1

|A→C
==⇒

x y 0 1

x′ y 0 1

The added tuple was used to infer that z must equal 0, which then simplifies the rightmost

database above into two tuples. The optimizer can use this to select only tuples with

C equal to 0 before joining, a potentially huge savings. Although this example was

beneficial, many times adding tuples is harmful because it adds additional joins which

can be inefficient. Thus, a query optimizer prefers to infer equalities without introducing

unnecessary tuples.

Our framework from Chapter 14, instantiated to the database setting, can use

instances of optimized queries to identify general rules for when adding tuples to a query

is helpful. In particular, in the above example, it could identify exactly what properties of

the original query led to the inferred equality. The category we will use in this example

is Rel(4): quaternary relations and relation-preserving functions. The “axiom” A→C

can be expressed categorically by the morphism

a b c d

a b′ c′ d′
c, c′ 7→ c̄−−−−−→

a b c̄ d

a b′ c̄ d′
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The “axiom” B� A can be expressed using the morphism

a b c d

a′ b c′ d′
→

a b c d

a′ b c′ d′

a b c′ d′

Applying our framework to our sample query optimization sequence will produce the

theorem

a b c d

a′ b c′ d′
c, c′ 7→ c̄−−−−−→

a b c̄ d

a′ b c̄ d′

or simply B→C. Thus, our framework can be used to learn equality-generating depen-

dencies, removing the need for the intermediate generated tuples. This was possible

because the dependencies involved, namely A→ C and B� A, could be expressed

categorically as morphisms. We have proven that our learning technique can be used

so long as all the dependencies can be expressed in this manner. Although the primary

purpose of applying our framework to database optimizations was to demonstrate the

flexibility of our framework, discussions with an expert in the database community [24]

have revealed that our technique is in fact a promising approach that would merit further

investigation.

16.2 Type Debugging

As type systems grow more complex, it also becomes more difficult to understand

why a program does not type check. Type systems relying on Hindly-Milner type

inference [56] are well known for producing obscure error messages since a type error

can be caused by an expression far removed from where the error was finally noticed by

the compiler. Below we show how to apply our framework as a type-debugging assistant
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that is similar to [39], but is also easily adaptable to additional language features such as

type classes.

In Haskell, heap state is an explicit component of a type. For example, readSTRef

is the function used to read references. This is a stateful operation, so it has type

∀s a. STRef s a→ ST s a. STRef s a is the type for a reference to an a in heap s. ST s a

stands for a stateful computation using heap s to produce a value of type a. In order to use

this stateful value, Haskell uses the type class Monad to represent sequential operations

such as stateful operations. Thus ST s is an instance of Monad for any heap s. A problem

that quickly arises is that operations such as + take two Ints, not two ST s Ints. Thus,

+ has to be lifted to handle effects. To do this, there is a function liftM2 that lifts

binary functions to handle effects encoded using any Monad. Likewise, liftM lifts unary

functions.

Now consider the task of computing the maximum value from a list of references

to integers. If the list is empty, the returned value should be−∞. In Haskell, integers with

−∞ are encoded using the Maybe Int type: the Nothing case represents −∞ and the

Just n case represents the integer n. Conveniently, max defined on Int automatically

extends to Maybe Int. The following program would seem to accomplish our goal:

maxInRefList refs

= case refs of

[] -> Nothing

ref : tail -> liftM2 max

(liftM Just (readSTRef ref))

(maxInRefList tail)

Since readSTRef is a stateful operation, the lifting functions liftM2 and liftM

allow max and Just to handle this state. Unfortunately, this program does not type check.
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The Glasgow Haskell Compiler, when run on the above program using do notation for

the recursive call, produces the error “readSTRef ref has inferred type ST s a but is

expected to have type Maybe a”. This error message does not point directly to the problem,

so the programmer has to examine the program, possibly even callers of maxInRefList,

to understand why the compiler expects readSTRef ref to have a different type. Within

maxInRefList alone there are many possiblities, such as the lifting operations, dealing

with Maybe correctly, and the recursive call. Here we can apply proof generalization to

limit the scope of where the programmer has to search, thereby helping identify the cause

of the type error.

Type inference can be encoded categorically using a category of typed expressions.

An object is a set of program expressions and a map from these program expressions

to type expressions, although this map is not required to be a valid typing. Program

expressions can have program variables, and type expressions can have type variables. A

morphism from A to B is a type-preserving substitution of program and type variables

in A to program and type expressions in B such that when the substitution is applied

to A, the resulting expressions are subexpressions of the ones in B. In this category,

typing rules can be encoded as morphisms. For example, function application can be

encoded as:

(( f : α) (x : β )) : γ (( f : β → γ) (x : β )) : γ
........................................................................................................................................................................................................ ............
α 7→ (β → γ)

This states that, for any program expressions f and x where x has type β , f must have

type β → γ for f x to have type γ . Hence, the type α of f is mapped to β → γ by the

morphism. In effect, applying this axiom unifies the type of f with β → γ .

Rules for polymorphic values can also be encoded as morphisms. For example,
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the rule for Nothing can be encoded as:

Nothing : α Nothing : Maybe β
......................................................................................................................................................................................................................................................................... ............

α 7→ Maybe β

This states that, for the value Nothing to have type α , there must exist a type β such

that α equals Maybe β . As before, applying this axiom unifies the type of Nothing with

Maybe β .

Putting aside type classes for simplicity, the rule for liftM is:

liftM : α liftM : (β → γ)→M β →M γ
................................................................................................................................................................................................................................................................................................................................................................................................................... ............

α 7→ (β → γ)→M β →M γ

This rule uses a type variable M, which is treated like other type variables except it maps

to unary type constructors, such as Maybe or the partially applied type constructor ST s.

Going back to the maxInRefList example, since the compiler expects the expres-

sion readSTRef ref to have type Maybe a, the type-inference process could be made

to produce a proof that this fact must be true for the program to type check. This proof

can be expressed categorically using the above encoding, which allows us to now apply

our generalization technique. We ask the question “Why does readSTRef ref need

to have type Maybe a?” categorically using a morphism from object (x : Maybe ζ ) that

maps x to readSTRef ref and ζ to a. We then proceed backwards through the inference

process. For each step, we determine whether it contributes to the property; if it does,

we generalize it, otherwise we skip the step entirely so as not to needlessly constrain the

program.

The first useful step to generalize is the function-application rule where the

function is liftM Just and the argument is readSTRef ref. During inference, before

applying this axiom, liftM Just had type M a→M (Maybe α) for some M, a, and α ;



201

liftM Just (readSTRef ref) had type Maybe β for some β ; and readSTRef ref

still had the unconstrained type γ . Applying the function-application rule during inference

causes γ to be unified with M a and M (Maybe α) with Maybe β . In turn, this forces

M to unify with Maybe, contributing to the reason why readSTRef ref must have

type Maybe a. Generalization can analyze this axiom application to determine that

readSTRef ref has type Maybe a due to two key properties: (1) liftM Just had type

M a→M δ (where δ generalizes Maybe α), and (2) liftM Just (readSTRef ref)

had type Maybe β (the same as the non-generalized type).

Generalizing property (1) eventually recognizes liftM as an important value in

the program, whereas Just is not. Generalizing property (2) reaches similar kinds of

conclusions in the rest of the program. In this manner, generalization identifies exactly

which components of the program are causing the compiler to expect readSTRef ref

to have type Maybe a. The resulting skeleton program is shown below, using dots for

irrelevant expressions:

. = case . of

. -> Nothing

. -> liftM2 . (liftM . .) .

The skeleton program makes it clear that only the two cases, the lifting operations,

and the use of Nothing are causing the incorrect expectation. Combining these three

facts, the programmer can quickly realize that they forgot to lift the stateless value

Nothing into the stateful effect ST s, easily fixed by passing Nothing to the return

function. This mistake was hidden before because Maybe is coincidentally an instance

of Monad, so the lifting functions were interpreted as lifting Maybe rather than ST s.

The mistake was in a different case than where the error was reported, misleading the

programmer into examining the wrong part of the program. Generalization, however,
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helps the programmer pinpoint the problem by removing parts of the program that do not

contribute to the error.

16.3 Type Polymorphization

Applying proof generalization to type checking will automatically generalize the

types of a program into polymorphic types. For example, take the function

int sum(l:int list, i:int) := foldr (+) i l

Now suppose type classes are added to the language and + is an operator defined for any

instance of type class Num. Rather than have a programmer go through all prior code

involving integers and determine which apply to arbitrary Num, we can generalize the

proof that a typing is valid for a given program to determine the minimal type constraints

necessary for the program to still type check.

In order to apply our framework from Chapter 14 to type derivations, we must

encode type derivations as a category-theoretic inference process – Diagram (14.3). There

are several ways of doing this, the most traditional of which would be to have an object

in the category be a type derivation, and an axiom be an operation that adds one extra

step at the end of the derivation. Thus, the sequence Ei from Diagram (14.3) would

be a sequence in which each type derivation Ei adds one additional step to derivation

Ei−1. Here we use an encoding that is more direct and easier to illustrate, although less

traditional. This alternate encoding also illustrates the flexibility of our category-theoretic

framework, which can support many different encoding mechanisms for proofs.

An object in our category is a typed expression, which is a triple consisting of: a

program expression, a function from subexpressions to types, and a unary predicate on

subexpressions indicating whether the type of the given subexpression is known to be
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valid. We graphically represent an object in our category by writing down the expression,

using “:” to show the types of subexpressions, and using a check markX to indicate that

that the type of a subexpression is known to be valid. For example, the typed expression

(x:Xint + y:int):int is the expression x+y where x, y, and x+y are all assigned

type int, and only the typing of x is known to be valid. The inference process starts with

a typed expression that has all the types but has no check marks, and each step in the

inference process adds a check mark.

A morphism from a typed expression p to a typed expression q is a mapping m

from the program variables in p to those in q and from the type variables in p to those

in q such that p after substituting with m is a subexpression of q. This map needs to also

preserve the subexpression-to-type mapping, as well as the type-validity predicate.

To see how a regular typing rule would be encoded as an axiom in our category,

consider a typing rule of the following form, where P[e1,e2] is some expression composed

of e1 and e2:

P-rule
e1 : τ1 e2 : τ2

P[e1,e2] : τ3

In our category theory formulation, this would be encoded as the following axiom:

P[e1 :X τ1, e2 :X τ2] : τ3 P[e1 :X τ1, e2 :X τ2] :X τ3
........................................................................................ ............
P -rule

In order to type check the sum function, we must validate the typing of its body

assuming that the type of the parameters are valid. In other words, starting with the

object:

(foldr (+:int->int->int) (i:Xint) (l:Xint list)):int
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we want to establish:

(foldr (+:Xint->int->int) (i:Xint) (l:Xint list)):Xint

To validate +:int->int->int, we apply the following axiom:

+ : τ → τ → τ

where Num τ holds

+ :X τ → τ → τ

where Num τ holds
................................................................................................................. ............

plus

This axiom has been updated to use type classes rather than have one axiom for each

elemental number type. Next, we apply the following axiom to validate the whole

expression:

(foldr

( f :X α → β → β)

(b :X β)

(l :X α list)

): β

(foldr

( f :X α → β → β)

(b :X β)

(l :X α list)

):X β

............................................................... ............
foldr

Now that we have a proof of type validity expressed categorically, we can gener-

alize this proof. We first ask the question “Why is the expression well typed?” using the

morphism from the object e:Xτ mapping e to foldr (+) i l and τ to int. Applying

the axiom foldr backwards will transform e:Xτ into

(foldr (f:X α->β->β) (i:X β) (l:Xlist α)):α

The axiom for + will replace f with +, unify α and β (say as τ), and add the constraint
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Num τ:

(foldr (+:τ->τ->τ) (i:X τ) (l:Xlist τ)):τ | Num τ

Thus, we have automatically added polymorphism from int sum(list int, int) to

∀τ ∈ Num. τ sum(list τ, τ). Although this is just a toy example, it demonstrates a

potential application of our framework to another domain very different from E-PEGs.
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Chapter 17

Manipulating Proofs

Given a proof of correctness, our generalization technique produces the most

general optimization for which the same proof applies. This still allows different proofs

of the same fact to produce incomparable generalizations. However, by changing proofs

intelligently, we can ensure better generalizations. Below we illustrate three classes of

proof edits that we use to produce more broadly applicable optimizations: sequencing

axiom applications, removing irrelevant axiom applications, and decomposing proofs.

17.1 Sequencing Axiom Applications

Our generalization technique requires proofs to be represented as a sequence of

linear steps. However, proofs are often expressed as trees, in which case one needs to

linearize the tree before our technique is applicable. The most faithful encoding of a

proof tree is to use “parallel” axiom applications to directly encode the tree: each step in

the linearized proof corresponds to the parallel application of all axioms in one layer of

the proof tree. This encoding is the most faithful linearization of a proof tree because the

tree can be reconstructed from the linearization.

In a traditional proof tree, two branches of a proof are essentially applying axioms

in parallel, meaning their assumptions are checked independently and their conclusions

are inferred independently. In certain logics, it is possible to combine two axioms into

206



207

one “axiom” encoding both in parallel. For example, if we have the axioms ∀x.x+0 = x

and ∀x.x−x = 0, we can combine them into ∀x,y.x+0 = x∧y−y = 0. This process can

be described categorically using coproducts, a concept closely related to pushouts.

For many, coproducts are best likened to sum types. A sum type defines a type

with two cases where each case has its own type. Suppose the type of the first case is A,

and the type of the second case is B, and we refer to their sum as A+B. This sum type

comes with constructors, say ιA : A→A+B and ιB : B→A+B. This sum type can

also be destructed using case matching. Suppose we want to define some function which

takes an inhabitant of A+B and produce an inhabitant of some desired type C. We can

split our inhabitant of A+B into two cases and produce an inhabitant of C in each case.

Suppose f : A→ C produces the inhabitant for the first case, and g : B→ C produces

the inhabitant for the second case. By using case matching, we can combine these into

a function [f ,g ] : A+B→ C. More than that, we also have the property that ιA ;[f ,g ]

is equivalent to f , and likewise ιB ;[f ,g ] is equivalent to g . All these properties make

the “sink” A
ιA−→A+B

ιB←−B a coproduct. The categorical definition of a coproduct is

defined below.

Definition 17.1 (Coproduct). A sink A
ιA−→A+B

ιB←−B is said to be a coproduct if, for

any object C and morphisms f : A→ C and g : B→ C, there exists a unique morphism

(denoted [f ,g ]) from A+B to C such that the following diagram commutes:

A

B

A+B C

....................................................................................... ........
....ιA

.........
.........
.........
.........
.........
.....................
............ιB

....................................................................................................................................................................................................................................... ..........
..

f

.....................
.....................

.....................
.....................

.....................
.....................

.....................
.....................

.....................
.....................

.....................
............

g

............. ............. ............. ............. ....................... ............

The coproduct operation + constructs the coproduct of two objects, and the [, ] operation

constructs the uniquely induced morphism.
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In addition, we define the coproduct of two morphisms f : A→ C and g : B→D

as f + g = [f ; ιC,g ; ιD] : A+B→ C+D. Intuitively, f + g applies f to the first case and

g to the second case.

Given two axioms expressed categorically as A1
axiom1−−−→ C2 and A2

axiom2−−−→ C2,

we can encode axiom1 and axiom2 in parallel as axiom1 + axiom2 : A1 +A2→ C1 +C2.

Given an application app1 : A1→ E of axiom1 and an application app2 : A2→ E of axiom2

to the same instance E, we can use the coproduct property to construct an application

[app1,app2] : A1 +A2→ E of the parellelized axioms axiom1 + axiom2. We have proven

that the pushout of this axiom application produces the same result (up to isomorphism)

of pushing out app1 and then pushing out app2 on the resulting instance (and likewise for

the reverse order). Thus, the parallelized axiom does in fact encode both axioms together

in an order-independent manner. Using this encoding, we can encode a proof tree by

parallelizing all the axioms in the same layer of the proof and then sequencing the layers

of the proof.

At this point, we consider the impact that this process has on proof generaliza-

tion. Given two axiom applications for the same instance, we now have the choice

of sequencing these two applications or parallelizing them. First, it is the case that

different sequences of the same axiom applications produce different, even incomparable,

generalizations. Interestingly though, we have proven that any sequential application

of axioms always produces a more general (or isomorphic) proof generalization than

the parallelized application. Thus, when given the choice, it is always better to apply

axioms in sequence rather than in parallel, but unfortunately there may not be an optimal

ordering.

To demonstrate how this might happen, suppose axiom1 is φ1 ⇒ ψ1 ∧ φ2 and

axiom2 is φ2⇒ ψ2∧φ1. The important property is that axiom1 implies axiom2’s premise

and vice versa. The parallelized axiom would be φ1 ∧ φ2 ⇒ ψ1 ∧ψ2 ∧ φ1 ∧ φ2. Now
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suppose in our proof instance we had assumed φ1 and φ2 and concluded with φ1, φ2,

ψ1, and ψ2, and we want to generalize our proof in order to weaken our assumptions

but still infer ψ1 and ψ2. If we use the parallelized axiom, our generalized proof is

no better than our original proof. If we apply axiom1 and then axiom2, our generalized

proof will only require φ1 to be assumed, since axiom1 infers φ2 as required by axiom2. If

instead we apply axiom2 and then axiom1, our generalized proof will only require φ2 to be

assumed, since axiom2 infers φ1 as required by axiom1. Thus, neither generalization of

either sequential proof is better than the other, but both generalizations are better than

that of the parallelized proof. The intuition is that the parallel axiom requires the premise

of both axioms, whereas sequencing enables the first axiom to infer the premise of the

following axiom so that the second premise is not required in the generalized proof.

This result suggests that our use of sequential proofs is not limiting but in fact

enables better generalizations of proofs. In our implementation, our proofs have the

property that sequential and parallel forms all produce the same generalization though.

This is because the axioms used by our implementation can only interfere, like in

the example above, when one application is redundant, and our implementation only

produces proofs without redundant axiom applications. This property simplifies our

implementation since it allows us to generalize axioms in any order and always produce

the same result. We have not, however, researched categorical techniques for determining

when axiom sets defined in a arbitrary logic will have this same non-interference property.

We leave this to the research domain of proof theory.

17.2 Removing Irrelevant Axiom Applications

Sometimes certain axiom applications infer information that is irrelevant to the

final property that we are interested in concluding. An irrelevant axiom application

can overly restrict the generalized optimization by making certain equalities (those
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required by the axiom) seem important to the optimization when they are not. Prior

to generalization, it is difficult to identify which steps of the proof are relevant to the

optimization. However, since generalization proceeds backwards through the proof, each

step of the algorithm can easily identify when an axiom application is not contributing to

the current property being generalized and simply skip it. In essence, our algorithm edits

the original proof on the fly, as generalization proceeds, to remove steps not useful for

the end goal.

17.3 Decomposition

As mentioned in Section 13.4, we decompose generated optimizations into smaller

optimizations that are more broadly applicable. We can view decomposition as taking the

original proof and cutting it up into smaller lemmas before applying generalization. In the

context of E-PEGs, performing decomposition requires us to determine the set of inferred

equalities along which we want to cut the proof (the first step mentioned in Section 13.4).

Formally, we represent the set of cut-points as an object S and a morphism sub : S→ En,

where En is the final inferred result of the proof. Then, in each step of generalization,

we check whether the current property propm being generalized is contained within sub

by determining whether there exists a morphism from Pm to S such that the following

diagram commutes:

. . .

Am

Em−1

Cm

Em

Pm

. . . En

S

.............................. ............

............................................................................................... ............
axiomm

..................................................
.....
.......
.....

appm
..................................................
.....
.......
.....

..................................................................................... ............

.....................................................................
....
............ propm
............................................................... ............ ............................................................... ............

..................................................
.....
.......
.....
sub

................................................................................... ............
?

This morphism essentially describes how to contain propm within sub. If this is possible,

we conclude “propm implies propn” as a generalized lemma. We then continue generaliz-

ing, but now propm will be the conclusion of the next generalized lemma. We do this at
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each point where propm can be contained within sub, thus splitting the proof into smaller

lemmas, each of which is generalized.
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Chapter 18

Evaluation of Learning

We used Peggy and E-PEGs to implement our technique for generating opti-

mizations (as was illustrated in Chapters 13 and 15). In this chapter, we experimentally

validate three hypotheses about our technique: (1) our technique allows a program-

mer to easily extend the compiler by sketching what an optimization looks like with a

before-and-after example; (2) our technique can amortize the cost of expensive-to-run

superoptimizers by generating fast-to-run optimizations; and (3) our technique can even

learn optimizations that are significantly profitable on code that the compiler was not

trained on.

18.1 Extending the Compiler through Examples

When the compiler does not perform an optimization that the programmer would

like to see, our technique allows the programmer to train the compiler by providing a

concrete example of what the desired optimization does. By using our implementation

to learn a variety of optimizations in this way, we demonstrate experimentally that our

technique enables the compiler to be extensible in an easy-to-program manner, without

the programmer having to learn any new language or compiler interface.

The optimizations that our system learned from examples are listed in Figure 18.1.

It took on average of 3.5 seconds to learn each example (including the time for translation
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Optimization Description
LIVSR Loop-induction variable SR
Inter-Loop SR SR across two loops
LIVSR Bounds Optimizes loop bounds after LIVSR
ILSR Bounds Optimizes loop bounds after inter-loop SR
Fun-Specific Opts Function-specific optimizations
Spec Inlining Inline only for special parameter values
Partial Inlining Inline only part of the callee
Temp-Obj Removal Remove temporary objects
Loop-op Factor Factor op out of loop
Loop-op Distr Distribute op into loop to cancel other ops
Entire-Loop SR Replace entire loop with one op
Array-Copy Prop Copy prop through array elements
Design-Patt Opts Remove overhead of design patterns

Figure 18.1. Learned optimizations (SR = Strength Reduction)

validation). The only optimizations in this list that are performed by gcc -O3 are LIVSR

and Array-Copy Prop. This demonstrates the benefit of our system: it allows an end-

user programmer to easily implement non-standard optimizations targeting application

domains with high-performance needs, such as computer graphics, image processing,

and scientific computing.

The LIVSR optimization was already shown in Chapter 13. Optimizations LIVSR

Bounds through Loop-op Factor will be covered throughout the remainder of Chapter 18.

We start with Inter-Loop SR (from Section 3.3) and ILSR Bounds. These optimizations

apply to a common programming idiom in image processing, which is shown in the

left part of Figure 18.2(a). The img variable is a two-dimensional image represented

as a one-dimensional array in row-major form. Programmers commonly use this kind

of representation to efficiently store dynamically sized two-dimensional images. The

original code in Figure 18.2(a) uses a convenient way of iterating over such arrays,

whereas the transformed code uses the more efficient, yet harder to program, formulation

that programmers typically use (it removes the multiplication and addition from the
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for (i=0; i<h; i++)

for (j=0; j<w; j++)

img[i*w+j] /= 2;

Z=⇒
for (i=0; i<h*w; i+=w)

for (j=i; j<i+w; j++)

img[j] /= 2;

(a) Concrete example

for (I=E1; I<E2; I++)

for (J=0; J<E3; J++)

E4(I*E3+J)

Z=⇒
for (I=E1; I<E2*E3; I+=E3)

for (J=I; J<I+E3; J++)

E4(J)

where E1, E2, E3, and E4 are any loop-invariant expressions
(b) Generated optimization rule

Figure 18.2. Generalized inter-loop strength reduction

inner loop). From the concrete example, our generalizer determines that the img array

is actually insignificant (the only part that matters is the i*w + j computation); it

determines that the starting point of the outer loop is insignificant; and that the bounds

on both loops can be generalized into loop-invariant expressions. Furthermore, although

we show the learned optimization as one rule, our decomposition algorithm would

split this into two optimizations: one which optimizes the body of the loop (Inter-

Loop SR), and one which optimizes the bounds of the loop (ILSR Bounds). A similar

decomposition when learning LIVSR would also produce LIVSR Bounds. Also, all

our generated optimization rules — including the one in Figure 18.2(b) — can apply

to programs containing other statements in the loops that do not affect the significant

program fragments being optimized.

When traditional compilers like gcc -O3 do not perform the optimization de-

scribed above, an image-processing programmer would be forced to use the more efficient

but error-prone version of the code. With our system, the programmer can use the simpler

version and rely on the compiler to optimize it into the more efficient one. Furthermore, if

the programmer encounters a new instance of the programming pattern that the generated

rule does not cover, the programmer can train the compiler with another example. This
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len = array.length;

sum = 0;

for (i=0; i<len; i++)

sum += array[i] * 7;

Z=⇒

len = array.length;

sum = 0;

for (i=0; i<len; i++)

sum += array[i];

sum *= 7;

(a) Concrete example

X = 0

while (E1)

X += E2 * E3
Z=⇒

X = 0

while (E1)

X += E2
X *= E3

where E3 is a loop-invariant expression
(b) Generated optimization rule

Figure 18.3. Loop-operation factoring

scenario emphasizes how easy it is for non-compiler-experts to benefit from our system.

Extending the compiler is as simple as providing a single concrete example, without

having to worry about the side conditions required for correctness or having to learn a

new language, such as the language in Figure 18.2(b) including expression variables like

E1 and side conditions like “E1 is loop invariant”.

We next show another example of an optimization not performed by gcc -O3,

loop-operation factoring (Loop-op Factor in Figure 18.1). The concrete example that we

used to sketch the optimization is shown in Figure 18.3(a). The multiplication inside

the loop gets factored out of the loop through the additions. The generalization that our

system generates is shown in Figure 18.3(b). Our generalizer determined that the use of

the array is insignificant and the format of the loop is insignificant, as is the constant 7,

which can in fact be any loop-invariant expression.

Finally, we show how our system can learn optimizations for the pow function

in Figure 18.4. With the concrete example pow(a,p) * pow(b,p) Z⇒ pow(a * b,p),

our generalizer shows that the two concrete programs are equivalent and then generalizes
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the example into the optimization ∀x,y,z∈ int. pow(x,z) * pow(y,z) Z⇒ pow(x * y,z).

This is an example of Fun-Specific Opts from Figure 18.1. Similarly, we were able to

get our generalizer to learn the non-trivial optimization: ∀x ∈ uint. pow(2,x) Z⇒ 1� x

(which is an example of Spec Inlining in Figure 18.1). Here again, neither of these

optimizations are performed by gcc -O3, whereas our approach allows the programmer

to easily specify these optimizations by example.

18.2 Learning from Superoptimizers

Another possible use of our approach is to amortize the cost of running a super-

optimizer. Given an input program, a superoptimizer performs a brute-force exploration

through the large space of transformed programs to find the (near) optimal version of

the input program. Our approach can mitigate the cost of running superoptimizers by

learning optimizations from one run of the superoptimizer, and then applying only the

learned optimizations to get much of the benefit of the superoptimizer at a fraction of the

cost.

The Peggy compiler at its core performs a superoptimizer-style brute-force explo-

ration by applying axioms to build an E-PEG that compactly represents exponentially

many different versions of the input program, and then using a profitability heuristic to

find the best PEG represented in this E-PEG. To evaluate our approach in the setting of

superoptimizers, we used Peggy to superoptimize some microbenchmarks and SpecJVM,

and used our technique on the original and transformed programs to learn optimizations.

Several of the optimizations learned using before-and-after examples in Sec-

tion 18.1 cannot be learned by using the superoptimizer – they really do require a

programmer to give an input-output example. For instance, if the Peggy superoptimizer

were given pow(a,p) * pow(b,p) to optimize using basic axioms, it would not be able

to find the desired transformed program pow(a * b,p) because, even though it can
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int pow(int base, int power)

int prod = 1;

for (int i = 0; i < power; i++)

prod *= base;

return prod;

Figure 18.4. The power function for integers

decompose the original expression into smaller pieces, it cannot guess how to reassemble

them into pow(a * b,p). However, Peggy can prove the original and transformed pro-

grams equivalent because it sees the pow(a * b,p) term to which it can apply axioms.

In essence it is easier to apply axioms on the original and transformed programs and meet

in the middle, rather than derive the transformed program from the original. With the

proof, our approach can learn a new optimization that the Peggy superoptimizer would

not have performed.

Our superoptimizer experiments also show how inlining combined with general-

ization produces useful and unconventional optimizations. Inlining in Peggy simply adds

the information that a call node is equivalent to the body of the called function. Adding

this equality does not force Peggy to choose the inlined version; it just provides more

options in the caller’s E-PEG for the profitability heuristic to choose from. When running

on code that uses the pow function from Figure 18.4, Peggy applied the inlining axiom on

pow, thus pulling the body of pow into the E-PEG. Peggy then exploited the fact that pow

does not affect the heap to optimize the surrounding context, but chose not to inline pow

in the final result. From this our generalizer learned the optimization that pow is heap

invariant. In future compilations, Peggy can then immediately use the fact that pow does

not affect the heap to optimize the surrounding context without the expensive process

of inlining pow. This is an example of what we call partial inlining (Partial Inlining in

Figure 18.1), where the optimizer exploits the information learned from inlining without
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opting to inline the function. Another example of partial inlining we observed involved

a large function that modifies the heap but always returns 0. By applying the inlining

axiom, Peggy was able to optimize the surrounding context with the information that the

return value was 0, but then chose not to inline the called function because it was too

large. In this case the generalizer would learn that the function always returns 0, which

can be used in future compilations without having to apply the inlining axiom.

We evaluate the effectiveness of amortizing the cost of a superoptimizer on

the SpecJVM suite. For each class in SpecJVM, as a first step we used the Peggy

superoptimizer to compile the class using basic axioms, and used our generalization

technique to generate a set of optimizations for that class. As a second step, we removed

all the basic axioms from Peggy and re-optimized the class using the axioms that were

learned in the first step. Across all benchmarks, it took on average 11.15 seconds to

generalize a method, and the average cost of compiling each method went down from

26.64 seconds in the first step to 1.47 seconds in the second step, while still producing

the same output programs.

These experiments show that, for expensive superoptimizers, our technique can

improve compilation time while still producing the same result. Furthermore, our

benchmark-specific optimizations can still apply even if small changes are made to

the code. As a result, we can avoid a superoptimizing compilation after each small

change, while still retaining many of the benefits of the superoptimizer. Eventually,

however, the learned optimizations will go out of date, at which point a superoptimizing

compilation would be needed. Thus, we envision that our approach could be used

to perform an expensive superoptimizing compilation every so often while using the

generated optimizations in between.
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18.3 Cross-Training

The above experiment illustrates the benefits of learning optimizations when

compiling exactly the same code that was learned on. We now show some encouraging

evidence that even cross-training is possible. Our hypothesis is that many libraries are

used in stylized ways, and so training with Peggy’s superoptimizer on some uses of a

library can discover optimizations that would be useful on previously unseen code that

uses the same library.

We conducted a preliminary evaluation of this hypothesis on the Java ray tracer

from Section 11.2, which uses a pure vector library. Peggy’s optimization phase improves

this benchmark’s performance by 7%, compared to only using Sun’s Java 6 JIT, by

removing the short-lived temporary objects (Temp-Obj Removal in Figure 18.1).

Most of these gains come from one important method, call it m. We identified

another vector-intense method, call it f, to train our learning optimizer on. Using only the

axioms learned from optimizing the expressions within f, Peggy was able to optimize m

to produce a 3.1% run-time improvement on the ray tracer, instead of the 7.1% speed-up

gained by fully optimizing m. Alternatively, using a slightly larger training set produces

a 5.1% speed-up. Upon further investigation, we found that the learned optimizations

perform large-step simplifications of common usage patterns of the vector library (for

example, a vector scale followed by a vector add). Furthermore, if in addition to the

learned optimizations from either training set, we allow Peggy to also use those original

axioms which infer equalities without creating any new terms (41% of all axioms), Peggy

produces the fully optimized m. The purpose of these axioms is to simplify a program, so

they cannot lead the optimizer down a fruitless path. Using simplifying axioms alone on m

produces only a 0.6% speed-up. Thus, the optimizations learned from either training set

lead the optimizer in the right direction, and the remaining axioms simplify the resulting
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expressions into the fully optimized m. These findings show that our technique can be

effective at cross-training even on a small training set.
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Chapter 19

Related Work

Superoptimizers Our approach of computing a set of programs and then choosing

from this set is related to the approach taken by many superoptimizers [9, 33, 37, 54]. Su-

peroptimizers strive to produce truly optimal code, rather than simply improve programs.

Although superoptimizers can generate (near) optimal code, they have so far scaled only

to small code sizes, mostly straight-line code. Our approach, on the other hand, is meant

as a general-purpose paradigm that can optimize branches and loops, as shown by the

inter-loop optimization from Chapter 3.

Our approach was inspired by Denali [45], a superoptimizer for finding near-

optimal ways of computing a given basic block. Denali represents the computations

performed in the basic block as an expression graph, and applies axioms to create an

E-graph data structure representing the various ways of computing the values in the basic

block. It then uses repeated calls to a SAT solver to find the best way of computing the

basic block given the equalities stored in the E-graph. The biggest difference between

our work and Denali is that our approach can perform intricate optimizations involving

branches and loops. On the other hand, the Denali’s cost model is more precise than ours

because it assigns costs to entire sequences of operations, and so it can take into account

the effects of scheduling and register allocation.
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Rewrite-Based Optimizers Axioms or rewrite rules have been used in many compila-

tion systems, for example TAMPR [13], ASF+SDF [87], the ML compilation system of

Visser et al. [88], and Stratego [14]. These systems, however, perform transformations

in sequence, with each axiom or rewrite rule destructively updating the IR. Typically,

such compilers also provide a mechanism for controlling the application of rewrites

through built-in or user-defined strategies. Our approach, in contrast, does not use

strategies – we instead simultaneously explore all possible optimization orderings, while

avoiding redundant work. Even with no strategies, we can perform a variety of intricate

optimizations.

Optimization Ordering Many research projects have been aimed at mitigating the

phase-ordering problem, including automated assistance for exploring enabling and

disabling properties of optimizations [93, 94], automated techniques for generating good

sequences [2, 17, 46], manual techniques for combining analyses and optimizations [16],

and automated techniques for the same purpose [52]. However, we tackle the problem

from a different perspective than previous approaches, in particular by simultaneously

exploring all possible sequences of optimizations, up to some bound. Aside from the

theoretical guarantees from Chapter 5, our approach can do well even if every part of the

input program requires a different ordering.

Translation Validation In contrast to previous approaches to translation validation

have been explored [59, 64, 69, 96], our approach has the advantage that it can perform

translation validation by using the same technique as for program optimization. It also

adapts easily to new compilers and languages, unlike the strategy taken by Tristan et

al. [84] which requires a thorough understanding of the specific compiler and even

compiler configuration at hand.
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Intermediate Representations Our main contribution is an approach for structuring

optimizers based on equality saturation. However, to make our approach effective, we

have also designed the E-PEG representation. There has been a long line of work on

developing IRs that make analysis and optimizations easier to perform [3, 15, 20, 31, 41,

63, 71, 85, 92]. The key distinguishing feature of E-PEGs is that a single E-PEG can

represent many optimized versions of the input program, which allows us to use global

profitability heuristics and to perform translation validation.

We now compare the PEG component of our IR with previous IRs. PEGs are

related to SSA [20], gated SSA [85] and thinned gated SSA [41]. The µ function from

gated SSA is similar to our θ function, and the η function is similar to our eval/pass pair.

However, in all these variants of SSA, the SSA nodes are inserted into the CFG, whereas

we do not keep the CFG around. The fact that PEGs are not tied to a CFG imposes fewer

placement constraints on IR nodes, allowing us to implicitly restructure the CFG simply

by manipulating the PEG, as shown in Chapter 4. Furthermore, the conversion from

any of the SSA representations back to imperative code is extremely simple since the

CFG is already there. It suffices for each assignment x := φ(a,b) to simply insert the

assignments x := a and x := b at the end of the two predecessor CFG basic blocks. The

fact that our PEG representation is not tied to a CFG makes the reversion from PEGs

back to a CFG much more challenging, since it requires reconstructing explicit control

information.

The program dependence graph [31] (PDG) represents control information by

grouping together operations that execute in the same control region. The representation,

however, is still statement based. Also, even though the PDG makes many analyses

and optimizations easier to implement, each one has to be developed independently. In

our representation, analyses and optimizations fall out from a single unified reasoning

mechanism.
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The program dependence web [62] (PDW) combines the PDG with gated SSA.

Our conversion algorithms have some similarities with the ones from the PDW. The

PDW, however, still maintains explicit PDG control edges, whereas we do not have such

explicit control edges, making reverting back to a CFG more complex.

Dependence flow graphs [63] (DFGs) are a complete and executable represen-

tation of programs based on dependencies. However, DFGs employ a side-effecting

storage model with an imperative store operation, whereas our representation is entirely

functional, making equational reasoning more natural.

Like PEGs, the value dependence graph [92] (VDG) is a complete functional

representation. VDGs use λ nodes (i.e. regular function abstraction) to represent loops,

whereas we use specialized θ , eval, and pass nodes. Using λ s as a key component in an

IR is problematic for the equality saturation process. In order to effectively reason about

λ s one must particularly be able to reason about substitution. While this is possible to

do during equality saturation, it is not efficient. The reason is that equality saturation

is also being done to the body of the λ expression (essentially optimizing the body of

the loop in the case of VDGs), so when the substitution needs to be applied, it needs to

be applied to all versions of the body and even all future versions of the body as more

axioms are applied. Furthermore, one has to determine when to perform λ abstraction on

an expression, that is to say, turn e into (λx.ebody)(earg), which essentially amounts to

pulling earg out of e. Not only can it be challenging to determine when to perform this

transformation, but one also has to take particular care to perform the transformation in a

way that applies to all equivalent forms of e and earg.

The problem with λ expressions stems in fact from a more fundamental problem:

λ expressions use intermediate variables (the parameters of the λ s), and the indirection

introduced by these intermediate variables adds reasoning overhead. In particular, as

was explained above for VDGs, the added level of indirection requires reasoning about
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substitution, which in the face of equality saturation is cumbersome and inefficient. An

important property of PEGs is that they have no intermediate variables. The overhead

of using intermediate variables is also why we chose to represent effects with an effect

witness rather than using the techniques from the functional-languages community such

as monads [57, 89–91] or continuation-passing style [4, 5, 32, 40, 47], both of which

introduce indirection through intermediate variables. It is also why we used recursive

expressions rather than using syntactic fixpoint operators.

Dataflow Languages Our PEG intermediate representation is related to the broad

area of dataflow languages [44]. The most closely related is the Lucid programming

language [7], in which variables are maps from iteration counts to possibly undefined

values, as in our PEGs. Lucid’s first/next operators are similar to our θ nodes, and

Lucid’s as soon as operator is similar to our eval/pass pair. However, Lucid and PEGs

differ in their intended use and application. Lucid is a programming language designed

to make formal proofs of correctness easier to do, whereas Peggy uses equivalences of

PEG nodes to optimize code expressed in existing imperative languages. Furthermore,

we incorporate a monotonize function into our semantics and axioms, which guarantees

the correctness of our conversion to and from CFGs with loops.

Theorem Proving Because most of our reasoning is performed using simple axioms,

our work is related to the broad area of automated theorem proving. The theorem

prover that most inspired our work is Simplify [23], with its E-graph data structure

for representing equalities [61]. Our E-PEGs are in essence specialized E-graphs for

reasoning about PEGs. Furthermore, the way our analyses communicate through equality

is conceptually similar to the equality-propagation approach used in Nelson-Oppen

theorem provers [60].
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Execution Indices Execution indices identify the state of progress of an execution [27,

95]. The call stack typically acts as the interprocedural portion, and the loop-iteration

counts in our semantics can act as the intraprocedural portion. As a result, one of the

benefits of PEGs is that they make intraprocedural execution indices explicit.

Extensible Optimizers There has been a long line of work on making optimizers

extensible or easier to develop, including Sharlit [83], Whitfield and Soffa’s Gospel sys-

tem [94], the Broadway extensible compiler [38], and the Rhodium system for expressing

optimizations [48, 53]. In all these systems, however, the programmer has to learn a new

language or compiler interface to express optimizations. In contrast, our approach learns

an optimization from a single example provided by the programmer in a language already

familiar to them.

Explanation-Based Learning In the context of artificial intelligence, our approach is

an instance of explanation-based learning (EBL) [30]. EBL refers to learning from a

single example using an explanation of that example. EBL has been applied to a wide

variety of domains, such as Prolog optimization [35], logic-circuit designs [29], and

software reuse [11]. Many of these applications use algorithms based on unification or

Prolog [26, 29, 35]. The declarative components of Prolog can be encoded in our frame-

work by combining categories of expressions with categories of relations. Furthermore,

most EBL implementations provide no guarantees on what is learned, while we can

prove that our technique learns the most general lesson for a given explanation. Within

EBL, our work is closely related that of Dietzen and Pfenning [26]. They use λProlog

to extend EBL to higher-order and modal logic, and apply this framework to various

settings including program transformations. However, they do not investigate ways to

automatically train the optimizer, relying instead on the user to prove the transformation
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correct using tacticals. As a consequence, they do not attempt to decompose an optimiza-

tion into suboptimizations, since a user manually proving an optimization would already

do this. Furthermore, we experimentally demonstrate that generalization can be useful

for extending compilers and amortizing the cost of superoptimizers.

Machine Learning There have been many uses of machine learning in the context

of compiler optimizations. Techniques like genetic algorithms, reinforcement learning,

and supervised learning, have been used to generate effective heuristics for instruction

scheduling [55, 73], register allocation [73], prefetching [73], loop-unroll factors [72],

and for optimization ordering [18]. In all these cases, the parts being learned are not

the transformation rules themselves, but profitability heuristics, which are functions that

decide when or where to apply certain transformations. As a result, these techniques

are complementary to our technique: we generate the optimization rules themselves,

but not the profitability heuristics (we use a single global profitability heuristic for all

optimizations). Also, while modern machine learning techniques use statistical methods

over large data sets, our EBL-based approach can learn from a very small dataset, even

from just one example.

Optimization Inference The idea of discovering optimizations has also been been

explored in the setting of superoptimizers [9, 45, 54]. Superoptimizers try to discover

optimizations by a brute-force exploration of possible transformed programs for a given

input program. Traditional superoptimizers find concrete optimization instances, whereas

our approach starts with optimization instances, and tries to generalize the instances into

reusable optimization rules. As such, our work is complementary to superoptimization

techniques. However, Bansal and Aiken’s recent superoptimizer [9] does achieve a simple

form of generalization, namely abstraction of register names and constants. In contrast,
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we perform a more sophisticated kind of generalization based on the reasons why the

original and transformed programs are equivalent.
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Chapter 20

Conclusion

The key to this work is our algebraic representation of imperative functions:

Program Expression Graphs. This representation enabled us to extend the algebraic and

equational reasoning capabilities of theorem provers to entire control flow graphs so that

we may discover and verify even complex loop optimizations. It also provided a powerful

proof language enabling us to learn even advanced loop optimizations by generalizing

proofs in this expressive language. Thus, in our experience the program representation is

the key component of an optimizer.

In this thesis I have focused entirely on intraprocedural optimization. We have

investigated interprocedural optimizations; however, we have come across two major ob-

stacles. First, we have not been able to design an algebraic interprocedural representation

of programs, meaning a representation that does not use some form of intermediate vari-

ables, such as parameters, which obstruct the flow of data and restructurings. Second, the

program size grows too large as does the space to explore, since there is little information

as to where interprocedural transformations may actually prove beneficial. The former

seems fundamentally insurmountable, so the latter is where we believe efforts should be

focused. The current common strategy is to collect interprocedural information, such

as aliasing, and apply that information intraprocedurally. Another strategy may be to

enable programmers to annotate code with information indicating where interprocedural
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optimization may be beneficial, and simultaneously provide guarantees or feedback to

programmers so that they are encouraged to supply this information.

Possibly the greatest weakness of this work is its dramatic difference from con-

ventional optimization techniques. At present we do not have a means for combining our

approach with conventional approaches so that they may cooperate with each other. This

would also address the more practical consideration of integrating our techniques into

existing compilers. I believe such a combination would be fruitful for both optimization

and correctness, so that is my next step for furthering this promising line of research and

putting it into practice.

Lessons from Category Theory In doing this research, it is surprising how helpful

category theory has been considering how application-oriented this work is. When I got

stuck attempting to find a good and principled optimization-generalization algorithm [79],

category theory allowed me to abstract away the overwhelming details, identify the core

components of the problem at hand, and tackle those challenges at a high level, with

the low-level details being just instantiations of the high-level algorithm. In fact, this

same situation happened again when trying to design and implement an inferable typed

assembly language [77] and being overwhelmed with details and, in that case, design

choices. In that case, the high-level algorithm actually transferred to an entirely different

domain I had not anticipated, which enabled me to quickly devise an algorithm for

improving Java’s handling of wildcards [78]. Similarly, when attempting to prove that

our representation of effects [75, 80, 81] was in fact sound, which thankfully none of the

reviewers required back when I had never heard of categories, category theory offered

the tools necessary to find a proper argument, especially one that could adapt to new

languages and effects as I expected PEGs should be able to. So, if I may offer a lesson

from my own personal experience, even if you are not working in areas with well known
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connections to category theory, such as semantics, you should expose yourself to some

raw category theory [1]; like me, you may be surprised when and where it will come to

the rescue.



Appendix A

Axioms

In this appendix we describe the axioms used to produce the optimizations listed

in Figure 11.1. We organize the axioms into two categories: general purpose and domain

specific. The general-purpose axioms are useful enough to apply to a wide range of

programming domains, while the domain-specific axioms give useful information about

a particular domain.

The axioms provided below are not a complete list of the ones generally included

in our engine during saturation. Instead, we highlight only those that were necessary to

perform the optimizations in Figure 11.1.

A.1 General-Purpose Axioms

The axioms presented here are usable in a wide range of programs. Hence, these

axioms are included in all runs of Peggy.

(Built-in E-PEG operators) This group of axioms relates to the special PEG operators

θ , eval, and φ . Many of these axioms describe properties that hold for any

operation OP. Some require OP to be lifted with respect to a certain loop. For

example, domain operators, such as +, as well as φ are lifted with respect to all

loops. On the other hand, loop operators such as θ`, eval`, and pass` are only
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lifted with respect to loops distinct from `. We formalize this with the definition of

lifted`.

Definition A.1. (Loop-liftedness) Putting aside the issue of arity for simplicity,

given a function f : ((L → N)→ X)→ ((L → N)→ Y ), lifted`( f ) is defined as

∀x,x′ ∈ (L → N)→ X , i ∈ N.


∀i ∈L → N. x(i[` 7→ i]) = x′(i[` 7→ i])

⇓

∀i ∈L → N. f (x)(i[` 7→ i]) = f (x′)(i[` 7→ i])


∧

∀x ∈ (L → N)→ X .


∀i ∈L → N, i, i′ ∈ N. x(i[` 7→ i]) = x(i[` 7→ i′])

⇓

∀i ∈L → N, i, i′ ∈ N. f (x)(i[` 7→ i]) = f (x)(i[` 7→ i′])



• if T = θ`(A,T ) and invariant`(A), then T = A

[If a loop-varying value always equals its previous value, then it equals its initial

value]

• if invariant`(A), then eval`(A,P) = A

[Loop-invariant values have the same value regardless of the current loop iteration]

• OP(A1, . . . ,θ`(Bi,Ci), . . . ,Ak) = θ`(OP(eval j(A1,Z), . . . ,Bi, . . . ,eval`(Ak,Z)),

OP(peel j(A1), . . . ,Ci, . . . ,peel j(Ak))),

when lifted`(OP)

[Any loop-lifted operator can distribute through θ`]

• φ(C,A,A) = A

[If a φ node has the same value regardless of its condition, then it is equal to that

value]
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• φ(C,φ(C,T2,F2),F1) = φ(C,T2,F1)

[A φ node in a context where its condition is true is equal to its true case]

• OP(A1, . . . ,φ(B,C,D), . . . ,Ak) = φ(B,OP(A1, . . . ,C, . . . ,Ak),

OP(A1, . . . ,D, . . . ,Ak))

[All operators distribute through φ nodes]

• OP(A1, . . . ,eval`(Ai,P), . . . ,Ak) = eval`(OP(A1, . . . ,Ai, . . . ,Ak),P),

when lifted`(OP) and all of A1, . . . ,Ai−1,Ai+1, . . . ,Ak are invariant`

[Any loop-lifted operator can distribute through eval`]

(Code patterns) These axioms are more elaborate and describe some complicated (yet

still non-domain-specific) code patterns. These axioms are awkward to depict using

our expression notation, so instead we present them in terms of before-and-after

source code snippets.

• Unroll loop entirely:

x = B; == x = B;

for (i=0;i<D;i++) if (D>=0) x += C*D;

x += C;

[Adding C to a variable D times is the same as adding C*D (assuming D≥ 0)]
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• Loop peeling:

A;

for (i=0;i<N;i++)

B;

=

if (N>0) {

B[i -> 0];

for (i=1;i<N;i++)

B;

} else {

A;

}

[This axiom describes one specific type of loop peeling, where B[i→ 0] means

copying the body of B and replacing all uses of i with 0]

• Replace loop with constant:

for (i=0;i<N;i++){} == x = N;

x = i;

[Incrementing N times starting at 0 produces N]

(Basic Arithmetic) This group of axioms encodes arithmetic properties including facts

about addition, multiplication, and inequalities. Once again, this is not the com-

plete list of arithmetic axioms used in Peggy, just those that were relevant to the

optimizations mentioned in Figure 11.1.

• (A∗B)+(A∗C) = A∗ (B+C)

• if C 6= 0, then (A/C)∗C = A

• A∗B = B∗A
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• A+B = B+A

• A∗1 = A

• A+0 = A

• A∗0 = 0

• A−A = 0

• A%8 = A&7

• A+(−B) = A−B

• −(−A) = A

• A∗2 = A<<1

• (A+B)−C = A+(B−C)

• (A+B)+C = A+(B+C)

• if A≥ B then (A+1)> B

• if A≤ B then (A−1)< B

• (A > A) = false

• (A≥ A) = true

• ¬(A > B) = (A≤ B)

• ¬(A≤ B) = (A > B)

• (A < B) = (B > A)

• (A≤ B) = (B≥ A)

• if A≥ B and C≥ 0 then (A∗C)≥ (B∗C)
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(Java specific) This group of axioms describes facts about Java-specific operations like

reading from an array or field. Though they refer to Java operators explicitly,

these axioms are still general purpose within the scope of the Java programming

language.

• GETARRAY(SETARRAY(S,A,I,V),A,I) = V

[Reading A[I] after writing A[I]← V yields V]

• If I 6= J, then GETARRAY(SETARRAY(S,A,J,V),A,I) = GETARRAY(S,A,I)

[Reading A[I] after writing A[J] (where I 6= J) is the same as reading before the

write]

• SETARRAY(SETARRAY(S,A,I,V1),A,I,V2) = SETARRAY(S,A,I,V2)

[Writing A[I]← V1 then A[I]← V2 is the same as only writing V2]

• GETFIELD(SETFIELD(S,O,F,V),O,F) = V

[Reading O.F after writing O.F← V yields V]

• If F1 6= F2,

then GETFIELD(SETFIELD(S,O,F1,V),O,F2) = GETFIELD(S,O,F2)

[Reading A[I] after writing A[J] (where I 6= J) is the same as reading before the

write]

• SETFIELD(SETFIELD(S,O,F,V1),O,F,V2) = SETFIELD(S,O,F,V2)

[Writing O.F← V1 then O.F← V2 is the same as only writing V2]
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A.2 Domain-Specific Axioms

Each of these axioms provides useful information about a particular programming

domain. These could be considered “application-specific” or “program-specific” axioms,

and are only expected to apply to that particular application/program.

(Inlining) Inlining in Peggy acts like one giant axiom application, equating the inputs of

the inlined PEG with the actual parameters, and the outputs of the PEG with the

outputs of the INVOKE operator.

• Inlining axiom:

x = pow(A,B); == result = 1;

for (e = 0;e < B;e++)

result *= A;

x = result;

[A method call to pow is equal to its inlined body]

(Read Only) It is very common for certain Java methods to be read only. This fact is

often useful, and can easily be encoded with axioms like the following.

• ρσ (INVOKE(S,L, [Object List.get()],P)) = S

[List.get is read only]

• ρσ (INVOKE(S,L, [int List.size()],P)) = S

[List.size is read only]
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• ρσ (INVOKESTATIC(S, [double Math.sqrt(double)],P)) = S

[Math.sqrt is read only]

(Vector axioms) In our ray-tracer benchmark, there are many methods that deal with

immutable 3D vectors. The following are some axioms that pertain to methods of

the Vector class. These axioms when expressed in terms of PEG nodes are large

and awkward, so we present them here in terms of before-and-after source code

snippets.

• construct(A,B,C).scaled(D)= construct(A∗D,B∗D,C∗D)

[Vector (A,B,C) scaled by D equals vector (A∗D,B∗D,C ∗D)]

• A.distance2(B)= A.difference(B).length2()

[The squared distance between A and B equals the squared length of vector (A−B)]

•

A.getX()= A.mX

A.getY()= A.mY

A.getZ()= A.mZ

[Calling the getter method is equal to accessing the field directly]

•

construct(A,B,C).mX= A

construct(A,B,C).mY= B

construct(A,B,C).mZ= C
[Accessing the field of constructed vector (A,B,C) is equal to appropriate parameter]

•
construct(A,B,C).difference(construct(D,E,F))=

construct(A−D,B−E,C−F)
[The difference of vectors (A,B,C) and (D,E,F) equals (A−D,B−E,C−F)]
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• construct(A,B,C).dot(construct(D,E,F))= A∗D+B∗E+C∗F

[The dot product of vectors (A,B,C) and (D,E,F) equals A∗D+B∗E +C ∗F]

• construct(A,B,C).length2()= A∗A+B∗B+C∗C

[The squared length of vector (A,B,C) equals A2 +B2 +C2]

• construct(A,B,C).negative()= construct(−A,−B,−C)

[The negation of vector (A,B,C) equals (−A,−B,−C)]

• construct(A,B,C).scaled(D)= construct(A∗D,B∗D,C∗D)

[Scaling vector (A,B,C) by D equals (A∗D,B∗D,C ∗D)]

•
construct(A,B,C).sum(construct(D,E,F))=

construct(A+D,B+E,C+F)
[The sum of vectors (A,B,C) and (D,E,F) equals (A+D,B+E,C+F)]

• getZero().mX= getZero().mY= getZero().mZ= 0.0

[The components of the zero vector are 0]

(Design patterns) These axioms encode scenarios that occur when programmers use

particular coding styles that are common but inefficient.

• Axiom about integer wrappers:

A.plus(B).getValue()= A.getValue()+B.getValue()

[Where plus returns a new integer wrapper, and getValue returns the wrapped

value]

• Axiom about redundant method calls when using java.util.List:

l.contains(o)= l.indexOf(o) >= 0
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[A list contains an item iff the item has a valid index]

(Method outlining) Method outlining is the opposite of method inlining; it is an attempt

to replace a snippet of code with a procedure call that performs the same task. This

type of optimization is useful for removing a common yet inefficient snippet of

code and replacing it with a more efficient library implementation.

• Body of selection sort replaced with Arrays.sort(int[]):

length = A.length;

for (i=0;i<length;i++) {

for (j=i+1;j<length;j++) {

if (A[i] > A[j]) {

temp = A[i];

A[i] = A[j];

A[j] = temp;

}

}

}

= Arrays.sort(A);

(Specialized redirect) This optimization is similar to method outlining, but instead

of replacing a snippet of code with a procedure call, it replaces one procedure

call with an equivalent yet more efficient one. This is usually in response to

some learned contextual information that allows the program to use a special-case

implementation.
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• if I = INVOKESTATIC(S, [void sort(int[])], PARAMS(A)) exists,

then add equality isSorted(ρσ (I),A) = true

[If you call sort on an array A, then A is sorted in the subsequent heap]

• if isSorted(S,A) = true, then

INVOKESTATIC(S, [int linearSearch(int[],int)], PARAMS(A,B)) =

INVOKESTATIC(S, [int binarySearch(int[],int)], PARAMS(A,B))

[If array A is sorted, then a linear search equals a binary search]
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